
Predictor–Corrector Technique for Approximate

Parameterization of Intersection Curves

Pavel Chalmovianský1 and Bert Jüttler2

1 Radon Institute of Computational and Applied Mathematics
Austrian Academy of Science

pavel.chalmoviansky@ricam.oeaw.ac.at,
homepage: http://www.ricam.oeaw.ac.at/

2 Institute of Applied Geometry, Johannes Kepler University, Linz, Austria
Bert.juettler@jku.at,

homepage: http://www.ag.jku.at/

Abstract. We describe a method for computing a rational curve which
approximates the intersection curves of two implicitly defined surfaces.
Based on a preconditioning of the two given surfaces, the problem can
be formulated as an optimization problem, where the objective func-
tion approximates the integral of the squared Euclidean distance of the
curve to the intersection curve. An SQP-type method is used to solve the
optimization problem numerically. Special attention is paid to the gen-
eration of an initial predictor, which is found by a region–growing–type
technique. We use the predictor of de Casteljau type and Runge-Kutta
type. We briefly discuss how to treat singularities of the intersection
curve.

1 Introduction

Algebraic space curves, which can be defined as the intersection of two algebraic
surfaces, arise in various ways in geometric modeling, e.g., as the intersections of
two natural quadrics. Recently, powerful computational techniques for analyzing
the topology of such curves have been formulated [1]. Techniques for convert-
ing them into parametric form are needed for various application in geometric
modeling and processing, such as the generation of blending surfaces.

Some algebraic space curves, such as truly spatial cubics, admit an exact
representation as rational parametric curves, and various parameterization tech-
niques are known from classical algebraic geometry [2–4]. However, such a rep-
resentation does not exist in most cases.

The particular case of the intersections of two quadric surfaces has been
studied thoroughly (see [5] and the references cited therein). It was observed
that it is possible to parameterize them using square root functions. Certain
special types of curves (such as curves with polynomial parameterization) were
considered in [6].

In the general case, no such results can be expected, and the use of ap-
proximate techniques is unavoidable (see [7]). Numerical parameterization of

2

the intersection curves via polynomial approximation was considered in [8]. Cer-
tain numerical aspects of such parameterizations were discussed in [9]. Ideally,
approximate techniques would be able to reproduce exact rational parameteri-
zations, if those are available.

The paper is organized as follows. Section 2 formulates the problem, recalls
several facts on singularities and describes a preconditioning step which can be
applied to the given implicitly defined surfaces, in order to approximate the scalar
field of the squared distance to the intersection curve. After these preparations,
Section 3 describes the predictor–corrector method. Examples are given in sec-
tion 4. Finally we conclude the paper. Some additional details of the algorithm
are presented in appendices.

2 Preliminaries

2.1 Outline

For any function f : R
3 → R, let

Z(f) = {(x, y, z)⊤ ∈ R
3 : f(x, y, z) = 0} (1)

be the zero set. In the vicinity of a point p ∈ Z(f), the zero set of a function is
a surface if ∇f(p) 6= 0. Such a point is called regular point of surface Z(f).

We consider the intersection curve of two zero sets of functions f and g,

C(f, g) = Z(f) ∩ Z(g), (2)

where the functions are assumed to be C3. If both f and g are polynomials, the
curve C is called an algebraic curve.

A point p of C is called regular, if the two gradient vectors ∇f(p) and
∇g(p) are linearly independent (and singular otherwise). At a regular point p,
the vectors

u = ± ∇f(p)×∇g(p)

‖∇f(p)×∇g(p)‖ . (3)

are unit tangent vectors of the intersection curve C at p.

2.2 Singular Points

There can be singular points of the intersection curve C which are or are not
singular points of the surfaces Z(f) and Z(g).

The singularities, which are not singular points of any of the surface, occur
iff the tangent planes of both surfaces defined by non-zero gradient vector are
identical.

Let p be such a point and 1
kf
∇f(p) = (0, 0, 1)⊤ = 1

kg
∇g(p), where kf , kg ∈ R

are appropriate coefficients scaling the gradient vectors. This can be achieved via

3

suitable Euclidean transformation. Then, using the implicit function theorem,
the surfaces Z(f) and Z(g) can locally be written as

zf = f̃(x, y) and zg = g̃(x, y), (4)

where x, y are Cartesian coordinates in the common tangent plane Tp(Z(f)) =

Tp(Z(g)). Clearly, ∇f̃(p) = ∇g̃(p) = 0. Consequently, using the Taylor expan-

sions of f̃ and g̃ at p = (0, 0) in local coordinates, we get

zf(x, y)− zg(x, y) = f̃(x, y)− g̃(x, y) =
∞∑

i=2

f̃i(x, y)− g̃i(x, y), (5)

where f̃i and g̃i are homogeneous polynomials of degree i. Note that in case of
lower differentiability of f or g, the sum on the right of (5) has to be replaced
with the finite sum and an appropriate Taylor’s remainder.

The intersection curve may have several branches. The possible tangent di-
rections of the branches at the point p are the solutions of the homogeneous
polynomial equation

f̃k(x, y)− g̃k(x, y) = 0 (6)

for k = min{i : f̃i(x, y) − g̃i(x, y) 6= 0}. Consequently, k is an upper bound for
the number of possible curve branches at the point p.

For the case k = 2, f̃2(x, y) and g̃2(x, y) are polynomials representing (up to
a constant) the Dupin’s indicatrices of the given surfaces at p. Then,

Df (p) := {(x, y) : f̃2(x, y) = ±1} and Dg(p) := {(x, y) : g̃2(x, y) = ±1} (7)

with an appropriate choice of the signs. The tangential directions of the curve C
at point p must be determined by the points, where Df(p) intersects Dg(p) (see
Figure 1). This connects two concepts from differential geometry and algebraic
geometry.

If a singular point of the intersection curve is also a singular point of the
surface Z(f) or Z(g), we can detect it by computing zero set of the system of
equations

f = 0, g = 0, and ∇f = 0 or ∇g = 0. (8)

Generically, it is a 0-dimensional set (a finite number of points). Consequently,
we can use Bézier clipping algorithm (see [10]), once we have a bounding volume
containing a unique singular point. Clearly, if the set of the singular points has
a non-zero dimension (an algebraic curve provided f and g are polynomials),
we need to use an additional constraints to compute the singular points (e.g. a
moving hyperplane).

2.3 Orthogonalization

An important issue in our algorithm is the approximation of the Euclidean dis-
tance of the point x to the intersection curve C. In order to compute it efficiently,
one may preprocess the two given functions f and g.

4

Tp(Z(f)) = Tp(Z(g))

p

Df (p)

Dg(p)

Fig. 1: The tangential directions at the point p of intersection with the coincident
tangent planes – the simplest case.

Lemma 1. At any regular point x of the intersection curve C(f, g), the two

functions

F̄ (x) = f(x) ‖∇g(x)‖+ g(x) ‖∇f(x)‖ (9)

Ḡ(x) = f(x) ‖∇g(x)‖ − g(x) ‖∇f(x)‖ (10)

have mutually perpendicular gradients, ∇F̄ (x)·∇Ḡ(x) = 0, and the two functions

F (x) =
F̄ (x)

‖∇F̄ (x)‖ , G(x) =
Ḡ(x)

‖∇Ḡ(x)‖ (11)

even have unit and mutually perpendicular gradients.

Proof. These observations can be verified by direct computations. �

Figure 2 is an illustration of the orthogonalization for two quadrics. The tubular
surface is an isosurface of the Sampson distance to the intersection curve of the
quadrics. After the orthogonalization, the shape of the isosurface is locally more
cylindric tube.

Clearly, even if the function f and g are polynomials, neither F̄ and Ḡ nor
F and G are polynomials in general. It could be of some interest to study pairs
of algebraic surfaces which intersect each other orthogonally.

The orthonormal gradient frame defined by ∇F and ∇G may still rotate
around the curve. Here one may ask for similar ways of modifying them, which
leads to particular frames of the curve, such as the Frenet frame or a rotation-
minimizing frame.

Now we consider a well–known first order approximation [11] of the oriented
distance function dist or(x, Z(f)) of a point x from a given implicitly defined
surface Z(f).

5

0 0.5 1 1.5

x
0.511.522.5

y

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

z

0 0.5 1 1.5

x
0.511.522.5

y

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

z

(a) (b)

Fig. 2: Orthogonalization: (a) original quadric; (b) orthogonalized surfaces. The
tubular-like surface is an isosurface of the squared Sampson distance to the intersection
curve of the other two surfaces.

Lemma 2. Consider a C3 function f , whose gradients satisfy 0 < m < ||∇f(x)|| <
M for all points within a certain neighborhood N(p) of a point p ∈ Z(f), where

m and M are constants. Let Hess f(x) be the Hessian matrix of f at x. We

assume the eigenvalues of Hess f(x) are bounded in the neighborhood of N(p).
Moreover, let any x ∈ N(p) have a unique footpoint3 x0 on Z(f). The oriented

distance function

dist or(x, Z(f)) = sgn (f(x)) ||x − x0|| (12)

satisfies

dist or(x, Z(f)) =
f(x)

‖∇f(x)‖ +O(d2) (13)

with d = ||x− x0||.

Proof. Consider the function

L(t) =
f(x(t))

‖∇f(x(t))‖ (14)

where
x(t) = x0 + t∇f(x0) (15)

where x0 ∈ N(p) ∩ Z(f) ⊂ E3.
The Taylor expansion of the function L(t) of order 2 at t = 0 is

L(t) = t‖∇f(x0)‖ −
t2

2
∇f(x0)

⊤Hess (f(x0))∇f(x0)
1

‖∇f(x0)‖
+O(t3). (16)

The oriented distance equals

dist or(x(t), Z(f)) = t‖∇f(x0)‖ (17)

3 The point x∗ ∈ Z(f) is said to be a footpoint of a point x ∈ R
3, if x − x∗ is

perpendicular to the surface and ‖x − x∗‖ is minimized. The footpoint need not be
unique.

6

for x(t) ∈ N(p). Since ∇f(x0)
⊤Hess (f(x0))∇f(x0) is bounded in N(p) and

t ∈ O(d), we get

dist or(x, Z(f)) =
f(x)

‖∇f(x)‖ +O(d2). (18)

for each point x in N(p). �

This observation can be generalized to intersection curves C, as follows.

Lemma 3. For any two real functions f and g, consider the functions F and

G defined in Lemma 1. We assume that the intersection curve C is regular in a

certain neighborhood N(p) of a point p ∈ C, and that any point y ∈ N(p) has

a unique footpoint y0 on C. Then

||y − y0||2 = F (y)2 + G(y)2 +O(||y − y0||3). (19)

Proof. For any parameterization x(s) of the intersection curve, we may param-
eterize a tubular neighborhood by

h(s, t, u) = x(s) + t∇F (x(s)) + u∇G(x(s)), (20)

and its points satisfy

||h(s, t, u)− x(s)||2 = t2 + u2, (21)

due to the properties of F and G. In addition, f(x(s)) is also the footpoint
of h(s, t, u). The result (19) follows by analyzing the Taylor expansion of the
function F (h(s, t, u))2+G(h(s, t, u))2 in a similar way as in the proof of lemma 2.

�

3 Approximate Parameterization of Intersection Curve

3.1 Tracing of the Curve

For the sake of completeness, we outline here a tracing algorithm of Runge-Kutta
type. The curve tracing is used in several contexts during the approximation al-
gorithm. We need it to construct an initial solution of the optimization algorithm,
for finding suitable boundary conditions for the system of ordinary differential
equations (ODE) which are satisfied by predictor and for the computation of the
predictor itself.

If we are to solve numerically the ODE

ẏ = φ(x,y) (22)

with boundary conditions
y(0) = y0, (23)

we can use the following sequence of approximations

y(h) ≈ y(0) + h
1

6
(k1 + 2k2 + 2k3 + k4) (24)

7

Corrector: Optimize, starting with the interpolant/extrapolant.

Compute G1 Hermite interpolant to arc p,q.

Find near points p, q on C(f, g) and their tangents.

Input: Given f , g.

Predictor: Extrapolate the optimized solution.

Output: Rational approximation of a curve arc of C(f, g).

Can the solution
be extrapolated?

yes

no

Fig. 3: Approximation algorithm for an intersection curve.

where

k1 = φ(x,y(x)) (25)

k2 = φ(x + 0.5h,y(x) + 0.5hk1) (26)

k3 = φ(x + 0.5h,y(s) + 0.5hk2) (27)

k4 = φ(x + h,y(s) + hk3). (28)

The method is known to have approximation of order 4 (see e.g. [12]).

3.2 Outline of the Method

The approximation algorithm consists of the following three steps (see Figure 3):

1. Initial predictor. Find two close regular points p,q with their tangent
vectors, and compute the cubic Hermite interpolant to these data.

2. Corrector. The curve segment
︷ ︷
pq of C is approximated by a rational Bézier

segment satisfying G1 endpoints conditions.

3. Generic predictor. The solution is extrapolated, in order to get a new
initial solution for the corrector step.

Steps 2 and 3 are iterated until certain termination conditions are satisfied. They
are discussed in section 3.5.

8

p q

u v

C(f, g)

Z(f)

Z(g)

Fig. 4: Initial set of data for a cubic Hermite interpolation

3.3 Initial predictor

The approximate curve is represented as a rational Bézier curve of degree n in
the form (x1(t)/x0(t), x2(t)/x0(t), x3(t)/x0(t)), where

(x1(t), x2(t), x3(t), x0(t))
⊤ = x̃(t) =

n∑

i=0

Bn
i (t)p̃i, (29)

with the control points

p̃i = (b4i, b4i+1, b4i+2, b4i+3)
⊤ ∈ R

4 − {0} (30)

(in homogeneous coordinates) and the Bernstein polynomials

Bn
i (t) =

(
n

i

)

(1− t)n−iti, i = 0, 1, . . . , n. (31)

For later reference, we collect all control points into the vector

b = (b0, . . . , b4n+3)
⊤ ∈ R

dn (32)

with the dimension dn = 4n + 4.
The initial curve starts from the given point p in the direction of unit tangent

vector u. We trace a small segment of the intersection curve, in order to get a
second point q with unit tangent vector v, see Figure 4. The two tangent vectors

9

should satisfy
u · v ≈ 1. (33)

These G1 boundary data are used to define an integral cubic Bézier curve, where
the length of the boundary derivative vector is chosen to be ||p− q||.

Note that a parameterization of a rational curve is not unique. During the
approximation algorithm, we always normalize the curve to the standard form
(for more information see [13]), where the boundary weights are equal to

b3 = b4n+3 = 1. (34)

This defines a map
sf : R

dn → R
dn . (35)

In the case of the initial solution, which is an integral curve,

b4i+3 = 1 for i = 0, . . . , n. (36)

3.4 Corrector: Optimization of segment

We consider all normalized rational Bézier curves of degree n, which satisfy the
G1 boundary conditions

x(0) = p (37)

x(1) = q (38)

ẋ(0) = λu for λ > 0 (39)

ẋ(1) = µv for µ > 0. (40)

The set of all feasible curves is denoted Φ. It can be shown to be a convex set.
Among all curves in Φ, we minimize the distance of the curve x(t) to C on the
parameter domain [0, 1], using a variational approach.

The objective function has the form

H(b) = H0(b) + w1H1(b) + w2H2(b) (41)

with

H0(b) =

∫ 1

0

F (x(t))2 + G(x(t))2dt, (42)

H1(b) =

∫ 1

0

h(x0(t))dt, (43)

where
h(t) = (t− 1)8, (44)

and the regularization term

H2(b) =

n−1∑

i=0

‖p̃i+1 − p̃i‖2. (45)

10

As an alternative term for the regularization, we can use the term

H2′(b) =

n−2∑

i=0

‖p̃i+2 − 2p̃i+1 + p̃i‖2. (46)

Currently, the weights are chosen by the user, such that they satisfy

0 < w1 ≪ w2 ≪ 1. (47)

They are semi-automatically adjusted during the optimization.

The second term H1 measures and penalizes the deviation of the rational
Bézier curve x(t) from a polynomial one. The last term of the objective function
penalizes the length of the control polygon in homogeneous coordinates of the
rational Bézier curve and provides a regularization of the objective function.

The objective function is non-linear. In order to find a minimum, we use an
SQP method. The technical details are described in Appendix A.

An example obtained by the approximate parameterization is shown in Fig-
ure 5. Two quadrics intersect in an algebraic curve of order 4. We have approx-
imated it using a rational cubic curve. The thick white part of the curve is the
image of the interval [0, 1].

3.5 Predictor of the extrapolation

We use two types of predictor methods. The first one uses de Casteljau algo-
rithm expansion of the approximation at the endpoint. The second approach
uses Runge-Kutta method for evolution of the system of ODE.

Casteljau extension predictor. Let ρ be the vector of control variables for an

optimal segment on [0, 1] for
︷ ︷
pq. We compute the control points of the same curve

over the interval [0, 1 + ǫ] using de Casteljau’s algorithm. After transformation
into standard form, we get a new rational Bézier curve ρǫ. Then, we project
its new endpoint onto the intersection curve C and modify the control polygon
so as to match the G1 boundary conditions at the new projected endpoint. We
denote this curve as ρ

∗
ǫ . If the boundary conditions of sf (ρ∗

ǫ) are satisfied, we
proceed with corrector step.

However, the above extension method may lead to an infeasible curve with re-
spect to the boundary conditions (39) and (40). Hence, the extension parameter
ǫ has to be decreased. We then use bisection towards 0.

Additionally, we require to find a convenient extension with respect to the
value of the objective function. Since the projection on the intersection curve C
and its standardization is continuous with respect to ǫ for certain 0 < ǫ < ǫ0(pn),
we can find such a value of ǫ that

sf (ρ∗
ǫ) ∈ N(ρ) ∩ Φ ⊂ R

dn (48)

11

Fig. 5: Approximation of the intersection of sphere and cylinder by a rational cubic.
The white part of the curve is parameterized over the interval I = [0, 1]. The right
endpoint extends via predictor-corrector algorithm along the intersection curve.

12

Output: Feasible starting curve for an optimization

sf (ρ∗
ǫ) ∈ N(ρ) ∩ Φ?

H(sf (ρ∗
ǫ)) small enough?

ǫ← ǫ/2.

Calculation of standard form for sf (ρ∗
ǫ).

Projection of endpoint and its tangent vector to C to get ρ
∗
ǫ .

Extension by ǫ to get ρǫ.

Compute ǫ adaptively according to the endpoint curvature.

Input: Curve segment ρ

no

yes

Fig. 6: The scheme of the de Casteljau predictor algorithm

with N(ρ) ⊂ R
dn a suitable neighborhood of the vector ρ and moreover the

value of the value of the objective function H(sf (ρ∗
ǫ)) does not increase over the

prescribed threshold.
If these conditions are not satisfied or ǫ is under the minimal threshold, we

terminate the extension process. The next piece of the approximation curve can
be started here.

The ǫ in the first step is chosen according to the curvature of the curve ρ at
the extended endpoint. A suitable choice is e.g.

ǫ = min{ǫmax ,

√
3

3κ1
} (49)

where ǫmax is a user-defined maximum step and κ1 is curvature of ρ at the
extrapolated endpoint.

The algorithm is depicted on Figure 6.

ODE extension predictor. The extension of the approximate parameteriza-
tion is done by an evolution process. Let b(s) be a minimum of H for each
s ∈ [s0, s1], that is H(b(s)) → min. The optimality condition leads to a system
of ODE with respect to a certain minimum set of parameters r(s). We get a
system of ordinary differential equations

C(r, s)ṙ(s) + D(r, s)r(s) + E(r, s) = 0, (50)

13

where C(r, s), D(r, s) and E(r, s) are certain matrices dependent on the bound-
ary conditions. The whole computation can be found in Appendix B.

The approximation of the solution for the parameter s+h is found using the
Runge-Kutta method described in Section 3.1, where

φ(r, s) = −C(r, s)−1D(r, s)r− C(r, s)−1E(r, s) (51)

provided that the matrix C(r, s) is regular. The regularity is guaranteed under
certain assumptions.

Lemma 4. If w2 is sufficiently large, the matrix C(r, s) in (51) is regular for

the approximation with cubic rational curves.

The proof of the lemma 4 is somewhat long and technical and can be found in
appendix.

The computation of the terms (25)–(28) require the knowledge of the bound-
ary conditions for the parameters s + 0.5h and s + h. They can be gained via
solution of the another system of differential equations, which describes the arc
length parameterization of the intersection curve. We use again a Runge-Kutta
method for the approximation of the solution.

Summing up, the de Casteljau’s predictor method needs projection of the
boundary data back to the curve and it is a heuristic approach. The ODE ap-
proach is more complex and maintains the boundary conditions.

The stability of the singular points computation strongly depends on the
floating point arithmetic used as well as the structure of the singularity. Hence,
the symbolic methods to compute common tangents at the point p are an option
in this case.

4 Examples

See Figure 7 for an example of the approximation starting at the singular point.
The sphere and cylinder in special position intersect at a singular curve (Viviani’s
window).

The approximation error of the curve is visualized using the porcupine plot in
Figure 8. The porcupine represents the distance of the corresponding point of the
approximation curve toward the given curve C multiplied by a large constant.

5 Conclusion

We have presented an algorithm for the approximate parameterization of the
intersection curves of two implicitly defined surfaces. If the surfaces intersect
transversally, we can define locally cylindrical coordinates, which approximate
the square of the Euclidean distance. The modified functions can then be used
to compute approximate parameterization as an optimization problem, where
the objective function uses the approximation of the Euclidean distance as one
of its terms.

14

Fig. 7: Approximation of the intersection of sphere and cylinder starting from a sin-
gularity.

15

Fig. 8: Porcupines of the cubic curve approximating the quartic intersection of two
quadrics. The error is multiplied by 0.4 × 104 for visualization purpose.

We provided examples demonstrating the usefulness of the method even in
the case of occurrence of simple singularities along the intersection curve.

According to our numerical experiments, the reproduction of the polyno-
mial/rational parameterization of the intersection curve is expected, but no the-
oretical results are known. This may be a subject of further investigations.

A SQP Optimization of Objective Function

We present technical details of the optimization of the objective function (41).
We look for the curve segment represented by a vector ρ satisfying

ρ = min
b∈Rdn

H(b), (52)

where the boundary conditions (34), (37)–(40) are satisfied.
Since the objective function (41) is non-linear, we use an SQP method for a

numerical solution of the system. The stationary point of the objective function
satisfies the equations

∂H(b)

∂bi

= 0 for i = 0, . . . , dn (53)

and the boundary conditions (34), (37)–(40). Using them, we get

p̃0 =
(p

1

)

, (54)

p̃1 = b7

(p

1

)

+ λ
1

n

(u

0

)

(55)

and

p̃n =
(q

1

)

, (56)

p̃n−1 = b4n−1

(q

1

)

− µ
1

n

(v

0

)

. (57)

16

Hence, the vector b depends linearly on variables

r = (r0, . . . , r4n−9)
⊤ (58)

with

r0 = λ, r1 = b7, r4n−10 = b4n−1, r4n−9 = µ

and
ri = bi+6 for i = 2, . . . , 4n− 11.

The set of feasible vectors is restricted by inequalities

λ > 0 and µ > 0 (59)

in order to preserve the initial orientation of the endpoint tangent vectors. Al-
ternatively, we can use λ2 and µ2 in the boundary conditions (39) and (40)
respectively with an additional assumption λ, µ 6= 0.

Since the values of p̃0 and p̃n are constant during the optimization, we have

b(r) = Ar + bep, (60)

i.e. a linear change of variables given by the matrix A of type (4n+3)× (4n−8),
where

A(s) =

A11 0 0

0 A22 0

0 0 A33

 (61)

with the blocks

A11 =

(
0 0

ũ p̃0

)

, A33 =

(
p̃n −ṽ

0 0

)

, A22 = I, (62)

bep = (p̃⊤, 0, . . . , 0, q̃⊤)⊤. (63)

Then
∇rH(b(r)) = A⊤∇bH(b) (64)

and
∇2

rH(b(r)) = A⊤∇2
bH(b)A. (65)

We use a SQP method for the numerical solution of (52). Let r0 be an initial
curve represented as a vector of the type (58).

We construct a sequence of feasible curves

{ri}∞i=0 (66)

such that
ri+1 = ri + γi(r

i − sgn (∇rH(b(ri)) · qi)qi, (67)

where
qi = ∇2

rH(b(ri))−1∇H(b(ri)) (68)

17

with the values γi ∈ (0, 1] so that

H(b(ri)) > H(b(ri+1)) (69)

for i = 0, 1, The values γi are computed by bisection in each step.
Starting with a value close to the minimum of H , this sequence converges to

the minimum. Then
ρ = lim

i→∞
b(ri). (70)

Since the set Φ of feasible solutions has a boundary, we need to address the case
when λ or µ converge to zero. In our case, we terminated the optimization if
their values were under a prescribed threshold.

B ODE derivation

Let H(b) be the objective function. We define the approximation of the segment
of the curve C as

b(s) = (b0(s), . . . , b4n+3(s))
⊤ = (p̃0(s)

⊤, . . . , p̃n(s)⊤)⊤, (71)

where p̃i(s) = (b4i(s), b4i+1(s), b4i+2(s), b4i+3(s))
⊤ for i = 0, 1, . . . , n.

We compute the minimum of H(b(s)) for each each s ∈ [s0, s1] such that
b(s) satisfies the boundary conditions

p̃0(s) = (p(s)⊤, 1)⊤ (72)

p̃n(s) = (q(s)⊤, 1)⊤ (73)

p̃1(s) = b7(s)p̃0(s) + λ(s)ũ(s) (74)

p̃n−1(s) = b4n−1(s)p̃n(s)− µ(s)ṽ(s) (75)

with

ũ(s) = (u(s)⊤, 0)⊤, ṽ(s) = (v(s)⊤, 0)⊤, λ(s) > 0 and µ(s) > 0 (76)

where u(s), v(s) are unit tangent vectors of the curve C at point u(s), v(s)
respectively for s ∈ [s0, s1].

Let q(s) be the arc length parameterization of certain arc of C starting at
q(s0) and v(s0) = q′(s0) is a unit tangent vector of the curve C (these are
boundary conditions). The differential equation for these functions is

v(s) = q′(s) (77)

where v(s) is given by (3) substituting q(s) for p.
Since (77) is non-linear in general, the boundary conditions for the evolution

can be computed only numerically. We use again a Runge-Kutta method from
Section 3.1 with Φ(q, s) = v(s).

The boundary conditions (72)–(75) determine a linear change of coordinates
given by

b(s) = A(s)r(s) + bep(s) (78)

18

where

A(s) =

A11(s) 0 0

0 A22(s) 0

0 0 A33(s)

 (79)

with the blocks

A11(s) =

(
0 0

ũ(s) p̃0(s)

)

, A33(s) =

(
p̃n(s) −ṽ(s)

0 0

)

, A22(s) = I, (80)

and

bep(s) = (p̃(s)⊤, 0, . . . , 0, q̃(s)⊤)⊤. (81)

where r(s) = (r0(s), . . . , r4n−9(s))
⊤ is given by

r0(s) = λ(s), r1(s) = b7(s), r4n−10(s) = b4n−1(s), r4n−9(s) = µ(s)

and
ri(s) = bi+6(s) for i = 2, . . . , 4n− 11

After the substitution into the objective function H , we get a constrained ob-
jective function

H̄(r(s), s) = H(b(s)). (82)

The stationary points of the objective function (82) for fixed s are the solutions
of the system

∂H̄(r(s), s)

∂ri

= 0 for i = 0, . . . , 4n− 9. (83)

Using (82), we have

∇rH̄(r(s), s) = A(s)⊤∇bH(A(s)r(s) + bep(s)) (84)

Since these equations should hold for every s in the considered interval, we
have the equations for the evolution of the vector of control functions r(s) =
(r0(s), . . . , r4n−9(s))

⊤ given as

∂2H̄(r(s), s)

∂ri∂s
= 0. (85)

Let ∂s = ∂
∂s

and ṙ(s) = ∂sr(s). The straightforward calculation gives

0 = ∂s∇rH̄(r(s), s) = ∂sA(s)⊤∇H(b(s)) + A(s)⊤∇2
bH(b(s))∂sA(s)r(s) +

A(s)⊤∇2
bH(b(s))A(s)∂sr(s) + A(s)⊤∇2

bH(b(s))∂sbep(s)

= C(s)ṙ(s) + D(s)r(s) + E(s)

Such a system of ODE can be solved via Runge-Kutta method, provided
C(s) is regular.

19

C Local Regularity of the ODE System

If the initial solution is such that the matrix C(s0) is regular then in certain
neighborhood of s0 the regularity holds and we can use a Runge-Kutta method.

However, we show that the matrix

C(s) = A(s)⊤∇2
bH(b(s))A(s) (86)

is always regularized for the term H2 of the objective function if cubics are used
for the approximation.

Using (41), we have

A(s)⊤∇2
bH(b(s))A(s) = A(s)⊤∇2

bH0(b(s))A(s) + (87)

w1A(s)⊤∇2
bH1(b(s))A(s) + (88)

w2 A(s)⊤∇2
bH2(b(s))A(s)

︸ ︷︷ ︸

C2(s)

(89)

Clearly,

C2(s) =

C11 C12 0

C21 C22 C23

0 C32 C33

 (90)

where the blocks are given by

C11 =

(
I −I
−I 2I

)

, C33 =

(
2I −I
−I I

)

, C22 =

2I −I 0 · · · 0

−I 2I −I · · · 0

0 −I 2I · · · 0
...

...
...

. . .
...

0 0 0 · · · 2I

, (91)

C21 = C⊤
12 = C32 = C⊤

23 =

0 · · · 0 −I
0 · · · 0 0
...

...
. . .

...
0 · · · 0 0

. (92)

and they are independent of s.
Hence,

A(s)⊤C2(s)A(s) =

R11 R12 0

R21 R22 R23

0 R32 R33

 , (93)

where

R11 = 2

(
ũ(s)ũ(s) ũ(s)p̃0(s)
ũ(s)p̃0(s) p̃0(s)p̃0(s)

)

, (94)

R33 = 2

(
p̃n(s)p̃n(s) −ṽ(s)p̃n(s)
−ṽ(s)p̃n(s) ṽ(s)ṽ(s)

)

, (95)

20

R22 = C22, (96)

R21 = R⊤
12 =

−ũ(s) −p̃0(s)
0 0
...

...

 , R23 = R⊤

32 =

−p̃n(s) ṽ(s)
0 0
...

...

 . (97)

Now, let n = 3. Then,

R(s) = A(s)⊤C2(s)A(s) =

(
2Γ (a,a;b,b) −Γ (a,b; c,d)
−Γ (a,b; c,d)⊤ 2Γ (c, c;d,d)

)

, (98)

with

Γ (x1,x2;y1,y2) =

(
x1 · y1 x1 · y2

x2 · y1 x2 · y2

)

. (99)

Clearly, the diagonal blocks are Gram matrices of the corresponding vectors up
to a multiple.

Using a suitable choice of orthonormal coordinates, we have p0(s) = (0, 0, 0)⊤,
u(s) = (1, 0, 0)⊤, p3(s) = (x(s), y(s), z(s))⊤ and v(s) = (vx(s), vy(s), vz(s))

⊤

with vx(s)2 + vy(s)2 + vz(s)
2 = 1. Hence (omitting the parameter s),

R =

2 0 −x −vx

0 2 −1 −1
−x −1 2 x2 + 2 y2 + 2 z2 + 2 0
−vy −1 0 2

(100)

and using the inequalities

1− v2
x ≥ 0 and (x − vx)2 ≥ 0, (101)

the determinant

detR = 8 + 12z2 + 9x2 + 12y2 + (−3− 4x2 − 4y2 − 4z2)v2
x − 2vxx (102)

≥ 8− 4v2
x + 4x2 + 9y2 + 9z2 + (4x2 + 4y2 + 4z2)(1 − v2

x) ≥ 4 (103)

is a positive polynomial. Hence, the original system of ODE is regularized by
the term (89). Summing up, we get Lemma 4.

Geometrically, this means the uniqueness of the control polygon of a rational
cubic in the standard form satisfying given G1 boundary conditions.

However, the determinant of the matrix R(s) can have an arbitrary sign
already for the case n = 4. Hence, the regularity is guaranteed only for a certain
neighborhood starting with boundary conditions which induce a regular matrix
R(0).

21

Acknowledgments

This research was supported by the Austrian Science Fund (FWF) through the
SFB F013 “Numerical and Symbolic Scientific Computing” at Linz, project 15.
We would like to thank to Dalibor Lukáš for valuable discussions.

References

1. Gatellier, G., Labrouzy, A., Mourrain, B., Técourt, J.: Computing the topology of
three-dimensional algebraic curves. In Dokken, T., Jüttler, B., eds.: Computational
Methods for Algebraic Spline Surfaces, Springer (2004) 27–43

2. Hartshorne, R.: Algebraic geometry. Graduate Texts in Mathematics, 52. New
York-Heidelberg-Berlin: Springer- Verlag. (1983)

3. Shafarevich, I.: Basic algebraic geometry. Translated from the Russian by K. A.
Hirsch. 2nd ed. Springer Study Edition. Berlin-Heidelberg-New York: Springer-
Verlag. (1977)

4. Abhyankar, S.S., Bajaj, C.L.: Automatic parameterization of rational curves and
surfaces. IV: Algebraic space curves. ACM Trans. Graph. 8 (1989) 325–334

5. Wang, W., Joe, B., Goldman, R.: Computing quadric surface intersections based
on an analysis of plane cubic curves. Graph. Models 64 (2002) 335–367

6. Manocha, D., Canny, J.: Rational curves with polynomial parameterization. (1991)
7. Owen, J., Rockwood, A.: Intersection of general implicit surfaces. In Farin, G.E.,

ed.: Geometric Modelling: Algorithms and new Trends, Philadelphia, Society for
Industrial and Applied Mathematics (1987) 335–345

8. Hartmann, E.: Numerical parameterization of curves and surfaces. Comput. Aided
Geom. Des. 17 (2000) 251–266

9. Bajaj, C., Royappa, A.: Parameterization in finite precision. Algorithmica 27

(2000) 100–114
10. Sederberg, T., Nishita, T.: Curve intersection using Bézier clipping. (1990)
11. Sampson, P.: Fitting conic sections to very scattered data: an iterative refinement of

the Bookstein algorithm. In: Computer Graphics and Image Processing. Volume 18.
(1982) 97–108

12. Stoer, J., Bulirsch, R.: Numerical mathematics 2. An introduction – under con-
sideration of lectures by F. L. Bauer. 5th ed. Springer-Lehrbuch. Berlin: Springer.
(2005)

13. Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. Welles-
ley, MA: A. K. Peters. (1993)

