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Parametrizing compactly supported
orthonormal wavelets by discrete moments

Abstract We discuss parametrizations of filter coefficients of scaling functions
and compactly supported orthonormal wavelets with several vanishing moments.
We introduce the first discrete moments of the filter coefficients as parameters.
The discrete moments can be expressed in terms of the continuous moments of
the related scaling function. To solve the resulting polynomial equations we use
symbolic computation and in particular Gröbner bases. The cases of four to ten
filter coefficients are discussed and explicit parametrizations are given.
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1 Introduction

Over the last two decades wavelets have become a fundamental tool in many areas
of applied mathematics and engineering ranging from signal and image processing
to numerical analysis, see for example Daubechies [12], Mallat [24], and Strang
and Nguyen [30]. A function ψ ∈ L2(R) is an orthonormal wavelet if the family

ψ jk(x) = 2 j/2ψ(2 jx− k), for j,k ∈ Z,

is an orthonormal basis of the Hilbert space L2(R). The first known example is the
Haar wavelet [14]

ψ(x) =





1, for 0≤ x < 1
2 ,

−1, for 1
2 ≤ x < 1,

0, otherwise.
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Daubechies [11] introduced a general method to construct compactly sup-
ported wavelets. It is based on scaling functions which satisfy a dilation equation

φ(x) =
N

∑
k=0

hkφ(2x− k) (1)

given by a linear combination of real filter coefficients hk and dilated and translated
versions of the scaling function. We outline her construction in Section 2. The
corresponding scaling function for the Haar wavelet is the box function

φ(x) =

{
1, for 0≤ x < 1,

0, otherwise.

with the filter coefficients h0 = h1 = 1. In general, there is no closed analytic
form for the scaling function and for computations with wavelets only the filter
coefficients are used.

Conditions on the scaling function imply using the dilation equation (1) con-
straints on the filter coefficients. Orthonormality gives quadratic equations and
vanishing moments of the associated wavelet and normalization linear constraints.
For the existence of a wavelet at least one vanishing moment is necessary. Daub-
echies wavelets [11] have the maximal number of vanishing moments for a fixed
number of filter coefficients and so there are only finitely many solutions. See
Section 2 for details.

Parametrizing all possible filter coefficients that correspond to compactly sup-
ported orthonormal wavelets has been studied by several authors [18,23,25,27,
29,32–34]. For a discussion and illustrations of scaling functions with six filter
coefficients depending on two parameters see also [3] and [16]. Applications of
parametrized wavelets to compression are for example discussed in [15] and [26].
In all parametrizations the filter coefficients are expressed in terms of trigonomet-
ric functions and there is no natural interpretation of the angular parameters for
the resulting scaling function. Furthermore, one has to solve transcendental con-
straints for the parameters to find wavelets with more than one vanishing moment.

In the proposed parametrization we introduce the first discrete moments of the
filter coefficients as parameters. The discrete moments can be expressed in terms
of the continuous moments of the scaling function, see Section 3. Moreover, we
do not want to parametrize all possible filter coefficients but only such with a high
number of vanishing moments. More precisely, we omit one vanishing moment
condition from the construction of Daubechies wavelets. We also use the fact that
the even discrete moments are determined by the odd up to the number of vanish-
ing moments, see Section 3. We discussed a first parametrization using the same
approach in [26]. In this paper we present new simplified parametrizations, discuss
all computational aspects and different cases in detail, and give a parametrization
for ten filter coefficients and at least four vanishing moments.

We solve the resulting parametrized polynomial equations for the filter coef-
ficients using symbolic computation and for the more involved equations in par-
ticular Gröbner bases. Gröbner bases were introduced by Buchberger in [4], see
also [5]. For further details on Gröbner bases we refer to [1,6,10]. Applications of
Gröbner bases to the design of wavelets and filter coefficients are for example dis-
cussed in [8,21,22,28]. See in particular Chyzak et al. [8] where Gröbner bases
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are used to find closed form representations of filter coefficients of Daubechies
wavelets. Their approach is related to the one presented in this paper but here we
are interested in finding representations of parametrized families of filter coeffi-
cients.

In Sections 4 to 7 we describe in detail the cases of four to ten filter coef-
ficients. We give explicit parametrizations and discuss several special parameter
values, for example, for the Daubechies wavelets. The corresponding Maple work-
sheet with all computations, several MATLAB functions and a GUI to compute
with and illustrate parametrized wavelets are available on request from the author.

2 Equations for the filter coefficients

We outline the construction of orthonormal wavelets based on scaling functions
and recall the polynomial equations for the filter coefficients, see for example
Daubechies [12] or Strang and Nguyen [30].

Orthonormality of the integer translates {φ(x− l)}l∈Z in L2(R), that is,
∫

φ(x)φ(x− l)dx = δ0,l

implies using the dilation equation (1) the quadratic equations

∑
k∈Z

hkhk−2l = 2δ0,l , for l ∈ Z, (2)

where we set hk = 0 for k < 0 and k > N. We can assume that h0hN 6= 0. Then
with Equation (2) we see that N must be odd and the number of filter coefficients
even. We have one nonhomogeneous equation

N

∑
k=0

h2
k = 2 (3)

and the homogeneous equations

N

∑
k=0

hkhk−2l = 0, for l = 1, . . . ,(N−1)/2. (4)

If the filter coefficients satisfy the necessary conditions for orthogonality (2)
and the normalization

N

∑
k=0

hk = 2 (5)

then there exists a unique solution of the dilation equation (1) in L2(R) with sup-
port [0,N−1] and for which

∫
φ = 1, see Lawton [19]. For almost all such scaling

functions the integer translates {φ(x− l)}l∈Z are orthogonal and then

ψ(x) =
N

∑
k=0

(−1)khN−kφ(2x− k) (6)
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is an orthonormal wavelet. Necessary and sufficient conditions for orthonormality
were given by Cohen [9] and Lawton [20], see also Daubechies [12, ch. 6.3.]. The
only example with four filter coefficients that satisfies the Equations (2) and (5)
and where the integer translates of the corresponding scaling are not orthogonal is
h0 = h3 = 1 and h1 = h2 = 0 with the scaling function

φ(x) =

{
1/3, for 0≤ x < 3,

0, otherwise.
(7)

Vanishing moments of the associated wavelet are related to several properties
of the scaling function and wavelet. For example, to the smoothness, the polyno-
mial reproduction and the approximation order of the scaling function, and the
decay of the wavelet coefficients for smooth functions, see Strang and Nguyen
[30] and the survey [31] by Unser and Blu for details. The condition that the first
p moments of the wavelet ψ vanish, that is,

∫
xlψ(x)dx = 0, for l = 0, . . . , p−1

are using Equation (6) equivalent to the sum rules

N

∑
k=0

(−1)kklhk = 0, for l = 0, . . . , p−1. (8)

We say that ψ has p vanishing moments. Since the vector space of all polynomials
with degree less then p is invariant under translation and dilation we can equiv-
alently require vanishing moments of ψ(x + n− 1) with N = 2n− 1. This cor-
responds to Daubechies choice [11,12] where the wavelet has support [1− n,n].
For the computations we use the resulting linear equations since they have smaller
coefficients

2n−1

∑
k=0

(−1)n−khk(n− k)l = 0, for l = 0, . . . , p−1. (9)

Notice that the normalization of the filter coefficients (5) and the first sum rule

N

∑
k=0

(−1)khk = 0 (10)

are equivalent to
N

∑
k=0

k even

hk =
N

∑
k=0
k odd

hk = 1. (11)

The following proposition is a consequence of the first Newton identities,
which give a relation between power sums and elementary symmetric functions,
see Bourbaki [2, A.IV. 70] and Knuth [17, p. 497].
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Proposition 1 Let x0, . . . ,xn be variables of a polynomial ring over a commutative
ring. Then

( n

∑
k=0

x2
k

)
=

( n

∑
k=0

xk

)2

−2

(
∑

0≤i< j≤n
j−i even

xix j

)
−2

(
n

∑
k=0

k even

xk

)(
n

∑
k=0
k odd

xk

)
. (12)

Proof The Newton identities tell us in particular that
( n

∑
k=0

x2
k

)
=

( n

∑
k=0

xk

)2

−2
(

∑
0≤i< j≤n

xix j

)
.

The last sum in this equation is

(
∑

0≤i< j≤n
xix j

)
=

(
∑

0≤i< j≤n
j−i even

xix j

)
+

(
∑

0≤i< j≤n
j−i odd

xix j

)

and the proposition follows by observing that
(

∑
0≤i< j≤n

j−i odd

xix j

)
=

(
n

∑
k=0

k even

xk

)(
n

∑
k=0
k odd

xk

)
.

ut
If the filter coefficients satisfy the homogeneous equations (4) from the or-

thonormality conditions then

∑
0≤i< j≤n
j−i even

hih j = 0.

Therefore we see with the identity (12) that the normalization and the first sum
rule, see Equations (5), (10) and (11) together with (4) imply the nonhomogeneous
equation (3). So we can replace the quadratic equation (3) by the linear equation
(10) which simplifies the computations.

3 Discrete and continuous moments

In this section we discuss relations between the discrete moments

mn =
N

∑
k=0

hkkn

of the filter coefficients on the continuous moments of the scaling function

Mn =
∫

xnφ(x)dx.



6 Georg Regensburger

We first recall a well-known recursive relation between discrete and continuous
moments, see for example Strang and Nguyen [30, p. 396].

Let φ be a scaling function satisfying M0 =
∫

φ = 1. Then m0 = 2 and

Mn =
1

2n+1−2

n

∑
i=1

(
n
i

)
miMn−i,

mn =
(
2n+1−2

)
Mn−

n−1

∑
i=1

(
n
i

)
miMn−i, for n > 0.

Using the recursion we obtain for the first moments

M1 = 1/2m1

M2 = 1/6m2
1 +1/6m2

M3 = 1/28m3
1 +1/7m1m2 +1/14m3

and
m1 = 2M1

m2 =−4M2
1 +6M2

m3 = 12M3
1 −24M1M2 +14M3.

Explicit formulas expressing the discrete moments in terms of the continuous and
vice versa are given in [26].

For the parametrization of the filter coefficients we use the fact that the even
moments are determined by the odd moments up to the number of vanishing mo-
ments, see [26]. In more detail, if the first two moments of the associated wavelet
vanish then

m2 = m2
1/2 (13)

and if the first four moments vanish we additionally have

m4 =−1/2m4
1 +2m2

1m2 +2m1m3−7/2m2
2 =−3/8m4

1 +2m1m3. (14)

4 Four filter coefficients

In the case of four filter coefficients we have the following system equations (nor-
malization, first sum rule, parameter m = m1, and orthogonality):

h0 +h1 +h2 +h3 = 2
h0−h1 +h2−h3 = 0

h1 +2h2 +3h3 = m
h0h2 +h1h3 = 0.

We solve the three linear equations for h0, substitute the solution into the quadratic
equation, and obtain

−2h0
2 +(5−m)h0−1/4m2 +2m−15/4. (15)
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We first consider the solution

h0 = 5/4−1/4m−1/4
√
−m2 +6m−5.

Since
−m2 +6m−5 =−(m−1)(m−5) (16)

we can choose m ∈ [1,5] to get real filter coefficients. We set m = a+3 to obtain
parameter values symmetrically around zero. This correspond to a Tschirnhaus
transformation for the polynomial (16) and simplifies the expression for the filter
coefficients. Substituting the solution for h0 into the solution for the linear equa-
tions we get:

h0 = 1/2−1/4a−1/4w
h1 = 1/2−1/4a+1/4w
h2 = 1/2+1/4a+1/4w
h3 = 1/2+1/4a−1/4w

(17)

with w =
√

4−a2 and a = m−3 ∈ [−2,2].
Notice that for a =−a we obtain the flipped filter coefficients.

4.1 Special parameter values

For a = 0 we get the filter coefficients (0,1,1,0) which correspond to a translated
Haar scaling function and wavelet. The parameter values a =−2,2 give also Haar
scaling functions with the filter coefficients (1,1,0,0) and (0,0,1,1).

The Daubechies wavelet has two vanishing moments so we have one more
sum rule

2h0−h1 +h3 = 0.

Substituting the parametrized filter coefficients into this equations and solving for
a we get the two solutions a = −√3,

√
3 with the first discrete moments m =

3−√3,3+
√

3. The first solution gives the famous Daubechies filters [11]

1/4(1+
√

3,3+
√

3,3−
√

3,1−
√

3) (18)

and the second the flipped version.
For a =−8/5 we get the rational filters (3/5,6/5,2/5,−1/5). These rational

filter coefficients give the smoothest scaling function with respect to the Hölder
continuity, see Daubechies [12, p. 242].

4.2 Second root

If we choose the second root

h0 = 5/4−1/4m+1/4
√
−m2 +6m−5
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for the quadratic equation (15) and apply again the Tschirnhaus transformation
m = a+3 we obtain the parametrized filter coefficients:

h0 = 1/2−1/4a+1/4w
h1 = 1/2−1/4a−1/4w
h2 = 1/2+1/4a−1/4w
h3 = 1/2+1/4a+1/4w

with w =
√

4−a2 and a = m−3 ∈ [−2,2].
Comparing this solution with the parametrized filter coefficients (17) we see

that w is replaced by −w and so the two first and the two last filter coefficients are
swapped. Notice that again for a =−a we obtain the flipped filters.

For a = 0 we now get the filter coefficients (1,0,0,1) which give the scaling
function (7) where the integer translates of the scaling function are not orthogonal.
The parameter values a = −2,2 also give Haar scaling functions with the filter
coefficients (1,1,0,0) and (0,0,1,1). This parametrization does not contain filter
coefficients with a second vanishing moment. The corresponding scaling functions
are, compared to the parametrization (17), discontinuous.

5 Six filter coefficients

For six filter coefficients we have two vanishing moments and we can use the
relation m2 = m2

1/2, see Equation (13). This gives an additional linear constraint
and we have the following linear equations with m = m1:

h0 +h1 +h2 +h3 +h5 +h4 = 2
−h0 +h1−h2 +h3−h4 +h5 = 0
−3h0 +2h1−h2 +h4−2h5 = 0
h1 +2h2 +3h3 +4h4 +5h5 = m

h1 +4h2 +9h3 +16h4 +25h5 = m2/2

and the quadratic equations

h0h2 +h1h3 +h2h4 +h3h5 = 0
h0h4 +h1h5 = 0.

We solve the linear equations for h0, substitute the solution into the quadratic
equations and obtain:

−8h0
2 +(1/2m2−7m+21)h0− 1

64
m4 +

3
8

m3− 13
4

m2 +12m− 253
16

= 0

2h0
2 +(−1/8m2 +

7
4

m− 21
4

)h0 +
1

256
m4− 3

32
m3 +

13
16

m2−3m+
253
64

= 0.

(19)
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Since the first equation is minus four times the second equation we have, as in
the case of four filter coefficients, only one quadratic equation to solve. We first
consider the solution

h0 =
21
16
− 7

16
m+

1
32

m2− 1
32

√
−m4 +20m3−136m2 +360m−260.

The Tschirnhaus transformation m = a+5 for the polynomial

−m4 +20m3−136m2 +360m−260

yields
−a4 +14a2 +15 =−(

a2−15
)(

a2 +1
)
.

So we get real filter coefficients for a ∈ [−√15,
√

15] or the first discrete moment
m ∈ [5−√15,5 +

√
15]. Substituting the solution for h0 into the solution for the

linear equations we get the following parametrized filter coefficients with at least
two vanishing moments:

h0 =−3/32−1/8a+1/32a2−1/32w

h1 = 5/32−1/8a+1/32a2 +1/32w

h2 = 15/16−1/16a2 +1/16w

h3 = 15/16−1/16a2−1/16w

h4 = 5/32+1/8a+1/32a2−1/32w

h5 =−3/32+1/8a+1/32a2 +1/32w

(20)

with w =
√
−a4 +14a2 +15 and a = m−5 ∈ [−√15,

√
15].

Notice that for a =−a the two coefficients h2 and h3 do not change.

5.1 Special parameter values

The Daubechies wavelet has one more vanishing moment, that is, it satisfies the
sum rule

−9h0 +4h1−h2−h4 +4h5.

Substituting the parametrized filter coefficients into this equations and solving for
a we get one real solution a =−

√
5+2

√
10, which gives the filter coefficients

1/16(1+
√

10+w,5+
√

10+3w,10−2
√

10+2w,

10−2
√

10−2w,5+
√

10−3w,1+
√

10−w) (21)

with w =
√

5+2
√

10.
The Daubechies filters with four nonzero filter coefficients (18) satisfy two

sum rules and are therefore contained in this parametrization. Their first discrete
moment is m = 3−√3. So here the corresponding parameter a = −2−√3. We
get a translated version for a =−√3.
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For a =−√15 we obtain

1/8(3+
√

15,5+
√

15,0,0,5−
√

15,3−
√

15).

The parameter a =−1 gives the first coiflet

1/16(1−
√

7,5+
√

7,14+2
√

7,14−2
√

7,1−
√

7,−3+
√

7),

see Daubechies [13] and [12, ch. 8.2.]. For a = 0 we get

1/32(−3−
√

15,5+
√

15,30+2
√

15,30−2
√

15,5−
√

15,−3+
√

15).

The corresponding scaling functions and wavelets for a > 0 become increasingly
discontinuous.

5.2 Second root

If we choose the second solution for the quadratic equation (19) and apply the
Tschirnhaus transformation m = a+5 we obtain:

h0 =−3/32−1/8a+1/32a2 +1/32w

h1 = 5/32−1/8a+1/32a2−1/32w

h2 = 15/16−1/16a2−1/16w

h3 = 15/16−1/16a2 +1/16w

h4 = 5/32+1/8a+1/32a2 +1/32w

h5 =−3/32+1/8a+1/32a2−1/32w

(22)

with w =
√
−a4 +14a2 +15 and a = m−5 ∈ [−√15,

√
15].

Notice that compared to the parametrization (22) here w is replaced by −w
and substituting a =−a gives the flipped filter coefficients. The parametrized filter
coefficients (22) give smoother scaling functions and wavelets for a > 0.

6 Eight filter coefficients

For eight filter coefficients we have three vanishing moments and we can use as
in the previous section the relation m2 = 1/2m2

1, see Equation (13). We have the
following six linear equations with m = m1:




1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
3 −2 1 0 −1 2 −3 4
−9 4 −1 0 −1 4 −9 16
7 6 5 4 3 2 1 0

49 36 25 16 9 4 1 0







h7
h6
h5
h4
h3
h2
h1
h0




=




2
0
0
0
m

1/2m2




(23)
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and the quadratic equations

h0h2 +h1h3 +h3h5 +h2h4 +h4h6 +h5h7 = 0
h0h4 +h1h5 +h3h7 +h2h6 = 0

h0h6 +h1h7 = 0.

We solve the linear equations for h0 and h1 and substitute the solutions into the
quadratic equations. Then we compute a Gröbner basis with respect to the lexi-
cographic order with h1 >lex h0 treating m as a parameter, that is, we compute a
Gröbner basis in Q(m)[h1,h0].

The Gröbner basis has two elements. The first element is a quadratic polyno-
mial in h0 and the second linear in h1 and h0. We consider the following solution
for the quadratic equation from the Gröbner basis

h0 =− 1
512

m5−42m4 +684m3−5416m2 +20840m−31088+w
m2−14m+50

with w =
√
−(m8−56m7+1336m6−17696m5+141792m4−699328m3+2049600m2−3186176m+1891904)(m−8)2.

We set m = a+7, which corresponds to a Tschirnhaus transformation for the first
factor of the polynomial under the square root in w, and obtain

h0 =− 1
512

a5−7a4−2a3 +30a2−55a−15+w
a2 +1

with

w =
√
−(a8−36a6 +182a4−1540a2 +945)(a−1)2. (24)

To get real filter coefficients we can choose a in

[−
√

β ,−√α] or [
√

α,
√

β ], (25)

where α denotes the smaller and β the bigger real root of

x4−36x3 +182x2−1540x+945,

or numerically

a ∈ [−5.636256559,−0.8113601077] or [0.8113601077,5.636256559].

We substitute the solution for h0 into the linear equation from the Gröbner basis,
solve for h1 and obtain with w as in (24)

h1 =− 1
512

a6−10a5 +39a4−28a3−25a2 +86a−63− (1+a)w
a3−a2 +a−1

.

The denominator
a3−a2 +a−1 = (a−1)(a2 +1)
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is zero for a = 1. We first assume a < 1. Then we can also simplify the root (24)
and obtain with the solution for the linear equations (23) the following parametrized
filter coefficients with at least three vanishing moments:

h0 =− 1
512

a5−7a4−2a3 +30a2−55a−15+(1−a)w
a2 +1

h1 =− 1
512

a5−9a4 +30a3 +2a2−23a+63+(1+a)w
a2 +1

h2 =
1

512
3a5−5a4−102a3 +186a2−261a+35+3(1−a)w

a2 +1

h3 =
1

512
3a5−11a4−70a3 +358a2−229a+525+3(1+a)w

a2 +1

h4 =− 1
512

3a5 +11a4−70a3−358a2−229a−525+3(1−a)w
a2 +1

h5 =− 1
512

3a5 +5a4−102a3−186a2−261a−35+3(1+a)w
a2 +1

h6 =
1

512
a5 +9a4 +30a3−2a2−23a−63+(1−a)w

a2 +1

h7 =
1

512
a5 +7a4−2a3−30a2−55a+15+(1+a)w

a2 +1

(26)

with
w =

√
−a8 +36a6−182a4 +1540a2−945,

a = m−7 < 1 and a in the intervals (25).
If we choose the second root for the quadratic equation from the Gröbner basis

and perform the same computations as before with the assumption a < 1, then we
obtain the filter coefficients (26) with w replaced by −w.

6.1 Different order on the variables

We now compute a Gröbner basis with respect to the lexicographic order with
h0 >lex h1. The Gröbner basis has again two elements. The first element is a
quadratic polynomial in h1 and the second linear in h0 and h1.

We consider the following solution for the quadratic equation from the Gröbner
basis

h1 =− 1
512

m5−44m4 +772m3−6704m2 +28712m−48384−w
m2−14m+50

with w =
√
−(m8−56m7+1336m6−17696m5+141792m4−699328m3+2049600m2−3186176m+1891904)(m−6)2.

We set again a = m+7 and obtain

h1 =− 1
512

a5−9a4 +30a3 +2a2−23a+63−w
a2 +1
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with

w =
√
−(a8−36a6 +182a4−1540a2 +945)(a+1)2. (27)

We get real filter coefficients for a in the same intervals (25) as in the previous
section. We substitute the solution for h1 into the linear equation from the second
Gröbner basis, solve for h0 and obtain with w as in (27)

h0 =− 1
512

a6−6a5−9a4 +28a3−25a2−70a−15+(a−1)w
a3 +a2 +a+1

.

The denominator

a3 +a2 +a+1 = (a+1)(a2 +1)

is zero for a = −1. We assume a > −1. Then we can also simplify the root (27)
and obtain with the solution for the linear equations (23) the filter coefficients from
Equation (26) with w replaced by−w. From the previous section we know that this
parametrization is also valid for a < 1 and hence for a in the intervals (25). Notice
that substituting a =−a in this parametrization gives the flipped filter coefficients
from Equation (26).

If we choose the second root for the quadratic equation from the Gröbner basis
and perform the same computations as before with the assumption a > −1, then
we obtain the filter coefficients (26). Therefore the parametrization (26) is also
valid for a in the intervals (25).

6.2 Special parameter values

The Daubechies wavelet satisfies one more sum rule

64h0−27h1 +8h2−h3 +h5−8h6 +27h7.

Substituting the parametrized filter coefficients (26) into this equations and solving
for a we get two real solution a =−

√
β ,−√α , where α denotes the smaller and

β the bigger real root of

x4−28x3 +126x2−1260x+1225

or numerically

a =−4.989213573,−1.029063869.

The first parameter gives the Daubechies wavelet with extremal phase [12, p. 195]
and the second the “least asymmetric” [12, p. 198].

The Daubechies wavelet with six nonzero filter coefficients has the first dis-
crete moment m = 5−

√
5+2

√
10, so the corresponding parameter value for the

parametrization (26) is a =−2−
√

5+2
√

10.
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7 Ten filter coefficients

For ten filter coefficients we require four vanishing moments. We can therefore
use the two relations m2 = 1/2m2

1 and m4 =−3/8m4
1 +2m1m3, see Equation (13)

and (14). This gives two additional linear constraints and we have the following
linear equations with the two parameters a = m1 and c = m3:




1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1
−4 3 −2 1 0 −1 2 −3 4 −5
16 −9 4 −1 0 −1 4 −9 16 −25
−64 27 −8 1 0 −1 8 −27 64 −125

9 8 7 6 5 4 3 2 1 0
81 64 49 36 25 16 9 4 1 0
729 512 343 216 125 64 27 8 1 0
6561 4096 2401 1296 625 256 81 16 1 0







h9
h8
h7
h6
h5
h4
h3
h2
h1
h0




=




2
0
0
0
a

1/2a2

c
− 3

8 a4 +2ac




(28)
and the quadratic equations

h0h2 +h1h3 +h2h4 +h3h5 +h4h6 +h5h7 +h6h8 +h7h9 = 0
h0h4 +h1h5 +h2h6 +h3h7 +h4h8 +h5h9 = 0

h0h6 +h1h7 +h2h8 +h3h9 = 0
h0h8 +h1h9 = 0.

We solve the linear equations for h0 and substitute the solutions into the quadratic
equations. We compute a Gröbner basis with respect to the lexicographic order
with h0 >lex c treating a as a parameter, that is, we compute a Gröbner basis in
Q(a)[h0,c].

The Gröbner basis consist of two elements. The first is the polynomial

f=81a12−2916a11+40716a10−864a9c−155520a9+31104a8c−2354328a8−496512a7c+2880a6c2

+31658688a7+3768768a6c−93312a5c2−102669504a6−4056192a5c+1540224a4c2−3072a3c3

−590398848a5−176214528a4c−15303168a3c2+55296a2c3+6210049216a4+1512364544a3c

+97677312a2c2−489472ac3+1024c4−22429995264a3−5357366784a2c−358511616ac2+1419264c3

+41210318592a2+8252955648ac+548785152c2−39607335936a−4229148672c+16394918400
(29)

in the two parameters a,c and has dega( f ) = 12 and degc( f ) = 4. All possible
parameters must lie on the real algebraic curve defined by the polynomial f . This
curve has genus eleven and two finite singular points with multiplicity two and
coordinates

a = 9, c = 729/4±3/8
√

210. (30)

We compute the discriminant f with respect to c. Approximating its zeros we see
that we have real solutions for c if the first discrete moment

a ∈ [1.641693501,16.35830649].

The number of real solutions for c is given in Table 1.
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Table 1 Number of real solutions for f from (29)

parameter a # real solutions for c

(1.6417,7.6167] two
(7.6167,9) four
9 two, singular point
(9,10.3832] four
(10.3832,16.3583) two

The second element in the Gröbner basis is linear in h0. We solve this polyno-
mial for h0 and obtain with the solution for the linear equations (28) the following
parametrized filter coefficients with at least four vanishing moments:

h0 = 1
36864

9a6−180a5+948a4−48a3c+9840a3+960a2c−116824a2−9568ac+32c2+384480a+31680c−482976
a−9

h1 =− 1
36864

9a6−144a5+624a4−48a3c+1536a3+768a2c+12824a2−5728ac+32c2−237312a+12672c+665280
a−9

h2 =− 1
9216

9a6−180a5+948a4−48a3c+8976a3+960a2c−99064a2−9472ac+32c2+257760a+30816c−151200
a−9

h3 = 1
9216

9a6−144a5+624a4−48a3c+2544a3+768a2c−9976a2−5824ac+32c2−53280a+13536c+120960
a−9

h4 = 1
6144

9a6−180a5+948a4−48a3c+8304a3+960a2c−88408a2−9376ac+32c2+216288a+29952c−151200
a−9

h5 =− 1
6144

9a6−144a5+624a4−48a3c+3360a3+768a2c−24904a2−5920ac+32c2+27072a+14400c+12096
a−9

h6 =− 1
9216

9a6−180a5+948a4−48a3c+7824a3+960a2c−82552a2−9280ac+32c2+202464a+29088c−151200
a−9

h7 = 1
9216

9a6−144a5+624a4−48a3c+3984a3+768a2c−34264a2−6016ac+32c2+65952a+15264c−34560
a−9

h8 = 1
36864

9a6−180a5+948a4−48a3c+7536a3+960a2c−79192a2−9184ac+32c2+195552a+28224c−151200
a−9

h9 =− 1
36864

9a6−144a5+624a4−48a3c+4416a3+768a2c−40360a2−6112ac+32c2+88704a+16128c−60480
a−9

with a 6= 9,c ∈ R such that f (a,c) = 0 with f from (29).
To compute the filter coefficients for a = 9 we solve the linear equations (28)

with the parameter values (30) for h0 and substitute the solution into the quadratic
equations. Then we solve the four univariate polynomials and obtain two solutions
for h0 which give two different filter coefficients. The second choice for c from
(30) gives the flipped filter coefficients.
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