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Abstract. In this paper we derive second-order necessary conditions for optimality for an optimization problem
with abstract constraints in Banach spaces. Results for the non-degenerate case derived earlier [13] are extended
to the degenerate case. For the mathematical programming problem, where the constraints are given by equality
and finitely many inequality constraints, our approach applies to the abnormal case, when the equality constraints
are not regular and our results appear to be new even in this special case. Our second-order necessary conditions
are contained in the gap between the standard necessary and sufficient conditions, where the only difference is the
change from a non-strict to a strict inequality. Our results are formulated in such a way to be applicable also to
vector optimization problems.
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1. Introduction. In this paper we study necessary second-order optimality conditions for
minimization problems with abstract constraints of the form

g(x) ∈ K,(1.1)

where the constraint mapping g : X → V carries a Banach space X into another Banach space V
and K is a closed convex subset of V .

The feasible sets of various optimization problems can be formulated in the form (1.1) in a
natural way. For instance, the possibly infinite dimensional mathematical programming problem
with finitely many inequality constraints gi(x) ≤ 0, i = 1, . . . ,m and an equality constraint
G(x) = 0 fits into the scheme with V = Rm × V̂ , K = Rm

− × {0} and g = (g1, . . . , gm, G).
Other examples are provided by semi-infinite programming problems, semi-definite programming
problems and optimal control problems.

When studying necessary optimality conditions at a point x̄ satisfying (1.1), usually a condition
on the constraints is needed, since otherwise the necessary conditions trivially hold and therefore
their utility for describing optimality is very limited. One classical condition in this setting is
Robinson’s condition [28]:

0 ∈ int (g(x̄) + g′(x̄)X −K)(1.2)

Note, that in the case of the finite dimensional mathematical programming problem condition
(1.2) reduces to the classical Mangasarian-Fromovitz constraint qualification. Under Robinson’s
condition, the structure of the set of tangent directions of the constraints is well established (see,
e.g. [9]) and second-order conditions have been formulated by several authors, see [8], [12], [15],
[21], [26], [27].

In a recent paper [13], we presented second-order necessary optimality conditions, which are
shown to be best possible in a certain sense, under the non-degeneracy assumption

int (g′(x̄)X −K) 6= ∅.(1.3)

This condition is clearly weaker than Robinson’s condition (1.2). For instance, for the mathemat-
ical programming problem condition (1.3) reduces to a condition on the equality constraint only,
namely the well-known Lyusternik-condition G′(x̄)X = V̂ , which has been used by several authors
(see, e.g. [6], [7], [25], [14]). However, it is well-known that there exist second-order necessary con-
ditions for the mathematical programming problem which do not require the Lyusternik-condition
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G′(x̄)X = V̂ to be satisfied. Avakov [3],[4] presented several generalizations of the Lyusternik the-
orem to the abnormal case of non-surjective operators G′(x̄). These results have been extended
by several authors, see e.g. [1], [2], [5], [10], [17], [23], [24].

In this paper we will derive second-order necessary optimality conditions in the degenerate
case, i.e. condition (1.3) is dropped. The obtained results appear to be new even in the special
case of the mathematical programming problem. Our approach is essentially based on the ideas
presented in [13]. We will use both an observation made by Robinson [30], that a certain multi-
function built by the objective and the constraints obtains a singular behavior at a local minimizer,
and an accurate characterization of metric regularity of this multifunction by means of a certain
signed distance function.

With this approach, when dealing with general constraints of the form (1.1), it does not require
great effort to consider also the case of general objective functions. Thus the problem we consider
in this paper is given by

(P ) L-minimize f(x) subject to g(x) ∈ K,

where f : X → U is a mapping from the Banach space X to another Banach space U and where
L ⊂ U is a closed convex cone with nonempty interior, intL 6= ∅. We define different kinds of
local L-minimizers as follows.

Definition 1.1. An element x̄ ∈ X is called a local weak minimizer for (P ), if g(x̄) ∈ K
and if there exists a neighborhood N of x̄ such that for each x ∈ N with g(x) ∈ K, one has
f(x) − f(x̄) 6∈ −intL. A local weak minimizer x̄ is called a strict local minimizer for (P ), if for
each x ∈ N \ {x̄} with g(x) ∈ K, one has f(x) − f(x̄) 6∈ −L. Finally, a weak local minimizer x̄
is is called an essential local minimizer of second order for problem (P ), if there exists some real
β > 0 such that

max{d(f(x)− f(x̄),−L), d(g(x),K)} ≥ β‖x− x̄‖2, for all x ∈ N .(1.4)

Of course, each essential local minimizer of second order is also a strict local minimizer.
Note that (P ) includes the very common problem of constrained scalar minimization, for

which U = R and L = R+. Local weak minimizers for (P) then amount to usual local minimizers
and for essential local minimizers the so-called quadratic growth condtion is satisfied:

f(x)− f(x̄) ≥ β‖x− x̄‖2, ∀x ∈ N : g(x) ∈ K

Another important particular case, for instance, is the Pareto maximization optimization
problem with U = Rp, L = Rp

−.
For second-order optimality conditions for problem (P) in the multicriteria case we refer to

[7], [11], [13], [18]-[20].
Given a feasible point x̄ ∈ g−1(K), fixed throughout this paper, we will now define a certain

multifunction associated with (P ) and x̄. Let h : X → U × V defined by

h(x) := (f(x)− f(x̄), g(x)), C := (−L)×K, Y := U × V.(1.5)

Then the multifunction Γ : X ⇒ Y , given by

Γ(x) := h(x)− C,(1.6)

will form the basis of our investigations. Throughout this paper we will use the following smooth-
ness assumption on h:

Assumption 1. h is Fréchet differentiable at x̄ and for some radius r̄ > 0 and some scalar
η ≥ 0 we have

‖h(x1)− h(x2)− h′(x̄)(x1 − x2)‖ ≤ η max{‖x1 − x̄‖, ‖x2 − x̄‖}‖x1 − x2‖

for all x1, x2 ∈ x̄ + r̄BX .
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In what follows we will use the norm ‖(u, v)‖ := max{‖u‖, ‖v‖} on the product space Y =
U × V .

Our notation is fairly standard. In a normed space Z, BZ := {z ∈ Z : ‖z‖ ≤ 1} denotes the
closed unit ball and SZ := {z ∈ Z : ‖z‖ = 1} denotes the unit sphere. The topological dual space
is denoted by Z∗. 〈z∗, z〉 is the value z∗(z) of the linear functional z∗ ∈ Z∗ at z ∈ Z. For a set
D ⊂ Z we denote by σD(·) its support function, i.e. σD(z∗) := supz∈D〈z∗, z〉 and by d(·, D) the
distance function, i.e. d(z,D) = infy∈D ‖z − y‖. For a convex set D ⊂ Z we denote by TD(z)
(respectively, ND(z)) the common tangent cone (respectively, normal cone) of convex analysis at
a point z ∈ D, i.e. we have ND(z) := {z∗ ∈ Z∗ : 〈z∗, ζ − z〉 ≤ 0, ∀ζ ∈ D} and

TD(x) = {s : lim inf
t→0+

d(z + ts, D)
t

= 0} = {s : lim sup
t→0+

d(z + ts,D)
t

= 0}.

If W is another normed space, we denote by L(Z,W ) the space of all continuous linear operators
from Z into W . If A ∈ L(Z, W ), then A∗ : W ∗ → Z∗ denotes the adjoint operator of A. Finally,
we denote by T the set of all sequences (tn) → 0+.

Fritz-John-type optimality conditions for problem (P) can be written in the form

f ′(x̄)∗u∗ + g′(x̄)∗v∗ = 0, 0 6= (u∗, v∗) ∈ L∗ ×NK(g(x̄)) ⊂ U∗ × V ∗,(1.7)

where L∗ := {u∗ ∈ U∗ : 〈u∗, u〉 ≥ 0, ∀u ∈ L} is the dual cone of the cone L. Setting y∗ := (u∗, v∗)
and using the notation of h and C, the condition (1.7) can also be written more shortly as

h′(x̄)∗y∗ = 0, y∗ ∈ NC(h(x̄)), y∗ 6= 0.(1.8)

In the sequel we will denote the set of multipliers y∗ satisfying the Fritz-John conditions (1.8) by
ΛFJ . It should be noted that in general ΛFJ may be empty. An additional condition has to be
imposed to ensure the existence of a nontrivial multiplier y∗ at a local weak minimizer for (P).

2. Preliminaries. In this section we will recapitulate partially the basic theory on second-
order optimality conditions as presented in [13].

In a very general form, these conditions can be formulated by means of a function d̂C(y, A, κ) :
Y × L(X, Y )× R→ R given by

d̂C(y, A, κ) := sup
y∗∈SY ∗

{〈y∗, y〉 − σC(y∗)− κ‖A∗y∗‖} .

Theorem 2.1. ([13, Theorem 3.2]) Suppose that Assumption 1 is satisfied at x̄. If x̄ is a
local weak minimizer for (P) then

lim inf
x→x̄

τ→0+

d̂C(h(x), h′(x̄), τ‖x− x̄‖)
‖x− x̄‖2 ≥ 0.(2.1)

Moreover, a feasible point x̄ is an essential local minimizer of second order for (P ) if and only if

lim inf
x→x̄

τ→0+

d̂C(h(x), h′(x̄), τ‖x− x̄‖)
‖x− x̄‖2 > 0.(2.2)

The following Theorem give further details on the optimality conditions of Theorem 2.1 (see [13,
Theorems 3.5, 3.6]

Theorem 2.2.
1. Suppose that a feasible point x̄ is not an essential local minimizer of second order for (P ).

Then there exists a twice continuously differentiable mapping δh := (δf, δg) satisfying δh(x̄) = 0,
δh′(x̄) = 0 and δh′′(x̄) = 0, such that x̄ is not a local weak minimizer for (P ) with f and g replaced
by f + δf and g + δg, respectively.
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2. Assume that at a feasible point x̄ condition (2.1) holds and assume that

int (h′(x̄)X − C) 6= ∅.(2.3)

Then there exists a mapping δh = (δf, δg) : X → Y with δh(x) = ψ(‖x− x̄‖)y, where y ∈ Y and
ψ : R+ → R+ is a twice continuously differentiable function satisfying ψ(0) = ψ′(0) = ψ′′(0) = 0,
such that x̄ is a strict local minimizer for (P) with f and g replaced by f + δf and g + δg,
respectively.

Remark: It follows from the proof of [13, Theorem 3.6] that the assertion of the second
part of Theorem 2.2 does not depend on the special form of h and C, respectively. Indeed, for
any closed convex set C ⊂ Y and any mapping h : X → Y , differentiable at some point x̄
satisfying h(x̄) ∈ C and conditions (2.1) and (2.3), there exist a neighborhood N of x̄ and a
mapping δh(x) = ψ(‖x − x̄‖)y of the same kind as in the second part of Theorem 2.2, such that
d
(
(h + δh)(x), C)

)
> 0, ∀x ∈ N \ {x̄}.

Definition 2.3. We call x̄ non-degenerate for the problem (P), if int (h′(x̄)X − C) 6= ∅.
Conversely, if int (h′(x̄)X − C) = ∅, the element x̄ is said to be degenerate for (P).

The following theorem states some geometrical properties of the function d̂C : It can be treated
as a signed distance function for certain sets.

Theorem 2.4. ([13, Theorem 2.6]) For each A ∈ L(X, Y ), each y ∈ Y and each κ ≥ 0 let
DC(y,A, κ) be given by DC(y, A, κ) := y + κABX − C. Then one has

d̂C(y, A, κ) =





d(0, DC(y, A, κ)) if 0 6∈ cl DC(y, A, κ)
0 if 0 ∈ bd DC(y, A, κ)
− sup{ρ : ρBY ⊂ DC(y,A, κ)} if 0 ∈ intDC(y, A, κ)

It follows easily from the definition that d̂C(·, A, κ) is Lipschitz continuous with constant 1.
Moreover we have the following property

Lemma 2.5. ([13, Lemma 2.8])Let A ∈ L(X, Y ), y ∈ Y and κ ≥ 0 be such that d̂C(y, A, κ) <
0. Then

d(0, A−1(C − y)) ≤ κ

d(y, C)− d̂C(y, A, κ)
d(y, C).

For the sake of completeness we mention some material from ([13]) also used in this paper.
First, let us recall the notion of (local) metric regularity :

Definition 2.6. Let Ψ : X ⇒ Y be a set-valued map, ȳ ∈ Ψ(x̄). The multifunction Ψ is
called metrically regular near (x̄, ȳ), if there are neighborhoods Nx̄, Nȳ of x̄, ȳ, respectively and
some k > 0 such that d(x, Ψ−1(y)) ≤ k d(y, Ψ(x)) for each (x, y) ∈ Nx̄ ×Nȳ.

The following two theorems are the base for the necessary optimality conditions of Theorem
2.1 and are also of substantial significance for this paper.

Theorem 2.7. ([13, Theorem 2.4]) Let (xn) be a sequence converging to x̄ such that for each
n, Γ is metrically regular near (xn, 0). Then x̄ is not a local weak minimizer for (P).

Theorem 2.8. ([13, Theorem 2.10]) Let x̂ ∈ X be given and suppose that there exist a
continuous linear mapping A ∈ L(X,Y ), a vector x0 ∈ X and scalars R > 0, κ̂ ≥ 0 and γ > 0,
such that the following conditions are satisfied:

‖h(x′)− h(x)−A(x′ − x)‖ ≤ γ‖x′ − x‖, ∀x, x′ ∈ x̂ + RBX ,(2.4)
h(x̂) + A(x0 − x̂) ∈ C, r := ‖x0 − x̂‖ < R/2,(2.5)

2γ(κ̂ + 3r) + d̂C(h(x̂), A, κ̂) < 0.(2.6)

Then there exists some x̃ ∈ x0 + rBX , such that h(x̃) ∈ C and Γ is metrically regular near (x̃, 0).
Moreover, d̂C(h(x̃), A, κ̂ + ‖x̃− x̂‖) ≤ d̂C(h(x̃), A, κ̂) + γ‖x̃− x̂‖.
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3. A general necessary condition. The following theorem states an abstract necessary
optimality condition for the problem (P). In some sense it is contained in the gap between the
necessary and sufficient optimality conditions of Theorem 2.1.

Theorem 3.1. Assume that Assumption 1 holds. Further assume that x̄ is a local weak
minimizer, but not an essential local minimizer of second order and let (zn) ⊂ SX , (tn) ∈ T and
(τn) ∈ T be sequences such that

lim sup
n→∞

t−2
n d̂C(h(x̄ + tnzn), h′(x̄), τntn) ≤ 0.(3.1)

Further assume that there is a sequence (An) ⊂ L(X,Y ) of continuous linear operators mapping
X into Y such that, together with some positive scalars γ′, R′ > 0 and a sequence (ϕ′n) ∈ T one
has

‖h(x′)− h(x)−An(x′ − x)‖
≤ (

ϕ′ntn + γ′max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖})‖x′ − x‖(3.2)

for all x′, x ∈ x̄ + tn(zn + R′BX) and for each n. Then for each T > 0 one has

lim inf
n→∞

t−2
n d̂C(h(x̄ + tnzn), An, T tn) ≥ 0.(3.3)

Proof. By Theorem 2.4, for each n we can find some element δzn ∈ BX such that

δn : = t−2
n d(h(x̄ + tnzn) + tnτnh′(x̄)δzn, C)

≤ t−2
n max{d̂C(h(x̄ + tnzn), h′(x̄), τntn), 0}+

1
n

and from (3.1) it follows δn → 0. Let z′n := zn +τnδzn. Then ‖z′n‖ ≤ 1+τn and using Assumption
1 we obtain

δ′n := t−2
n d(h(x̄ + tnz′n), C)

≤ t−2
n

(
d(h(x̄ + tnzn) + tnτnh′(x̄)δzn, C)

+‖h(x̄ + tnz′n)− h(x̄ + tnzn)− tnτnh′(x̄)δzn‖
)

≤ δn + t−2
n η max{‖tnz′n‖, ‖tnzn‖}‖tn(zn − z′n)‖ ≤ δn + η(1 + τn)τn

yielding δ′n → 0. We will now prove by contraposition that (3.3) holds for arbitrarily fixed T > 0.
Assume on the contrary that

lim inf
n→∞

t−2
n d̂C(h(x̄ + tnzn), An, T tn) ≤ −2ε < 0

for some T > 0. Using the Lipschitz continuity of d̂C(·, An, T tn), Theorem 2.4 and condition (3.2)
we obtain

d̂C(h(x̄ + tnz′n), An, T tn) ≤ d̂C(h(x̄ + tnzn) + τntnAnδzn, An, T tn)
+‖h(x̄ + tnz′n)− h(x̄ + tnzn)− τntnAnδzn‖

≤ d̂C(h(x̄ + tnzn), An, (T + τn)tn)
+(ϕ′ntn + γ′τntn‖δzn‖)τntn‖δzn‖

= d̂C(h(x̄ + tnzn), An, (T + τn)tn) + o(t2n)

Next define Tn := T + τn and µn := max{τn, ϕ′n,
Tnδ′n

ε } for each n. Since µn → 0, by passing to a
subsequence if necessary, we may assume that

t−2
n d̂C(h(x̄ + tnz′n), An, Tntn) ≤ −ε,

(2 + 8γ′)(µnTn + 3µ2
n)− ε < 0,

τn + 3µn ≤ R′
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for each n. Now let n be arbitrarily fixed. We will now show that the assumptions of Theorem
2.4 hold with data x̂ = x̄ + tnz′n, A = An, R = 3µntn, κ̂ = Tntn and γ = (1 + 4γ′)µntn. Since
‖tn(z′n − zn)‖ + R ≤ tn(τn + 3µn) ≤ tnR′ it follows from (3.2) for all x, x′ ∈ x̄ + tnz′n + RBX ⊂
x̄ + tn(zn + R′BX) that

‖h(x′)− h(x)−An(x′ − x)‖
≤ (tnϕ′n + γ′max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖})‖x− x′‖
≤ (tnϕ′n + γ′(R + tn‖zn − z′n‖))‖x− x′‖
≤ (ϕ′n + γ′(3µn + τn))tn‖x− x′‖ ≤ (1 + 4γ′)µntn‖x− x′‖

and hence (2.4) holds. Using Lemma 2.5 we have

d(0, A−1
n (h(x̄ + tnz′n)− C)) ≤ Tntnd(h(x̄ + tnz′n), C)

d(h(x̄ + tnz′n), C)− d̂C(h(x̄ + tnz′n), An, Tntn)

≤ Tntnδ′nt2n
δ′nt2n + εtn

2 <
Tnδ′n

ε
tn ≤ µntn.

Thus there exists some x0 such that

h(x̄ + tnz′n) + An(x0 − (x̄ + tnz′n)) ∈ C, r := ‖x0 − (x̄ + tnz′n)‖ ≤ µntn =
R

3

showing the validity of (2.5). Finally, we have

2γ(κ̂ + 3r) + d̂C(h(x̄ + tnz′n), An, κ̂) ≤ 2(1 + 4γ′)µntn(Tntn + 3µntn)− εt2n

=
(
(2 + 8γ′)(µnTn + 3µ2

n)− ε
)
t2n < 0

yielding (2.6). Thus we can apply Theorem 2.4 to establish the existence of some x̃n ∈ x̄ + tnz′n +
3µntnBX such that h(x̃n) ∈ C and the multifunction h(·) − C is metrically regular near (x̄, 0).
This holds for each n and since x̃n → x̄ we conclude from Theorem 2.7 that x̄ is not a local weak
minimizer, a contradiction.

It is easy to show that if h is continuously differentiable in a neighborhood of x̄, then for a
sequence (An) ⊂ L(X, Y ) of linear operators satisfying condition (3.2) one has ‖h′(x̄ + tnzn) −
An‖ ≤ ϕ′ntn = o(tn). The converse is also true, if h is sufficiently smooth near x̄.

Lemma 3.2. Suppose that h is continuously differentiable in some ball x̄ + ρBX around
x̄. Further suppose that either h is twice Fréchet differentiable at x̄ or that h′(·) is Lipschitz
continuous in x̄ + ρBX . Then, for any sequences (zn) ⊂ SX , (tn) ∈ T and (An) ⊂ L(X, Y ) such
that ‖h′(x̄+ tnzn)−An‖ = o(tn) there exist a sequence (ϕ′n) ∈ T and positive reals γ′ and R′ such
that condition (3.2) holds for all n sufficiently large.

Proof. Let R′ > 0 be arbitrarily chosen and consider n be chosen so large that tn(zn+R′BX) ⊂
ρBX . Consider an arbitrary linear functional y∗ ∈ BY ∗ . For every pair x, x′ ∈ x̄ + tn(zn + R′BX),
by the mean-value theorem, there exists some element ξ belonging to the line segment [x, x′] such
that 〈y∗, h(x′)− h(x)〉 = 〈y∗, h′(ξ)(x′ − x)〉 and

〈y∗, h(x′)− h(x̄)−An(x′ − x)〉 = 〈y∗, (h′(ξ)−An)(x′ − x)〉 ≤ ‖y∗‖‖h′(ξ)−An‖‖x′ − x‖

follows. Now, in order to prove the lemma it is sufficient to show the bound

‖h′(ξ)−An‖ ≤ ϕ′ntn + γ′max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖}(3.4)

for some constant γ′ and some sequence (ϕ′n) ∈ T. When h is twice Fréchet differentiable at x̄ we
have

‖h′(ξ)− h′(x̄ + tnzn)‖ ≤ ‖h′(ξ)− (h′(x̄) + h′′(x̄)(ξ − x̄))‖+ ‖h′′(x̄)(ξ − (x̄ + tnzn)‖
+‖h′(x̄) + h′′(x̄)tnzn − h′(x̄ + tnzn)‖.
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Together with

‖h′(ξ)−An‖ ≤ ‖h′(ξ)− h′(x̄ + tnzn)‖+ ‖h′(x̄ + tnzn)−An‖

and ‖x̄ + tnzn − ξ‖ ≤ max{‖x̄ + tnzn − x′‖, ‖x̄ + tnzn − x‖} condition (3.4) follows with ϕ′n :=
t−1
n (2 sup{‖h′(x̄) + h′′(x̄)(η− x̄)− h′(η)‖ : η ∈ x̄ + tn(zn + R′BX)}+ ‖h′(x̄ + tnzn)−An‖) = o(1)

and γ′ = ‖h′′(x̄)‖. Similarly, when h′(·) is Lipschitz continuous in x̄ + ρBX , condition (3.4) holds
with ϕ′n := t−1

n ‖h′(x̄+ tnzn)−An‖) = o(1) and with γ′ being the Lipschitz constant of h′(·). Thus
the lemma is proved.

Note, that a sequence (An) ⊂ L(X, Y ) satisfying (3.2) can also exist if h is not continuously
differentiable. For instance, consider a twice continuously differentiable function Ψ : R→ R with
Ψ(t) = o(t2) for t → 0, let ỹ ∈ Y be arbitrarily chosen, and set h(x) := Ψ(‖x − x̄‖)ỹ. Then
it is easy to show that condition (3.2) holds with An = 0 ∀n, but in general h(·) will be only
continuously differentiable provided ‖ · −x̄‖2 is.

In addition, this example together with the second part of Theorem 2.2 shows that the conclu-
sion of Theorem 3.1 automatically holds at a point x̄ which is non-degenerate for the problem (P)
and where condition (2.1) is satisfied. On the other hand, when x̄ is degenerate for the problem (P)
(i.e. int (h′(x̄)X − C) = ∅), then, as a consequence of Theorem 2.4, the necessary condition (2.1)
is automatically satisfied regardless whether the point x̄ is a local weak minimizer for the problem
(P) or not. However, as we will see condition (3.3) of Theorem 3.1 may fail for non-optimal points
x̄. We will present a corresponding example in §5.

Further note that sequences (zn), (tn), (τn) satisfying the assumption (3.1) exist if and only
if condition (2.2) does not hold, or equivalently, x̄ is not an essential local minimizer of second
order. Thus the necessary condition (3.3) reduces the gap between the necessary and sufficient
conditions of Theorem 3.1 in the degenerate case.

4. Second-order necessary conditions for certain directions. We will now analyze
Theorem 3.1 for the special case of convergent sequences (zn) → z and we will rewrite condition
(3.3) in terms of first- and second-order derivatives of h and first and second-order approximation
sets for the convex set C. Since we deal with rather general sets C, there is an inherent non-
smoothness when building second-order approximation sets. Hence it seems to be quite natural
to assume a similar amount of smoothness on h only.

Definition 4.1. Let E,F be normed spaces and let an element z ∈ E be given.
1. Let k : E → F be a mapping and ē ∈ E so that k is differentiable at ē. We define the

following second-order one-sided directional derivative to k at ē with respect to z as

k′′(ē; z) := {f ∈ F : ∃(tn) ∈ T such that f = lim
n→∞

k(ē + tnz)− k(ē)− tnk′(ē)z
t2n/2

}.

Further, for given ~t = (tn) ∈ T we write

k′′~t (ē; z) := lim
n→∞

k(ē + tnz)− k(ē)− tnk′(ē)z
t2n/2

,

when the limit on the right hand side exists.
2. Let S be a subset of F , let A ∈ L(E,F ) be a continuous linear operator and let f̄ ∈ S.

Then for z ∈ E the second-order compound tangent set to S at (f̄ , z) (with respect to A) and a
sequence ~t = (tn) ∈ T is the set

S′′
A,~t

(f̄ ; z) := {w ∈ Y : ∃(zn) → z such that d(f̄ + tnAzn +
t2n
2

w, S) = o(t2n)}.

We also define

S′′A(f̄ , z) :=
⋃

~t∈T
S′′

A,~t
(f̄ ; z),
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which corresponds to the second-order compound tangent set introduced in [26] and which played
a crucial role in [13].

In order to have C ′′
h′(x̄),~t

(h(x̄); z) 6= ∅ there must necessarily hold

d(h(x̄) + tnh′(x̄)z, C) = d(h(x̄) + tnh′(x̄)zn, C) + o(tn) = O(t2n) + o(tn) = o(tn)

for some sequence (zn) → z, implying h′(x̄)z ∈ TC(h(x̄)), i.e. z belongs to the the so-called critical
cone C(x̄) defined by

C(x̄) := {z ∈ X : h′(x̄)z ∈ TC(h(x̄))}.
Lemma 4.2. For any element z ∈ C(x̄) and any sequence ~t = (tn) ∈ T with C ′′

h′(x̄),~t
(h(x̄); z) 6=

∅, the inclusions

cl(C ′′
h′(x̄),~t

(h(x̄); z) + TC(h(x̄)) + Im h′(x̄)) ⊂ C ′′
h′(x̄),~t

(h(x̄); z) ⊂ cl (TC(h(x̄)) + Imh′(x̄))

hold. Moreover, C ′′
h′(x̄),~t

(h(x̄); z) is a closed convex set.
Proof. The fact that C ′′

h′(x̄),~t
(h(x̄); z) is a closed convex set follows easily from the definition.

To show the inclusions let y ∈ C ′′
h′(x̄),~t

(h(x̄); z) be arbitrarily fixed. By the definition we can find

sequences (zn) → z and (yn) → y such that h(x̄) + tnh′(x̄)zn + 1
2 t2nyn ∈ C for each n and yn ∈

2t−2
n (C−h(x̄))+h′(x̄)(−t−1

n zn) ⊂ TC(h(x̄))+Imh′(x̄) follows. Hence y ∈ cl (TC(h(x̄))+Im h′(x̄)).
Now consider arbitrary elements w ∈ TC(h(x̄)) and v = h′(x̄)s ∈ Imh′(x̄). Then we can find a
convergent sequence (wn) → w such that h(x̄) + tnwn ∈ C for all n. For all n sufficiently large we
have tn < 2 and by using the convexity of C we conclude

tn
2

(h(x̄) + tnwn) + (1− tn
2

)(h(x̄) + tnh′(x̄)zn +
1
2
t2nyn)

= h(x̄) + tnh′(x̄)(zn − tn
2

(zn + s)) +
t2n
2

(yn + wn + v) ∈ C.

Since the sequence (zn − tn

2 (zn + s)) converges to z we obtain y + w + v = limn yn + wn + v ∈
C ′′

h′(x̄),~t
(h(x̄); z) and since C ′′

h′(x̄),~t
(h(x̄); z) is closed, the proposed inclusion follows.

Lemma 4.3. Suppose Assumption 1 is satisfied. Let (zn) → z be a convergent sequence in X
and let ~t = (tn) ∈ T, such that h′′~t (x̄; z) exists. Then

h′′~t (x̄; z) = lim
n→∞

h(x̄ + tnzn)− h(x̄)− tnh′(x̄)zn

t2n/2

also holds. Moreover, there exists a sequence τn → 0 such that (3.1) holds if and only if h′′~t (x̄; z) ∈
C ′′

h′(x̄),~t
(h(x̄); z).

Proof. Using Assumption 1, the first assertion follows immediately from the estimate

‖h(x̄ + tnzn)− h(x̄ + tnz)− tnh′(x̄)(zn − z)‖ ≤ ηt2n max{‖zn‖, ‖z‖}‖zn − z‖ = o(t2n).

Now assume h′′~t (x̄; z) ∈ C ′′
h′(x̄),~t

(h(x̄); z). By the definition, there exists a sequence (z′n) → z such
that d(h(x̄) + tnh′(x̄)z′n + (t2n/2)h′′~t (x̄; z), C) = o(t2n). Hence,

d(h(x̄ + tnzn) + tnh′(x̄)(z′n − zn), C)

= d(h(x̄) + tnh′(x̄)zn +
t2n
2

h′′~t (x̄; z) + tnh′(x̄)(z′n − zn), C) + o(t2n) = o(t2n)

and (3.1) follows from Theorem 2.4 with τn = ‖z′n − zn‖. Now let (τn) ∈ T be a sequence such
that (3.1) holds. Then, as in the proof of Theorem 3.1, we can find some sequence (z′n) → z with
z′n = zn + τntnδzn, δzn ∈ BX such that

d(h(x̄ + tnz′n), C) = d(h(x̄) + tnh′(x̄)z′n +
t2n
2

h′′~t (x̄; z), C) + o(tn)2 = o(t2n),
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showing h′′~t (x̄; z) ∈ C ′′
h′(x̄),~t

(h(x̄); z).
The second-order derivative h′′~t (x̄; z) is useful for building second-order approximations of h

in the direction z. But we need also another type of second-order derivatives, namely in the sense
of first order approximations of first derivatives. We know from the discussion following Theorem
3.1, that, if h is sufficiently smooth near x̄, for given sequences (zn) ⊂ SX and (tn) ∈ T a sequence
of linear operators (An) ⊂ L(X,Y ) satisfies condition (3.2) if and only if An = h′(x̄+ tnzn)+o(tn)
holds. We use condition (3.2) to define this other type of second-order derivative without assuming
existence of h′(·) near x̄.

Lemma 4.4. Let E,F be normed spaces, let k : E → F be a mapping and let ē ∈ E such that
k is differentiable at ē. Further let an element z ∈ E and a sequence (tn) ∈ T be given. Then there
exists at most one continuous linear operator K ∈ L(E,F ) such that, together with some positive
scalars γ̃, R̃ and some sequence (ϕ̃n) ∈ T, one has

‖k(e′)− k(e)− (k′(ē) + tnK)(e′ − e)‖
≤ (

ϕ̃ntn + γ̃ max{‖ē + tnz − e′‖, ‖ē + tnz − e‖})‖e′ − e‖(4.1)

for all e, e′ ∈ ē + tn(z + R̃BE) and all n.
Proof. By contraposition. Assume that there exist two continuous linear operators K1 6= K2

satisfying (4.1) with parameters γ̃1, R̃1, (ϕ̃1n) and γ̃2, R̃2, (ϕ̃2n), respectively. Set γ̃ := max{γ̃1, γ̃2},
ϕ̃n := max{ϕ̃1n, ϕ̃2n}, ∀n and R̃ = min{R̃1, R̃2}. By the triangle inequality we obtain

‖tn(K1 −K2)(e′ − e)‖ ≤ ‖k(e′)− k(e)− (k′(ē) + tnK1)(e′ − e)‖
+‖k(e′)− k(e)− (k′(ē) + tnK2)(e′ − e)‖

≤ 2
(
ϕ̃ntn + γ̃ max{‖ē + tnz − e′‖, ‖ē + tnz − e‖})‖e′ − e‖

for all e, e′ ∈ ē + tn(z + R̃BE) and all n. Let d ∈ E denote a direction with (K1 −K2)d 6= 0 and
‖d‖ ≤ R′. Applying the above estimate successively with e = ē + tnz, e′ = e + tn

n d for each n we
obtain

‖tn(K1 −K2)
tn
n

d‖ ≤ 2(ϕ̃ntn + γ̃‖ tn
n

d‖)‖ tn
n

d‖ = 2
t2n
n

(ϕ̃n +
γ̃‖d‖

n
)‖d‖.

Dividing by t2n
n and passing to the limit yields ‖(K1 −K2)d‖ ≤ 0, a contradiction.

Definition 4.5. Under the assumptions of Lemma 4.4, if the unique continuous linear oper-
ator K ∈ L(E,F ) satisfying condition (4.1) exists, we will denote it by (k′)′~t(ē; z).

If k is differentiable near ē, then ‖k′(ē + tnz) − (k′(ē) + tn(k′)′~t(ē; z))‖ = o(tn) follows easily
from condition (4.1). Thus, (k′)′~t(ē; z) is an element of the so-called contingent derivative, also
called graphical derivative or Bouligand derivative, (see, e.g. [22]) which in our case is given by

Ck′(ē)z := {K ∈ L(E, F ) : ∃(tn) ∈ T, zn → z with K = lim
n→∞

k′(ē + tnzn)− k′(ē)
tn

}.

If k′(·) is Lipschitz continuous near ē, using similar arguments as in Lemma 3.2 we can conclude
that

⋃

~t∈T

(k′)′~t(ē; z) = Ck′(ē)z

and if k is twice Fréchet differentiable at ē, then (k′)′~t(ē; z) = k′′(ē)z ∀~t ∈ T holds.
In general, when k is not twice differentiable at ē, we can have (k′)′~t(ē; z)z 6= k′′~t (ē; z). However,

(k′)′~t(ē; z) acts like a derivative for the mapping 1
2k′′~t (ē; ·) at z for given ~t ∈ T. Indeed, from

condition (4.1) the estimate

‖1
2
k′′~t (ē; s)− 1

2
k′′~t (ē; z)− (k′)′~t(ē; z)(s− z)‖ ≤ γ̃‖s− z‖2,
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being valid for all s ∈ z + R̃BX such that k′′~t (ē; s) exists, easily follows.
When (h′)′~t(x̄; z) exists for some z ∈ X, ~t ∈ T, then it is easy to see that for any convergent

sequence (zn) → z condition (3.2) holds with An = h′(x̄) + tn(h′)′~t(x̄; z), ϕ′n = ϕ̃n + γ̃‖zn − z‖,
γ′ = γ̃, R′ = R̃/2 for all n sufficiently large, such that ‖zn − z‖ ≤ R̃/2.

We are now in a position to state the main result of this section. We state this result under
the following technical assumption which will be analyzed separately.

Assumption 2. Each sequence (y∗n) ⊂ SY ∗ with

lim
n→∞

t−1
n (〈y∗n, h(x̄)〉 − σC(y∗n)) = lim

n→∞
t−1
n ‖(h′(x̄) + tn(h′)′~t(x̄; z))∗y∗n‖ = 0(4.2)

has at least one weak-∗ accumulation point which is not equal to 0.
Theorem 4.6. Suppose that x̄ is a local weak minimizer for the problem (P) and suppose

that Assumption 1 holds and suppose we are given an element z ∈ C(x̄) ∩ SX and a sequence
(tn) = ~t ∈ T such that the second-order directional derivatives h′′~t (x̄; z) and (h′)′~t(x̄; z) exist, the
inclusion h′′~t (x̄; z) ∈ C ′′

h′(x̄),~t
(h(x̄); z) holds and Assumption 2 is satisfied. Then there exist a

multiplier ȳ∗ ∈ ΛFJ and an element µ̄∗ ∈ (Ker h′(x̄))⊥ such that

(h′)′~t(x̄; z)∗ȳ∗ + µ̄∗ = 0(4.3)

and for each pair (s, y) with s ∈ C(x̄) and y ∈ C ′′
h′(x̄),~t

(h(x̄); s) one has

〈µ̄∗, z − s〉+
1
2
〈ȳ∗, h′′~t (x̄; z)− y〉 ≥ 0.(4.4)

Proof. From the preceding discussion we know that the assumptions of Theorem 3.1 hold with
zn := z, An := h′(x̄) + tn(h′)′~t(x̄; z) and some sequence (τn) ∈ T given by Lemma 4.3. Hence,
applying Theorem 3.1 with T = 1 we have

lim inf
n→∞

sup
y∗∈SY ∗

{ 〈y∗, h(x̄ + tnz)〉 − σC(y∗)
t2n

− 1
tn
‖(h′(x̄) + tn(h′)′~t(x̄; z))∗y∗‖

}
≥ 0

Now, for each n we can find some y∗n ∈ SY ∗ approaching the supremum sufficiently accurate, such
that

lim inf
n→∞

{ 〈y∗n, h(x̄ + tnz)〉 − σC(y∗n)
t2n

− 1
tn
‖(h′(x̄) + tn(h′)′~t(x̄; z))∗y∗n‖

}
≥ 0.

Since lim supn→∞ t−2
n d̂C(h(x̄ + tnz), h′(x̄), τntn) ≤ 0 we also have

0 ≥ lim sup
n→∞

sup
y∗∈SY ∗

{ 〈y∗, h(x̄ + tnz)〉 − σC(y∗)
t2n

− τn

tn
‖(h′(x̄)∗y∗‖

}

= lim sup
n→∞

sup
y∗∈SY ∗

{ 〈y∗, h(x̄ + tnz)〉 − σC(y∗)
t2n

− τn

tn
‖h′(x̄)∗y∗‖+ τn‖(h′)′~t(x̄; z)∗y∗‖

}

≥ lim sup
n→∞

sup
y∗∈SY ∗

{ 〈y∗, h(x̄ + tnz)〉 − σC(y∗)
t2n

− τn

tn
‖(h′(x̄) + tn(h′)′~t(x̄; z))∗y∗‖

}

and limn→∞ t−1
n ‖(h′(x̄) + tn(h′)′~t(x̄; z))∗y∗n‖ = 0 follows. In particular we obtain

µ∗n :=
h′(x̄)∗y∗n

tn
= O(1),(4.5)

lim
n→∞

t−1
n (h′(x̄) + tn(h′)′~t(x̄; z))∗y∗n) = lim

n→∞
(h′)′~t(x̄; z)∗y∗n + µ∗n = 0,(4.6)

lim inf
n→∞

〈y∗n, h(x̄ + tnz)〉 − σC(y∗n)
t2n

≥ 0.(4.7)
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Because of (4.7) and the relation h(x̄ + tnz) = h(x̄) + tnh′(x̄)z + t2n
2 h′′~t (x̄; z) + o(t2n) we have

lim inf
n→∞

{ 〈y∗n, h(x̄)〉 − σC(y∗n)
t2n

+
〈y∗n, h′(x̄)z〉

tn
+

1
2
〈y∗n, h′′~t (x̄; z)〉

}
≥ 0.

Together with 〈y∗n, h′(x̄)z〉 = tn〈µ∗n, z〉 = O(tn) and 〈y∗n, h(x̄)〉 − σC(y∗n) ≤ 0 we obtain

σC(y∗n)− 〈y∗n, h(x̄)〉 = O(t2n).(4.8)

Together with (4.6) we may conclude from Assumption 2 that the sequence (y∗n) has a nonzero
accumulation point ỹ∗. Then there exists some element ỹ ∈ Y with 〈ỹ∗, ỹ〉 = 1 and we can choose a
subsequence (y∗kn

) such that 〈y∗kn
, ỹ〉 → 1. (y∗kn

, µ∗kn
) is a bounded sequence in Y ∗×X∗ = (Y ×X)∗

and by the Alaoglu-Bourbaki Theorem, at least one weak-∗ accumulation point, say (ȳ∗, µ̄∗), exists.
Of course, ȳ∗ is also a weak-∗ accumulation point of the sequence (y∗kn

). Hence 〈ȳ∗, ỹ〉 = 1 implying
ȳ∗ 6= 0. Note that (ȳ∗, µ̄∗) is also a a weak-∗ accumulation point of the entire sequence (y∗n, µ∗n).
Since µ∗n ∈ Im h′(x̄)∗ ⊂ (Kerh′(x̄))⊥ and the annihilator (Ker h′(x̄))⊥ is weakly-∗ closed in X∗,
we have µ̄∗ ∈ (Ker h′(x̄))⊥. Further, equation (4.3) follows easily from (4.6).

Now let us show ȳ∗ ∈ ΛFJ . Since σC(·) − 〈·, h(x̄)〉 is weakly-∗ lower semicontinuous, we
obtain σC(ȳ∗)− 〈ȳ∗, h(x̄)〉 ≤ 0 from condition (4.8). Because of h(x̄) ∈ C we also have σC(ȳ∗)−
〈ȳ∗, h(x̄)〉 ≥ 0 showing ȳ∗ ∈ NC(h(x̄)). From condition (4.5) it follows that h′(x̄)y∗n → 0 and
consequently, h′(x̄)∗ȳ∗ = 0. Hence ȳ∗ ∈ ΛFJ . It remains to show that (4.4) holds. Let the pair
(s, y) ∈ C(x̄)×C ′′

h′(x̄),~t
(h(x̄); s) be arbitrarily fixed. Then, by the definitions of the support function

σC and the set C ′′
h′(x̄),~t

(h(x̄); s) we have σC(y∗n) ≥ 〈y∗n, h(x̄) + tnh′(x̄)sn + t2n
2 y〉 + o(t2n) for some

sequence (sn) → s. Together with condition (4.7) and the second-order expansion for h(x̄ + tnz)
it follows that

0 ≤ lim inf
n→∞

〈y∗n, h(x̄) + tnh′(x̄)z + t2n
2 h′′~t (x̄; z)〉 − 〈y∗n, h(x̄) + tnh′(x̄)sn + t2n

2 y〉
t2n

= lim inf
n→∞

{
〈µ∗n, z − sn〉+

1
2
〈y∗n, h′′~t (x̄; z)− y〉

}
≤ 〈µ̄∗, z − s〉+

1
2
〈ȳ∗, h′′~t (x̄; z)− y〉

and this completes the proof.
Of course, Assumption 2 holds when Y is finite dimensional. But there are also other situations

when this assumption holds.
Definition 4.7. Let E,F be Banach spaces, let S ⊂ F be a closed convex subset of F , let

k : E → F be a mapping, which is differentiable at ē ∈ E, with k(ē) ∈ S, and let the multifunction
Ψ : E ⇒ F be given by Ψ(e) := k(e) − S. Then, k is said to be 2-non-degenerate at the point ē
in the direction z ∈ E with respect to the set C and the sequence ~t ∈ T if the following conditions
are satisfied:

1. (k′)′~t(ē; z) exists.
2. The set k(ē) + k′(ē)E − S has nonempty relative interior.
3. The interior of the set KE − (S − k(Ē)) × {0} is nonempty in Q × F/Q, where Q :=

aff (k(ē) + k′(ē)E − S) ⊂ F is the affine hull of the set k(ē) + k′(ē)E − S, the continuous
linear operator K : E → Q × F/Q is given by Ks := (k′(ē)s, π(k′)′~t(ē; z)s) and where π
denotes the quotient map from F onto the quotient space F/Q.

In what follows let Q denote the affine hull of the set h(x̄) + h′(x̄)X −C and let π denote the
quotient map from Y onto the quotient space Y/Q.

Theorem 4.8. Let the mapping h be 2-non-degenerate at x̄ in the direction z ∈ X with
respect to C and the sequence ~t ∈ T. Then it is sufficient for Assumption 2 to hold that either the
quotient space Y/Q or the subspace Imh′(x̄) ∩ aff (C − h(x̄)) is finite dimensional.

Proof. Let (y∗n) ⊂ SY ∗ be a sequence satisfying condition (4.2). In order to prove the theorem
we have to show that at least one nonzero weak-∗ accumulation point of the sequence (y∗n) exists.
Since Q is a closed subspace of the Banach space Y , the quotient space P := Y/Q and hence
also Q × P are Banach spaces. Let H : X → Q × P be the continuous linear operator according
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to Definition 4.7, i.e. Hs = (h′(x̄)s, π(h′)′~t(x̄; z)s) ∀s. Now choose (q, p) ∈ Q × P , x ∈ X and
q̄ ∈ Ĉ := C − h(x̄) ⊂ Q such that (q, p) = Hx − (q̄, 0) ∈ int (HX − Ĉ × {0}). Application of the
Generalized Open Mapping Theorem (see [29, Theorem 1]) yields (q, p) ∈ int (H(x+BX)−Ĉ×{0})
and it follows that

ρBQ×P ⊂ int ((q̄, 0) + HBX − Ĉ × {0})(4.9)

for some ρ > 0. Using Theorem 2.4 we obtain that

sup
(q∗,p∗)∈S(Q×P )∗

{〈q∗, q̄〉 − σĈ(q∗)− ‖H∗(q∗, p∗)‖} ≤ −ρ

and therefore

〈q∗, q̄〉 − σĈ(q∗)− ‖H∗(q∗, p∗)‖ ≤ −ρ(‖q∗‖+ ‖p∗‖), ∀(q∗, p∗) ∈ Q∗ × P ∗.(4.10)

Now let the linear operators A ∈ L(X,Q) and B ∈ L(X, P ) be given by As = h′(x̄)s and
Bs = π(h′)′~t(x̄; z)s, respectively. Further let iQ : Q → Y denote the natural embedding from Q
into Y . Consequently, h′(x̄) = iQ ◦ A. For each n, let q∗n := i∗Qy∗n ∈ Q∗ be the restriction of the
linear functional y∗n to Q. By the Hahn-Banach Theorem we can extend the linear form q∗n ∈ Q∗

to a linear functional y∗Q,n over Y such that ‖y∗Q,n‖ = ‖q∗n‖. Setting y∗P,n := y∗n − y∗Q,n we have
i∗Qy∗P,n = i∗Qy∗n − i∗Qy∗Q,n = 0, i.e. y∗P,n belongs to the annihilator Q⊥ := {y∗ ∈ Y ∗ : 〈y∗, y〉 =
0, ∀y ∈ Q} of the subspace Q ⊂ Y . The mapping π∗ : P ∗ → Y ∗ is isometric and allows us to
identify the dual space P ∗ = (Y/Q)∗ with Q⊥. For each n let p∗n ∈ P ∗ denote the linear functional
uniquely given by the relation π∗p∗n = y∗P,n. Finally, let ȳQ := iQq̄. Then we have

〈y∗n, ȳQ〉 = 〈q∗n, q̄〉(4.11)
σĈ(q∗n) = σiQ(Ĉ)(y

∗
n) = σC(y∗n)− 〈y∗n, h(x̄)〉(4.12)

(h′(x̄)∗ + tn(h′)′~t(x̄; z))∗y∗n = A∗q∗n + tnB∗p∗n + tn(h′)′~t(x̄; z)∗y∗Q,n(4.13)
= H∗(q∗n, tnp∗n) + tn(h′)′~t(x̄; z)∗y∗Q,n

and (4.10) implies

〈y∗n, ȳQ〉+ 〈y∗n, h(x̄)〉 − σC(y∗n)− ‖(h′(x̄)∗ + tn(h′)′~t(x̄; z))∗y∗n‖
≤ −ρ(‖q∗n‖+ tn‖p∗n‖) + tn‖(h′)′~t(x̄; z̄)∗y∗Q,n‖.(4.14)

Now let us assume that lim supn→∞ ‖q∗n‖ > 0. By passing to a subsequence if necessary we
may also assume that lim infn→∞ ‖q∗n‖ = ε > 0. The sequence (y∗n) has at least one weak-∗
accumulation point ȳ∗ by the Alaoglu-Bourbaki Theorem. Since tn → 0 and the sequence (y∗n)
satisfies condition (4.2) we obtain from condition (4.14) that 〈ȳ∗, ȳQ〉 ≤ −ρε < 0. Hence, ȳ∗ 6= 0
and the theorem is proved in case lim supn→∞ ‖q∗n‖ > 0.

Now let us assume that lim supn→∞ ‖q∗n‖ = 0. If we denote by p̄∗ an arbitrary weak-∗ accu-
mulation point of the sequence (p∗n), then ȳ∗ := π∗p̄∗ is a weak-∗ accumulation point both of the
sequence (y∗P,n) and the sequence (y∗n), the latter because of ‖y∗Q,n‖ = ‖y∗n − y∗P,n‖ → 0. Further,
ȳ∗ 6= 0 if and only if p̄∗ 6= 0. Since ‖y∗P,n‖ = ‖p∗n‖ → 1, the assertion of the theorem now follows
immediately in case that P and hence also P ∗ are finite dimensional spaces.

It remains to prove the theorem in case the subspace W := Im h′(x̄) ∩ aff (C − h(x̄)) is finite
dimensional. To do this we will first show the inclusion

ρBQ×P ⊂ (q̄, 0) + (
A

t
,B)BX − (Ĉ +

ρ + ‖A‖
t

BW )× {0}, ∀t ∈]0,
ρ

‖A‖ [.(4.15)

Let the element (q, p) ∈ ρBQ×P and the scalar t ∈]0, ‖A‖−1ρ[ be arbitrarily fixed. We observe that
condition (4.9) together with q̄ ∈ Ĉ imply γρBQ×P ⊂ (q̄, 0) + γHBX − Ĉ × {0} for all γ ∈]0, 1].
Hence we can find some x1 ∈ ρ−1‖(p, q)‖BX and some c1 ∈ Ĉ such that (q, p) = (q̄+Ax1−c1, Bx1).
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We have ‖t(q− q̄ + c1)‖ = ‖tAx1‖ ≤ t‖A‖‖x1‖ ≤ ‖(q, p)‖ and ‖(t(q− q̄ + c1), p)‖ = max{‖t(q− q̄ +
c1)‖, ‖p‖} ≤ ‖(q, p)‖ ≤ ρ follows. Consequently, we can find some x2 ∈ ρ−1‖(p, q)‖BX and some
c2 ∈ Ĉ with (t(q − q̄ + c1), p) = (q̄ + Ax2 − c2, Bx2). Thus

(q, p) = (q̄ +
q̄ − c2

t
+

1
t
Ax2 − c1, Bx2)

and q̄ − c2 = A(tx1 − x2) ∈ W . Moreover, we have

‖q̄ − c2‖ ≤ t‖Ax1‖+ ‖A‖‖x2‖ ≤ ‖(p, q)‖(1 +
‖A‖
ρ

) ≤ ρ + ‖A‖.

Therefore, (p, q) ∈ (q̄, 0)− (Ĉ + t−1(ρ + ‖A‖)BW )×{0}+ (t−1A, B)BX and, since (p, q) ∈ ρBQ×P

has been chosen arbitrarily, the inclusion (4.15) follows. Now, by Theorem 2.4 we obtain

sup
(q∗,p∗)∈S∗Q×P

{
〈q∗, q̄〉 − σĈ(q∗)− (ρ + ‖A‖)σBW

(q∗)
t

− ‖A∗ q∗

t
+ B∗p∗‖

}
≤ −ρ.

Consequently, for all n sufficiently large such that tn‖A‖ < ρ we have

〈q∗n, q̄〉 − σĈ(q∗n)− (ρ + ‖A‖)σBW
(q∗n)

tn
− ‖A∗ q∗n

tn
+ B∗p∗n‖ ≤ −ρ(‖q∗n‖+ ‖pn‖∗).

Taking into account conditions (4.2), (4.11)–(4.13) and ‖q∗n‖ = ‖y∗Q,n‖ → 0 we obtain

lim
n→∞

〈q∗n, q̄〉 = 0, lim
n→∞

σĈ(q∗n) = 0, lim
n→∞

‖A∗ q∗n
tn

+ B∗p∗n‖ = 0.

Since we also have ‖p∗n‖ → 1,

lim inf
n→∞

σBW
(q∗n)

tn
≥ ρ

ρ + ‖A‖
follows. Now, if W is finite dimensional and extracting if necessary a subsequence, there exists
some x̃ ∈ X such that w̄ := Ax̃ ∈ BW satisfies

〈q∗n, w̄〉/tn ≥ ρ

2(ρ + ‖A‖) := ρ̃ > 0

for all n. Let p̄ denote an arbitrary weak-∗ accumulation point of the sequence (p∗n). Extracting
if necessary a subsequence we have

〈p̄∗, Bx̃〉 = lim
n→∞

〈p∗n, Bx̃〉 = lim
n→∞

〈B∗p∗n, x̃〉 = − lim
n→∞

〈A∗ q∗n
tn

, x̃〉

= − lim
n→∞

〈q
∗
n

tn
, w̄〉 ≤ −ρ̃.

and p̄∗ 6= 0 follows. Then ȳ∗ = π∗p̄∗ is a nonzero weak-∗ accumulation point of the sequence (y∗n)
and this completes the proof.

Let us discuss the assumptions of Theorem 4.8 in further detail. In our case, the set C
has the form (−L) × K with intL 6= ∅ and so the assumption that h(·) is 2-non-degenerate in
direction z with respect to C and ~t can be reduced to an assumption on the constraints, namely
that g(·) is is 2-non-degenerate in direction z with respect to K and ~t. To be a little bit more
general, let us consider the case when the Banach space Y and the set C can be decomposed in
the form C = C1 ×C2 ⊂ Y1 × Y2 = Y with int C1 6= ∅. Similarly, we denote by h1, h2 respectively
(h′1)

′
~t(x̄; z), (h′2)

′
~t(x̄; z) the components of h respectively (h′)′~t(x̄; z). Then there holds Q = Y1×Q2

with Q2 = aff (h2(x̄) + h′2(x̄)X − C2) and it follows that h(·) is 2-non-degenerate in direction z
and with respect to C and ~t if and only if h2(·) is of such a kind with respect to C2.

Finally let us mention that the remaining assumption of Theorem 4.8 that either the quotient
space Y/Q or the space Im h′(x̄) ∩ aff (C − h(x̄)) is finite dimensional, is satisfied in a variety of
cases, e.g. when X or Y is finite dimensional or in the case of the scalar mathematical programming
problem. Further, we know a lot of special cases where this assumption can be replaced, but we
do not want to go down to the last detail here.
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5. Second-order necessary conditions for the scalar mathematical programming
problem. We consider here the results of the preceding section for the special case of the scalar
mathematical programming problem

(MP ) min f(x)
s.t. gi(x) ≤ 0, i = 1, . . . , m,

G(x) = 0,

where f : X → R, gi : X → R for i = 1, . . . , m, G : X → V̂ and X and V̂ are Banach spaces.
Then Y = R×Rm× V̂ and for a given feasible point x̄ the mapping h and the set C according to
(1.5) are given by h(x) = (f(x)− f(x̄), g1(x), . . . , gm(x), G(x)) and C = R− ×Rm

− × {0}. We will
assume throughout this section that Assumption 1 holds. The set of multipliers ΛFJ satisfying
the first order conditions of Fritz-John type consists of all multipliers (α, λ, v∗) ∈ R × Rm × V̂ ∗,
such that

L′x(x̄, α, λ, v∗) = 0,

α ≥ 0,

λi ≥ 0, λigi(x̄) = 0, i = 1, . . . ,m,

(α, λ, v∗) 6= (0, 0, 0),

where the generalized Lagrangian L is given in the usual way by L(x, α, λ, v∗) := αf(x) +∑m
i=1 λigi(x) + 〈v∗, G(x)〉 and L′x is the partial derivative of the Lagrangian with respect to x.

For partial second-order directional dervatives of the Lagrangian with respect to the first variable
we use the following notation:

L′′x~t(x̄, α, λ, v∗; z) := αf ′′~t (x̄; z) +
m∑

i=1

λigi
′′
~t
(x̄; z) + 〈v∗, G′′~t (x̄; z)〉,

(L′x)′~t(x̄, α, λ, v∗; z) := α(f ′)′~t(x̄; z) +
m∑

i=1

λi(g′i)
′
~t(z; +)(G′)′~t(x̄; z)

∗
v∗.

Note, that the multipliers (α, λ, v∗) form a linear functional y∗ ∈ Y ∗ and we have L′x(x̄, α, λ, v∗) =
h′(x̄)∗y∗, L′′x~t(x̄, α, λ, v∗; z) = h′′~t (x̄; z) and (L′x)′~t(x̄, α, λ, v∗; z) = (h′)′~t(x̄; z)∗y∗.

In case of the mathematical programming problem the second-order compound tangent sets
have the property that

0 ∈ C ′′
h′(x̄),~t

(h(x̄); s), ∀s ∈ C(x̄),~t ∈ T.(5.1)

This follows easily from the definition and the observation, that for arbitrary s ∈ C(x̄) and ~t ∈ T
we have h(x̄) + tns ∈ C for all n sufficiently large. Condition (5.1) together with Lemma 4.2
implies

C ′′
h′(x̄),~t

(h(x̄); s) = cl
(
TC(h(x̄)) + Imh′(x̄)

)
.

Hence, C ′′
h′(x̄),~t

(h(x̄); s) does not depend on the choice of the direction s ∈ C(x̄) and the sequence
~t ∈ T. Moreover, C ′′

h′(x̄),~t
(h(x̄); s) is a cone and its polar cone can be written as

C ′′
h′(x̄),~t

(h(x̄); s)◦ = NC(h(x̄)) ∩ (Im h′(x̄))⊥ = ΛFJ ∪ {0}.

It follows that y ∈ C ′′
h′(x̄),~t

(h(x̄); s) holds if and only if one has 〈y∗, y〉 ≤ 0 for each y∗ ∈ ΛFJ .

In a next step, for fixed z ∈ C(x̄)∩SX and ~t ∈ T with h′′~t (x̄; z) ∈ C ′′
h′(x̄),~t

(h(x̄); z) we will analyze
the conclusions (4.3) and (4.4) of Theorem 4.6 under condition (5.1). Using condition (4.4) with
s = z and y = 0 yields, together with the above characterization for h′′~t (x̄; z) ∈ C ′′

h′(x̄),~t
(h(x̄); z),

〈ȳ∗, h′′~t (x̄; z)〉 = max
y∗∈ΛF J

〈y∗, h′′~t (x̄; z)〉 = 0.
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Since h′′~t (x̄; z) ∈ C ′′
h′(x̄),~t

(h(x̄); z) implies h′′~t (x̄; z) ∈ C ′′
h′(x̄),~t

(h(x̄); s) for all s ∈ C(x̄) we obtain
〈µ̄∗, z − s〉 ≥ 0, ∀s ∈ C(x̄). Thus µ̄∗ ∈ NC(x̄)(z) or equivalently, since C(x̄) is a cone, µ̄∗ ∈ {µ∗ ∈
C(x̄)◦ : 〈µ∗, z〉 = 0}, where C(x̄)◦ denotes the polar cone of the critical cone C(x̄). Now in case of
(MP) the critical cone is given by

C(x̄) =
{

z ∈ X :
〈f ′(x̄), z〉 ≤ 0
〈g′i(x̄), z〉 ≤ 0, ∀i ∈ Ī ,

G′(x̄)z = 0

}
,

where Ī := {i ∈ {1, . . . , m} : gi(x) = 0} denotes the index set of active inequality constraints.
If Im G′(x̄) is closed, then by the Generalized Farkas lemma (see, e.g. [9, Proposition 2.201]) the
polar cone C(x̄)◦ is given by the formula

C(x̄)◦ = {αf ′(x) +
∑

i∈Ī

λig
′
i(x)∗ + G′(x̄)∗v∗ : α ≥ 0, λi ≥ 0, i ∈ Ī , v∗ ∈ V̂ ∗}.

Hence, µ̄∗ ∈ {µ∗ ∈ C(x̄)◦ : 〈µ∗, z〉 = 0} has the following representation:

µ̄∗ = α̃f ′(x) +
m∑

i=1

λ̃ig
′
i(x) + G′(x̄)∗ṽ∗,

where α̃ ≥ 0, λ̃i ≥ 0, λ̃igi(x̄) = 0, i = 1, . . . ,m and ṽ∗ ∈ V̂ ∗ are such that α̃〈g′i(x̄), z〉 +∑m
i=0 λ̃i〈g′i(x̄), z〉+ 〈ṽ∗, G′(x̄)z〉 = 0, or equivalently, since z ∈ C(x̄),

α̃〈f ′(x̄), z〉 = 0, λ̃igi(x̄) = λ̃i〈g′i(x̄), z〉 = 0, i = 1, . . . ,m.

Next let us consider Assumption 2. It surely holds if the space V̂ ∗ is finite dimensional.
In case of infinite dimensional V̂ let us examine the assumptions of Theorem 4.8. Note that
aff (C − h(x̄)) = R × Rm × {0} is always finite-dimensional for the problem (MP). From the
discussion at the end of the preceding section we know that to verify 2-non-degeneracy of h(·)
with respect to C we only have to consider the equality constraints G(x) = 0. It is straightforward
to see that the mapping G(·) is 2-non-degenerate in direction z with respect to {0} and the sequence
~t ∈ T, provided that (G′)′~t(x̄; z) exists, if and only if ImG′(x̄) is closed in V̂ and the mapping
s → (G′(x̄)s, πG′′~t (x̄; z)s) carries X onto Im G′(x̄)×V̂ /Im G′(x̄), where π here denotes the quotient
mapping onto the quotient space V̂ /ImG′(x̄). For twice respectively three times continuously
differentiable mappings G this condition already appears in a lot of papers on optimality conditions
for problems with degenerate equality constraints, see [3], [4], [23]. Further, in a slightly different
version it is also known as the property of 2-regularity of the mapping G (see [5], [31]). We refer
also to [17] where the theory of 2-regularity was applied to once differentiable mappings having a
locally Lipschitzian derivative.

We summarize these considerations in the following Corollary:
Corollary 5.1. Let x̄ be a local minimizer for the mathematical programming problem (MP)

and let Assumption 1 hold. Then for each element z ∈ C(x̄) and each sequence ~t ∈ T such that the
second-order directional derivatives h′′~t (x̄; z) and (h′)′~t(x̄; z) exist, such that

sup
(α,λ,v̂∗)∈ΛF J

L′′x~t(x̄, α, λ, v∗; z) ≤ 0(5.2)

and that either dim V̂ < ∞ or G(·) is 2-non-degenerate in direction z with respect to {0} and (~t),
there exist multipliers (α, λ, v∗) ∈ ΛFJ and (α̃, λ̃, ṽ∗) ∈ R+ × Rm

+ × V̂ ∗ such that

L′′x~t(x̄, α, λ, v∗; z) = 0(5.3)

(L′x)′~t(x̄, α, λ, v∗; z) + L′x(x̄, α̃, λ̃, ṽ∗) = 0,(5.4)

λ̃igi(x̄) = λ̃i〈g′i(x̄), z〉 = 0, i = 1, . . . ,m(5.5)
α̃〈f ′(x̄), z〉 = 0.(5.6)
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Let us compare Corollary 5.1 with the standard second-order conditions (see, e.g. [14]) for
(MP). For sake of simplicity let us assume that f , gi, i = 1, . . . , m, and G are twice continuously
differentiable at x̄ and that the range Im G′(x̄) is closed. If ΛFJ 6= ∅ and if there is some β > 0
such that

max
(α,λ,v∗)∈ΛF J∩SY ∗

L′′x(x̄, α, λ, v∗)(z, z) ≥ β

for all z ∈ C(x̄) ∩ SX , then x̄ is a strict local minimizer and in fact one can show [13] that this
condition is also equivalent for x̄ to be an essential local minimizer of second order. On the other
hand, the standard second-order necessary conditions state that at a local minimizer x̄ the set
ΛFJ is not empty and for each z ∈ C(x̄) there is some multiplier (α, λ, v∗) ∈ ΛFJ ∩ SY ∗ such that

L′′x(x̄, α, λ, v∗)(z, z) ≥ 0.

It is also well-known that on the one hand this necessary condition is equivalent to condition (2.1)
for non-degenerate points x̄, i.e. when Im G′(x̄) = V̂ , and on the other hand, that it is always
satisfied when x̄ is degenerate, whether x̄ is a local minimizer or not. Now, for degenerate points
x̄ Corollary 5.1 states the additional necessary conditions (5.4)-(5.6) for exactly those directions
z ∈ C(x̄) ∩ SX , where the sufficient conditions fail to hold, and thus reduces the gap between the
standard necessary and sufficient conditions for the mathematical programming problem (MP).

Now let us compare our work with Avakov’s results [3], [4]: For the sake of simplicity we
consider only the case when no inequality constraints are present, i.e. m = 0. Avakov shows,
assuming that f is Fréchet differentiable at x̄ and G is twice Fréchet differentiable at a local
minimizer x̄ and the range Im G′(x̄) is closed, the following ”first-order” conditions hold: For
each z ∈ X such that G′(x̄)z = 0, G′′(x̄)(z, z) ∈ Im G′(x̄) and the operator G(x̄; z) : X →
Im G′(x̄) × V̂ /Im G′(x̄) given by G(x̄, z)s → (G′(x̄)s, πG′′(x̄)(z, s)) has closed range there exist
multipliers (0, 0) 6= (α, v∗) ∈ R+ ×KerG′(x̄)∗ and ṽ∗ ∈ V̂ ∗ such that

αf ′(x̄) + G′(x̄)∗ṽ∗ + G′′(x̄)(z, ·)∗v∗ = 0.(5.7)

Now let us demonstrate how this result follows from our work in case the equality constraints
are degenerate, i.e. Im G′(x̄) 6= V̂ , under the assumption that f is strictly differentiable at x̄.
Let z ∈ X be fixed, satisfying G′(x̄)z = 0, G′′(x̄)(z, z) ∈ Im G′(x̄). W.l.o.g. we can assume
〈f ′(x̄), z〉 ≤ 0, since otherwise we can take the direction −z. When G(x̄; z) is not surjective but
has closed range, equation (5.7) with α = 0 follows from the existence of a nontrivial functional
in (ImG(x̄; z))⊥ by using standard arguments.

Now assume that G(x̄; z) is surjective, i.e. G is 2-non-degenerate in direction z. It follows
that πG′′(x̄)(z, ·) 6= 0 and hence z 6= 0, w.l.o.g. ‖z‖ = 1. Let p∗ ∈ X∗ denote a continuous linear
functional with 〈p∗, z〉 = 1 and consider the problem

(MPp∗) min
x∈X

ϕ(x) := 〈p∗, x− x̄〉(f(x)− f(x̄)) s.t. 〈−p∗, x− x̄〉 ≤ 0, G(x) = 0.

Then, x̄ is also a local minimizer for this problem and one can show that Assumption 1 is satisfied
and also the second-order directional derivatives exist for every direction and every sequence ~t ∈ T .
In particular, we have ϕ′(x̄) = 0, ϕ′′~t (x̄; z) = 2〈f ′(x̄), z〉〈p, z〉 and (ϕ′)′~t(x̄; z) = 〈p∗, z〉f ′(x̄) +
〈f ′(x̄), z〉p∗. It follows immediately that z belongs to the critical cone of problem (MPp∗).

Now let (0, 0, 0) 6= (α, λ, v∗) ∈ R+ × R+ × V̂ ∗ be an arbitrary multiplier satisfying the Fritz-
John-conditions for (MPp∗). We have −λp∗ + G′(x̄)∗v∗ = 0 and consequently λ = λ〈p∗, z〉 =
〈v∗, G′(x̄)z〉 = 0 and G′(x̄)∗v∗ = 0. Due to our assumption on z we have G′′(x̄)(z, z) = G′(x̄)w
for some w ∈ X and therefore

αϕ′′~t (x̄; z) + 0 + 〈v∗, G′′(x̄)(z, z)〉 = 2α〈f ′(x̄), z〉〈p∗, z〉+ 〈v∗, G′(x̄)w〉 = 2α〈f ′(x̄), z〉 ≤ 0.

This shows that condition (5.2) is satisfied and application of Corollary 5.1 proves the existence
of multipliers (0, 0, 0) 6= (α, 0, v∗) ∈ R+ × R+ × Ker G′(x̄)∗ and (α̃, λ̃, ṽ∗) ∈ R+ × R+ × V̂ ∗ such
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that we have −λ̃ = λ̃〈−p∗, z〉 = 0 by condition (5.5), α〈f ′(x̄), z〉 = 0 by condition (5.3) and also

α(ϕ′)′~t(x̄; z)G′′(x̄)(z, ·)∗v∗ + G′(x̄)∗ṽ∗+ = αf ′(x̄) + G′(x̄)∗ṽ∗ + G′′(x̄)(z, ·)∗v∗ = 0,

by condition (5.4). Hence, condition (5.7) holds.
Note that condition (5.7) is called a ”first-order” condition, although is contains the second

derivative G′′(x̄). Similarly, Avakov and others presented ”second-order” conditions (see [3],[4],
[16], [23]), where third derivatives of the mapping G are involved. Of course, our results cannot
cover such ”second-order” conditions.

There are also other second-order conditions known from the literature, see for instance the
monograph of Arutyunov [2] and the references cited therein.

Example 5.1. This is a very easy example which can be treated by the results of this paper
but not by results in the literature. Consider the problem

min
(x1,x2,x3)∈R3

−x2
1 + x3 s.t. x1x2 + x

5/2
1 = 0, x3 = 0

at x̄ = (0, 0, 0). Then x̄ = (0, 0, 0) is not a local minimum and this follows also from Corollary
5.1 since the second-order conditions (5.3)-(5.6) are not satisfied for the direction z = (−1, 0, 0).
However, the necessary ”first-order” conditions (5.7) hold and the ”second-order” conditions from
[3], [23], [24] do not apply since the constraints are not three times differentiable at x̄. Also the
necessary conditions of Arutyunov [1, Theorem 3.1, Theorem 3.2] and Belash and Tret’yakov [5,
Theorem 3] are either satisfied or cannot be used since f ′(x̄) 6= 0 and G′(x̄) 6= 0.

Example 5.2. Now consider the problem

min
(x1,x2)∈R2

x1 s.t. x2 ≤ 0, x1x2 = 0

at x̄ = (0, 0). Again, x̄ is not a local minimum, but the second-order conditions of Corollary 5.1
now hold. To verify these conditions we have to consider the directions z = (−1, 0) and z = (0,−1)
and in both cases the multipliers (α, λ, v∗) ∈ ΛFJ satsfying the conditions (5.3)-(5.6) are given by
(0, 0, 1). Moreover, for any direction z ∈ C(x̄) ∩ SX we have L′′x~t(x̄, α, λ, v∗; z) ≥ 0 for multipliers
of the form (α, λ, v∗) = (0, 0, t), t > 0. The following Theorem states that in a situation as in
Example 5.2 the second-order necessary conditions are sharp. We state this result in terms of the
general problem (P):

Theorem 5.2. Let the point x̄ be feasible for the problem (P) and suppose that Assumption
1 holds, that dim Y < ∞ and

lim
t→0+

d(
h(x̄ + tz)− h(x̄)− th′(x̄)z

t2/2
, h′′(x̄; z)) = 0(5.8)

holds uniformly for all z ∈ C(x̄) ∩ BX . Further suppose that there is a pointed closed convex cone
Λ̄ ⊂ ΛFJ ∪{0} such that for every z ∈ C(x̄) and every y ∈ h′′(x̄; z) there is some ȳ∗ ∈ Λ̄∩SY ∗ with
〈ȳ∗, y〉 ≥ 0. Then there exists a mapping δh = (δf, δg) with δh(x) = ψ(‖x− x̄‖)y, where y ∈ Y and
ψ : R+ → R+ is a twice continuously differentiable function satisfying ψ(0) = ψ′(0) = ψ′′(0) = 0,
such that x̄ is a strict local minimizer for (P) with f and g replaced by f + δf and g + δg,
respectively.

Proof. Let S := Λ̄◦ denote the polar cone of the pointed convex closed cone Λ̄. Since
dim Y < ∞, we have intS 6= ∅. Further we have cl (h′(x̄)X + TC(h(x̄))) = Λ◦FJ ⊂ S. Let
the subspace Q be given by Q := aff (h′(x̄)X − TC(h(x̄)). If dim Q < dim Y then we can find
p := dimY −dim Q linearly independent elements yi ∈ S \Q, i = 1, . . . , p, forming a basis for some
topological complement Qc to Q, such that int (h′(x̄)X− C̄) 6= ∅, where C̄ := h(x̄)+TC(h(x̄))+ Ŝ
and the cone Ŝ is given by Ŝ := {∑p

i=1 αiyi : αi ≥ 0, i = 1, . . . , p}. Note that C̄ is closed since
TC(h(x̄)) ⊂ Q and Ŝ ⊂ Qc are closed and Y = Q ⊕ Qc. On the other hand, if dimQ = dimY
take C̄ := h(x̄) + TC(h(x̄) + Ŝ with Ŝ = {0}. In any case we have int (h′(x̄)X − C̄) 6= ∅ and
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C ⊂ h(x̄) + TC(h(x̄)) ⊂ C̄ ⊂ h(x̄) + S. By taking into account the remark following Theorem 2.2
we see that in order to prove the Theorem it is sufficient to show

lim inf
x→x̄

τ→0+

d̂C̄(h(x̄), h′(x̄), τ‖x− x̄‖)
‖x− x̄‖2 ≥ 0.

Assume on the contrary that there are sequences (zn) ⊂ SX , ~t = (tn) ∈ T and (τn) ∈ T and a
real β > 0 such that t−2

n d̂C̄(h(x̄ + tnzn), h′(x̄), τntn) ≤ −β ∀n. Then, by Theorem 2.4 we have
0 ∈ h(x̄ + tnzn) + τntnh′(x̄)BX − C̄ and using Assumption 1 we see t−1

n (h(x̄ + tnzn) − h(x̄)) =
h′(x̄)zn + O(tn) ∈ t−1

n (C̄ − h(x̄)) = TC(h(x̄)) + Ŝ. Since dim Y < ∞, h′(x̄)zn ⊂ Y is a bounded
sequence and Im h′(x̄) is closed, we have, by passing to a subsequence if necessary, h′(x̄)zn →
h′(x̄)z̄ for some z̄ ∈ X. Then, h′(x̄)z̄ ∈ TC(h(x̄)) + Ŝ and since h′(x̄)z̄ ∈ Q, TC(h(x̄) ⊂ Q and
Ŝ ∩ Q = {0}, h′(x̄) ∈ TC(h(x̄)) follows, i.e. z̄ ∈ C(x̄). Further, since Im h′(x̄) is closed we can
find another sequence, say (z′n), such that h′(x̄)z′n = h′(x̄)z̄ and ‖z′n − zn‖ ≤ γ‖h′(x̄)z̄ − h′(x̄)zn‖
for some γ > 0. By taking z̃n := z′n/‖z′n‖ we have found a sequence (z̃n) ⊂ C(x̄) ∩ SX with
z̃n − zn → 0. By our assumptions, there exists a sequence (wn) with wn ∈ h′′(x̄; z̃n) such that
‖h(x̄ + tnz̃n)− (h(x̄) + tnh′(x̄)z̃n + t2n

2 wn)‖ = o(t2n) and, together with Assumption 1,

‖h(x̄ + tnzn)− (h(x̄) + tnh′(x̄)zn +
t2n
2

wn)‖ ≤ ηt2n‖zn − z̃n‖+ o(t2n) = o(t2n)

follows. Now, for each n let y∗n ∈ Λ̄ ∩ SY ∗ be chosen such that 〈y∗n, wn〉 ≥ 0. Since y∗n ∈ ΛFJ we
have h′(x̄)∗y∗n = 0 and because of h(x̄) ∈ C̄ we obtain σC̄(y∗n) ≥ 〈y∗n, h(x̄)〉. Hence we conclude
that

t−2
n d̂C̄(h(x̄ + tnzn), h′(x̄), τntn) ≤ t−2

n (〈y∗n, h(x̄ + tnzn)〉 − σC̄(y∗n)− τntn‖h′(x̄)∗y∗n‖)
≤ t−2

n 〈y∗n, h(x̄ + tnzn)− h(x̄)〉
= t−2

n 〈y∗n, h(x̄ + tnzn)− h(x̄)− tnh′(x̄)zn〉
=

1
2
〈y∗n, wn〉+ o(1) ≥ o(1),

a contradiction. Note that, as a consequence of Assumption 1 and dimY < ∞, convergence
in condition (5.8) is always uniform with respect to z in compact sets. Hence, besides the case
when h is twice Fréchet differentiable at x̄, condition (5.8) holds uniformly for all z ∈ C(x̄) when
dim X < ∞.

In case when f is scalar and K is a polyhedral cone, using the notion of 2-normal mappings,
Arutyunov [1],[2] presented conditions which are sufficient for the existence of a cone Λ̄ satisfying
the assumptions of Theorem 5.2. Further, Arutyunov showed 2-normal mappings to be generic
under certain circumstances. However note that the constraint mapping of Example 5.2 is not
2-normal.

Arutyunov [1, Theorem 4.3] stated also a result which is very similar to Theorem 5.2 and from
which he concluded that the ”gap” between his necessary and sufficient second-order conditions
is as minimal as possible. However, this is not quite correct. To see this, consider the case when
X is finite dimensional and f is scalar. In our notation, with a slight modification, [1, Theorem
4.3] essentially says that there exists some ṽ ∈ V such that for any ε > 0 the point x̄ is a strict
local minimum for the perturbed problem

min fε(x) := f(x) + ε‖x− x̄‖2 s.t. gε(x) := g(x) + ε‖x− x̄‖2ṽ ∈ K.

However, from the proof of [1, Theorem 4.3] together with [13, Theorem 5.6] it follows that for any
ε > 0 the point x̄ is even an essential local minimizer of second order for the perturbed problem
and so the necessary conditions of Theorem 3.1 (and hence all the other necessary conditions of
this paper) would not follow from Arutyunov’s result.



SECOND-ORDER NECESSARY CONDITIONS 19

REFERENCES

[1] A. V. Arutyunov, Second-order conditions in extremal problems. The abnormal points, Trans. Amer. Math.
Soc., 350 (1998), pp. 4341–4365.

[2] A. V. Arutyunov, Optimality conditions: Abnormal and degenerate problems, Mathematics and Its Appli-
cation 526, Kluwer Academic Publishers, Dordrect, Boston, London, 2000.

[3] E. R.Avakov, Extremum conditions for smooth problems with equality-type constraints, USSR Comput. Math.
and Math. Phys., 25 (1985), pp. 24–32.

[4] E. R.Avakov, Necessary extremum conditions for smooth abnormal problems with equality and inequality-type
constraints, Mathem. Notes, 45 (1989), pp. 431–437.

[5] K. N. Belash, A. A. Tret’akov, Methods for solving degenerate problems, USSR Comput. Math. and Math.
Phys., 28 (1988), pp. 90–94.

[6] A. Ben-Tal, Second order and related extremality conditions in nonlinear programming, J. Optim. Theory
Appl., 31 (1980), pp. 143–165.

[7] A. Ben-Tal, J. Zowe, A unified theory of first and second order conditions for extremum problems in
topological vector spaces, Math. Programming Stud., 19 (1982), pp. 39–76.

[8] J. F. Bonnans, R. Cominetti, A. Shapiro, Second order optimality conditions based on parabolic second
order tangent sets, SIAM J. Optim., 9 (1999), pp. 466–492.

[9] J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, Springer, New York, 2000.
[10] O. A. Brezhneva, A. A. Tret’yakov, Optimality conditions for degenerate extremum problems with equality

constraints, SIAM J. Control Optim., 42 (2003), pp. 729–745.
[11] A. Cambini, L. Martein, R. Cambini, A new approach to second-order optimality conditions in vector

optimization, in Advances in Multiple Objective and Goal Programming, Caballero et al, eds., Lecture
Notes in Economic and Mathematical Systems 455, Springer, Berlin, pp. 219–227.

[12] R. Cominetti, Metric regularity, tangent sets, and second-order optimality conditions, Appl. Math. Optim.,
21 (1990), pp. 265–287.

[13] H. Gfrerer, Second-order optimality conditions for general nonlinear optimization problems, Manuscript
Univ. Linz, (2004), submitted

[14] A. D. Ioffe, Necessary and sufficient conditions for a local minimum 3: Second order conditions and aug-
mented duality, SIAM J. Control Optim., 17 (1979), pp. 266–288.

[15] A. D. Ioffe, On some recent devlopments in the theory of second order optimality conditions, in Optimization
– Fifth French-German Conference Conference Castel Novel 1988, S. Dolecki, ed., Lecture Notes in Math.
1405, Springer Verlag, Berlin, 1989, pp. 55–68.

[16] A. F. Izmailov, M. V. Solodov, Optimality conditions for irregular inequality-constrained problems, SIAM
J. Control Optim., 40 (2001), pp. 1280–1295.

[17] A. F. Izmailov, M. V. Solodov, The theory of 2-regularity for mappings with Lipschitzian derivatives and
its applications to optimality conditions, Math. Oper. Res., 27 (2002), pp. 614–635.
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