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Abstract

In this paper, we address the problem of determining the z-values where the topol-
ogy type of the level curves of an algebraic surface may change. In the case when
the surface is bounded and non-singular, this question is solved by Morse The-
ory. However, here we consider the problem for the more general case of algebraic
surfaces without further restrictions, i.e. not necessarily bounded or smooth. Our
results allow to algorithmically compute these z-values by analyzing the real roots
of a univariate polynomial; namely, the double discriminant of the implicit equation
of the surface. Once this has been done, the different topology types of the level
curves of the surface can be computed by means of well-known algorithms.

1 Introduction

In order to determine the topological features of a given real surface S over
the real Euclidean space, it may be useful to analyze the topology of the real
part of its level curves, i.e. the slices obtained when intersecting S with real
planes parallel to the xy coordinate plane.
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For example, consider the algebraic surface S defined by F (x, y, z) = x2 +
2y2 +z5. It is obvious that for z > 0 the level curves of S are empty; for z = 0,
the level curve consists of only one real point, and for z < 0 the level curves
are real ellipses. Thus, in this case there is only one z-value where the topology
of the level curves changes, namely z = 0; above z = 0 one has nothing (in
the real Euclidean space), while below z = 0 one has real ellipses. This simple
analysis allows to make a good mental picture of the surface.

In this paper we address the problem of algorithmically determining the z-
values where the topology type of the level curves of a given real algebraic
surface S may change; two algebraic plane curves have the same topology
type if and only if there exists an homeomorphism of R2 into itself such that
one of the curves is mapped onto the other. Whenever S is bounded and non-
singular, this question is solved by Morse Theory (see e.g. (5), (13), (18), etc),
which shows that these z-values are among the critical values (see (5)) of the
polynomial F defining S. Furthermore, Morse Theory also explains how the
homotopy type changes when one of these z-values is crossed. Nevertheless,
if S is either non-bounded or singular, Morse Theory is not applicable. These
restrictions, however, do not affect to our study.

We approach the problem by providing a finite set of real numbers which
contains the z-values where the topology of the level curves may change. This
finite set consists of the real roots of a univariate polynomial; namely, the
double discriminant of the implicit equation of the surface. Once this set is
computed, the different topology types of the level curves can be easily derived
(see for example (2), (14), (15), (16)).

Morse Theory has already been successfully applied to several problems: for
example, for the shape determination of real curves and surfaces (see (10)),
for the computation of the topology type of non-singular algebraic surfaces
(see (9), (11)), or in constructive solid modelling by means of the so-called
digital Morse Theory, (see for example (1), (4), (6), (12)). The results in this
paper, beside the possible applications to these topics, can be applied to the
computation of the topology types of the members of a family of plane alge-
braic curves depending on a parameter; a clear example of this assertion is the
analysis of offset curves (see (3), (7), (8), (21) for further information on offset
curves) where one is interested in studying how the topology of an offset curve
varies when the distance changes (see section 5). In addition, our results may
have other applications , for instance, to the plotting of algebraic surfaces (for
example one can determine a cube of R3 where the surface should be plotted
in order to get a whole idea of its topological behavior), to computer graphics
and constructive solid modelling, for the case of surfaces with singularities, to
decide the compactness of an implicit algebraic surface, etc.
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The paper is structured as follows. In Section 2, we formally present the prob-
lem we address, and we introduce some notions. The Section 3 is entirely
devoted to the concept of delineability; notion that plays an important role in
the proof of the main theorem. In Section 4, we provide the main result of the
paper. Finally, in Section 5 we present an application of our results to offset
curves.

2 Statement of the Problem

This section is devoted to formally state the problem we deal with, and to
describe the solution that we provide. For this purpose, we start introducing
some notation that will be used throughout the paper.

We assume that F ∈ R[x, y, z] is an square-free polynomial defining a real
algebraic surface S. Also, we assume that F has no factor only depending on
the variable z, and that the leading coefficient of F w.r.t. y does not depend
on the variable x. In addition, we exclude the degenerate case where F only
depends on the variable z. Note that in this situation, S consists of finitely
many planes parallel to the XY plane, and hence it does not make sense to
speak about the level curves of S. Furthermore, we do not consider, either,
the case when F ∈ R[x, z] (i.e. degy(F ) = 0) because in that case the analysis
is reduced to the curve defined by F (x, z) = 0 in the XZ plane.

The topology type of two plane algebraic curves C1 and C2 is the same if and
only if there exists an homeomorphism of R2 into itself such that C1 is mapped
onto C2. In this paper, we consider the problem of determining the topology
type of the level curve of S at z = z0, for every z0 ∈ R, i.e. the topology
types of the algebraic plane curves F (x, y, z0) with z0 ∈ R. We observe that
the two conditions that we have imposed above to the polynomial F (x, y, z)
can be assumed w.l.o.g. Indeed, if F has any factor only depending on z then
one can write F (x, y, z) = H(z) · G(x, y, z). Thus, the surface S decomposes
as the union of a finite family of horizontal planes and a new surface S ′ where
the hypothesis is verified; note that in this case, the topological analysis is
reduced to S ′. On the other hand, if the leading coefficient of F w.r.t. y
depends on the variable x, a suitable linear change of coordinates of the type
{x = αX + Y, y = Y, z = Z} transforms F into a polynomial satisfying the
condition; note that with this transformation the topology type of the level
curves stays invariant.

In order to solve the problem, we find a finite set A ⊂ R such that for every
open interval I ⊂ R, with I ∩ A = ∅, the topology type of the correspond-
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ing level curve stays the same, i.e. for every z1, z2 ∈ I the topology type of
F (x, y, z1) and F (x, y, z2) stays invariant. We will say that such a set A is a
Critical Set of S. Therefore, once that some critical set has been found, one
can be sure that the z-values where the topology type of the level curves of S
changes are among the (finitely many) elements of A. We will refer to these
z-values as the Critical Level Values of S. Since any critical set contains the
critical level values, our problem is equivalent to computing one critical set of
the surface.

To approach the problem, we consider the following two polynomials, where
Dw(G) denotes the discriminant of a polynomial G w.r.t. the variable w, i.e.
Dw(G) = Resw(G, ∂G

∂w
), and where

√
G denotes the square-free part of a poly-

nomial G, i.e. the product of all the irreducible factors of G taken with mul-
tiplicity 1:

M(x, z) :=
√

Dy(F )

R(z) :=





0 if degx(M) = 0

Dx(M(x, z)) otherwise

Furthermore, we will assume that R is not identically zero. The case R = 0
(see the last subsection in Section 4) leads to a special situation that can be
treated in an easier way.

Under this assumption, we prove that the set

A = {ξ ∈ R |R(ξ) = 0} .

consisting of the real roots of R(z), is a critical set of S. Therefore, writing
A = {ξ1, . . . , ξr}, we can decompose the z-axis as

(−∞, ξ1) ∪ {ξ1} ∪ (ξ1, ξ2) ∪ · · · ∪ (ξr−1, ξr) ∪ {ξr} ∪ (ξr,∞).

Thus, taking a particular value in each open interval of the partition, and
applying the existing algorithms for computing the topology type of a plane
algebraic curve, one determines the topology type of all the level curves as-
sociated with the interval. The remaining finitely many level curves, that is
F (x, y, ξi), i = 1, . . . , r, are also analyzed with the same strategy; note that in
these cases, the topology may agree with either its left or its right intervals,
or it may create a new type.

The topology type of a plane algebraic curve can be described by means of a
planar graph associated with the curve (see (5)). The problem of computing
this graph has been addressed by many authors (see for example (2), (14),
(15), (16) and many others). The vertices of this graph correspond to the
intersection points of the curve with the vertical lines passing through its
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critical points; furthermore, each edge of the graph corresponds to a branch
of the curve joining two vertices.

Also, throughout the paper we will use the term graph for denoting the graph
associated with a curve in the sense described above, and we will use the
expression function graph to refer to the graph of a given function.

In addition to the notation introduced at the beginning of this section, namely
the surface S and its defining polynomial F (x, y, z), we fix throughout this
paper the following notation and terminology:

◦ M is the affine plane algebraic curve defined by M(x, z), whenever it is not
a constant polynomial.

◦ for a ∈ R, we denote by πa the plane of equation z − a = 0.
◦ since z − a is not a factor of F , it follows that the intersection of πa and S

defines a plane algebraic curve of equation F (x, y, a) = 0. We will refer to
this plane curve as the level curve of S at z = a, and we will denote it by
Sa.

◦ for a ∈ R, we will write Fa(x, y) = F (x, y, a).
◦ we will use the standard notions of critical, singular and regular point of

an affine plane algebraic curve C without multiple components (see e.g.
(5)), namely if f(x, y) is the defining polynomial of C, then: P ∈ C, is
a critical point of C, if f(P ) = ∂f

∂y
(P ) = 0; P is a singular point of C, if

f(P ) = ∂f
∂x

(P ) = ∂f
∂y

(P ) = 0; and P is a regular point of C, if it is non-
critical.

3 Delineability

The concept of analytic delineability is a fundamental tool of our reasoning. In
this section, we recall the definition of delineability as well as some theoretical
results.

The notion of delineability appears in the context of Cylindrical Algebraic
Decomposition (see, e.g. (5), (17)). More precisely, one has the following defi-
nition (see (17) pp. 245)

Definition 1 Let x̆ denote the (r−1)-tuple (x1, . . . , xr−1). An r-variate poly-
nomial f(x̆, xr) over the reals is said to be (analytic) delineable on a submanifold
T of Rr−1, if it holds that:

1. the portion of the real variety of f that lies in the cylinder T × R over T
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consists of the union of the function graphs of some k ≥ 0 analytic functions
ϑ1 < · · · < ϑk from T into R,

2. there exist positive integers m1, . . . , mk such that for every a ∈ T , the multi-
plicity of the root ϑi(a) of f(a, xr) (considered as a polynomial in xr alone)
is mi.

Furthermore, the ϑi in the condition 1 of the definition above are called real
root functions of f on T , the function graphs of the ϑi are called f -sections
over T , and the regions between successive f -sections are called f -sectors over
T .

It can be proved (see (17), theorems 2.2.3. and 2.2.4.) that each f -section and
f -sector of an analytic delineable polynomial are connected submanifolds.

Observe that, intuitively speaking, if a polynomial G(x, y) is delineable on a
subset T ⊂ R, this means that over that subset, the real part of the curve
defined by G consists of the union of finitely many non-intersecting curves,
which correspond to the analytic functions ϑi of Definition 1. Similarly, if
F (x, y, z) is delineable on a subset R ⊂ R2, this implies that the real part of
the surface defined by F over this subset is the union of finitely many non-
intersecting surfaces, corresponding to the ϑi. These ideas are illustrated in
Figure 1.

Fig. 1. Delineability

In order to state sufficient conditions for an r-variate polynomial to be delin-
eable on a subset of Rr−1, we need to introduce some additional concepts.

Definition 2 A polynomial g(x1, . . . , xr) has order m at p ∈ Rr, if m is the
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least non-negative integer such that some partial derivative of g of total order
m does not vanish at p. If g does not vanish at p, we say that the order of
g at p is 0. Furthermore, if g and all its derivatives vanish at p, we say that
the order of g at p is ∞. Also, we say that g is order-invariant over a subset
S of Rn if the order of g is the same for all p ∈ S. In addition, an r-variate
polynomial f(x̆, xr) over R, with x̆ = (x1, . . . , xr−1), is said degree-invariant
on a subset T of Rr−1 if the degree of f(p, xr) (as a polynomial in xr) is the
same for every point p ∈ T .

In this situation the following theorem holds (see (17) pp.246).

Theorem 3 Let r ≥ 2, and let f(x̆, xr) be a polynomial in R[x̆, xr] of positive
degree in xr. Let D(x̆) be the discriminant of f(x̆, xr) and suppose that D(x̆)
is a nonzero polynomial. Let T be a connected submanifold of Rr−1 on which
f is degree-invariant and does not vanish identically, and over which D is
order-invariant. Then, f is analytic delineable on T and is order-invariant
over each f -section over T .

4 The Main Result

In this section, we will prove that, assuming that the polynomial R(z) is not
identically 0, the set of its real roots is a critical set of the surface, so it
contains the z-values where the topology type of the level curves of S may
change. More precisely, the main result of the section can be stated as follows.

Theorem 4 If R is not identically zero, then the set

A := {ξ ∈ R |R(ξ) = 0}

is a critical set of S. That is, if z1, z2 ∈ R, z1 < z2, verify that no element in
[z1, z2] is a root of R(z), then Sz1 and Sz2 have the same topology type.

The case when R = 0 is addressed at the end of the section (see the last sub-
section here) 3 . In order to prove Theorem 4, we will distinguish the following
three phases:

Phase 1 (Delineability of F ): using the results of Section 3, we prove the de-
lineability of F , from where several analytic functions are defined.

3 I have eliminated the section on special cases and I have left the case R = 0 as a
subsection here
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Phase 2 (Proper behavior of the real roots of F ): we prove that the analytic
functions, obtained in the Phase 1, behave properly.

Phase 3 (Graph Equality): finally, using the results of Phase 2, we prove that
the graphs of the level curves can be taken equal, so the topology type of
the level curves is the same.

Each of these phases will be addressed along the following subsections. For
this purpose, in the rest of the section we assume that z1 and z2 are two
distinct real numbers satisfying the hypotheses of Theorem 4; i.e. z1 < z2,
and no element in [z1, z2] is a root of R(z). Furthermore, we will denote by
J = (q1, q2), where q1, q2 ∈ R, an open real interval containing [z1, z2] and
verifying that J

⋂A = ∅.

Phase 1 of the Proof: Delineability of F

Here, we proceed to analyze the delineability of F on certain sets. For this
purpose, first the delineability of M on the open interval J must be stated. In
order to do this, the following previous lemma is required. 4

Lemma 5 If a ∈ R verifies anyone of the following conditions:

(i) a is a root of the leading coefficient of F w.r.t. y (we recall that by hypothesis
this leading coefficient is in R[z]),

(ii) a is a root of the leading coefficient of M(x, z) w.r.t. x,
(iii) the polynomial F (x, y, a) has multiple factors,

then R(a) = 0; i.e. a ∈ A.

PROOF. It follows from standard properties of resultants.

This lemma allows to prove that M verifies the hypotheses of Theorem 3 over
the set J , so the following result follows.

Theorem 6 The polynomial M(x, z), seen as a univariate polynomial in x, is
analytic delineable on J . Moreover, M is order-invariant over each M-section

4 In the previous version we had two previous lemmas, but in fact the second one
just made more clear the geometric meaning of M ; thus, I have eliminated it
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over J . 5

From Theorem 6, one has that there exist analytic real functions

X1 < · · · < Xr

which are the real root functions of M over J . Let Xk, with k = 1, . . . , r,
denote the function graph of Xk; i.e. the Xk are the M -sections over J . In
addition, we introduce the following regions in the xz plane (see Figure 2):

R1 = {(x, z) ∈ R2 | z ∈ J, x < X1(z)},
Rk = {(x, z) ∈ R2 | z ∈ J,Xk−1(z) < x < Xk(z)} for k ∈ {2, . . . , r},

Rr+1 = {(x, z) ∈ R2 | z ∈ J, x > Xr(z)}.

Note that the sets Rk, for k ∈ {2, . . . , r}, are the M -sectors over J .

Fig. 2. Regions Rk

In this situation, one has the following theorem on the delineability of F

Theorem 7

(i) The polynomial F (x, y, z), seen as a univariate polynomial in y, is analytic
delineable on Rk for every k = 1, . . . , r + 1.

(ii) The polynomial F (x, y, z), seen as a univariate polynomial in y, is analytic
delineable on Xk for every k = 1, . . . , r.

5 This last statement, i.e. the order-invariance of M on J , did not appear in the
previous version, but it has to be used in the proof of Theorem 8
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PROOF.

In order to prove the theorem, we check the conditions in Theorem 3. For this
purpose, first we observe that since the polynomial R(z) is not identically 0,
then degy(F ) > 0. Also, note that H := Dy(F ) is non-zero, because otherwise
we would have that M = 0 and hence R = 0. Thus, let us see that F is degree
invariant in Rk and in Xk. In fact, F is degree invariant in R × J because of
Lemma 5, and the degree of F w.r.t. y in R×J is degy(F ). Since degy(F ) > 0,
in particular F does not vanish identically on Rk and Xk. Hence, it remains
to prove that H is order-invariant, and in order to do this we distinguish the
two cases in the statement of the theorem:

(i) For any point in Rk the order of H is 0, because the order of M is 0 by
definition of Rk.

(ii) Let us see that H is order-invariant on Xk. From Theorem 6, M is order-
invariant on the M -sections over J , i.e. on each Xk. Moreover, since M is
square-free, the plane curve M does not have multiple components, and
therefore it has finitely many singularities. Thus, since M is order-invariant
on each Xk, one deduces that all points on Xk are simple points of M , and
hence the order of M on Xk is 1. Now, let M be expressed as M = A1 · · ·As,
where the Ai are square-free and relatively prime, and let H = An1

1 · · ·Ans
s .

In this situation, let us take any point p := (x0, z0) ∈ Xk, and let us see
that the order of H at p is invariant. For this purpose, we observe that if
k 6= j then Xk∩Xj = ∅. Therefore, p belongs only to one of the components
of the M, and hence only one factor of M vanishes at p, say Ai. Then, the
order of h at p is ni.

Now, taking into account the delineability of F , we introduce some additional
notation.

• Since F is delineable in Rk, for k ∈ {1, . . . , r + 1}, we denote by

V1,k < · · · < Vsk,k

the real root functions of F over Rk, and by Vi,k the function graph of the
analytic function Vi,k; i.e. the F -sections over Rk.

In the sequel, for simplicity of notation, whenever we are working on a
fixed Rk, we will write Vi instead of Vi,k, and Vi instead of Vi,k.

• Since F is delineable in Xk, for k ∈ {1, . . . , r}, we denote by

Y1,k < . . . < Y`k,k
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the real root functions of F over Xk, and by Yj,k the function graph of the
analytic function Yj,k; i.e. the F -sections over Xk.

In the sequel, for simplicity of notation, whenever we are working on a
fixed Xk, we will write Yj instead of Yj,k, and Yj instead of Yj,k.

In Figure 3 we give a geometrical interpretation of these functions; note, how-
ever, that in Figure 3 it is implicitly assumed that the Vi and the Yj join
properly (i.e. for a given Vi there is only one Yj that lies in the closure of
Vi). This property corresponds to the “proper behavior” of the real roots of F
which is rigorously established in Phase 2 (see Lemma 11). In fact, this will
be the key for proving Theorem 4.

Fig. 3. Functions Vi and Yj

Phase 2 of the Proof: Proper behavior of real roots of F

In this subsection, we will prove that the functions Vi and Yj, introduced in
Phase 1, behave properly in the following sense: the function graphs Vi and Yj

join properly, i.e. for each Vi there is only one Yj in the closure of Vi (in the
topological space R3 with the usual topology). Therefore, we will rigorously
establish that Figure 3 is correct.

For this purpose, let us introduce the following notion: throughout this sub-
section, if W ⊂ Rn, we will refer to the set W × R ⊂ Rn+1 as the cylinder of
W , and we will denote it by Cyl(W ). Moreover, we assume that z1, z2 are as
in the statement of Theorem 4, and that they are fixed.
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We start with some technical lemmas. We fix k ∈ {1, . . . , r}, and we consider
the real roots of F over the region Rk, which for sake of simplicity are denoted
as {V1, . . . , Vsk

}; moreover, we consider the real root functions of F over Xk,
which also for simplicity are denoted as {Y1, . . . , Y`k

}. Note that Rk lies at
the left of Xk (see Figure 2). Thus, in this phase of the proof we study the
behavior of the {V1, . . . , Vsk

} and the {Y1, . . . , Y`k
}. Similarly one might study

the relationship between the real roots {Y1, . . . , Y`k
} and the real roots of F

over Rk+1, where Rk+1 lies in this case at the right of Xk.

Now, let Ti, where i ∈ {1, . . . , sk}, be the intersection of the following three
sets:

• the cylinder of Xk; i.e. Cyl(Xk) = {(x, y, z) | (x, z) ∈ Xk, y ∈ R},
• the set Z = {(x, y, z) ∈ R3| z ∈ [z1, z2]},
• and the closure V i of Vi

That is:

Ti = Cyl(Xk) ∩ Z ∩ V i.

In this situation, the following result on Ti holds.

Lemma 8

(i) The y-projection maps Ti surjectively onto the set Xk
⋂Z.

(ii) Ti is contained in the union of the F -sections over Xk; that is

Ti ⊂ ∪`k
j=1Yj.

PROOF. In order to prove (i), we consider z̄ ∈ [z1, z2], and we find a point
of Ti whose z-coordinate is z̄. For this purpose, we first observe that the
intersection of the horizontal plane πz̄ with Vi is a real branch of the level
curve Sz̄. Moreover, since [z1, z2]∩A = ∅ and z̄ ∈ [z1, z2], one has that z̄ /∈ A.
Furthermore, we recall that by hypothesis the leading coefficient of F w.r.t.
y does not depend on x, and by Lemma 5, since z̄ /∈ A, it holds that the
leading coefficient w.r.t. y of F does not vanish at z̄. Therefore, the plane
algebraic curve Sz̄ has no asymptotes normal to the x-axis (see (19) for further
information on the notion of asymptote). Thus, one can find a sequence (xn, yn)
of real points of Vi (i.e. yn = Vi(xn)) where xn converges to x̄ = Xk(z̄), and
such that yn converges to ȳ ∈ R, with (x̄, ȳ) ∈ Sz̄. In this situation, one has
that the point P̄ = (x̄, ȳ, z̄) belongs to Ti. Therefore, (i) is proved. Now, in
order to prove (ii) note that since Vi ⊂ S and S is closed, one has that V i ⊂ S,
and therefore Ti ⊂ S. Since ∪`k

j=1Yj is the part of S projecting onto Xk, the
statement (ii) follows from statement (i).
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The next step consists in proving that the set Ti is connected. This fact can be
proven by a topological argument, which could be an exercise in a textbook on
topology. The proof of this statement, which follows from Urysohn’s Lemma,
is left to the reader.

Lemma 9 Let {Ai}i∈I be a family of compact and connected non-empty sub-
sets of Rn such that Ai+1 is contained in Ai for each i ∈ I. Then, the inter-
section A =

⋂
i∈I Ai is also connected.

This lemma provides the following result:

Lemma 10 The set Ti is connected.

PROOF. For n ∈ N we define the set (see Figure 4):

hn =
{
(x, z) ∈ R2|z ∈ [z1, z2] and Xk(z)− 1

n
< x < Xk(z))

}
.

Now, we take a natural number n0 ∈ N such that for n ≥ n0 it holds that
hn ∩ Xk−1 = ∅ if Xk is not the most left M -section over J (i.e. such that
hn ⊂ Rk), otherwise we take n0 = 1. Now, taking into account that for n ≥ n0

Fig. 4. The sets hn

it holds that hn ⊂ Rk, we define for n ≥ n0 the set An as the closure of the
image of hn by means of the function Vi (recall that Vi is the analytic function
whose function graph appears in the definition of Ti), i.e.

An = Vi(hn).
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Let us see that the family {An}n≥n0 verifies the hypotheses of Lemma 9.
Indeed, it is clear that An+1 ⊂ An, and An 6= ∅. Furthermore, since hn is
connected and Vi is continuous then Vi(hn) is connected, and hence An is
connected. Thus, it rests to see that An is compact. For this purpose, observe
that An is obviously closed and bounded w.r.t. the variables x and z, so it
suffices to check that it is also bounded w.r.t. the variable y. But this follows
from the fact that no level curve of S has any asymptote normal to the x-axis. 6

Therefore, we see that the family {An}n≥n0 verifies the hypotheses of Lemma
9. Hence, by Lemma 9 it follows that

⋂
n≥n0

An is connected. Moreover, it is
easy to check that

⋂
n≥n0

An = Ti. Hence, it follows that Ti is connected.

The preceding results are used to state the following lemma, that certifies that
the sets Vi and Yj join properly.

Lemma 11 For a given Vi, with i ∈ {1, . . . , sk}, there exists a unique j ∈
{1, . . . , `k} such that

Yj ⊂ Vi.

Furthermore, Yj = Ti.

PROOF. Let us fix i ∈ {1, . . . , sk}, and let us consider the set Ti correspond-
ing to Vi. Now, let us see that there exists a unique j ∈ {1, . . . , `k} such that
Ti = Yj; since Ti ⊂ Vi, then the result follows. Indeed, from Lemma 10, we
know that Ti is a connected set, and from Lemma 8, we have that it is included
in the union of Y1, . . . ,Y`k

. Since Y1, . . . ,Y`k
are all connected and disjoint, it

holds that there exists j ∈ {1, . . . , `k} such that Ti is included in Yj. Finally,
Ti must be equal to Yj because otherwise the projection of Ti onto Xk

⋂Z
would not be surjective (see Lemma 8).

Proceeding in a similar way, an analogous result to Lemma 11 relating the real
roots of F over Xk and the real roots of F over Rk+1, where k ∈ {1, . . . , r},
might also be obtained.

In the previous development, we have simplified the notation so the real roots
of F over Rk, i.e. the functions Vi,k with i ∈ {1, . . . , sk}, were denoted by

6 JPAA’s refree mentioned that this argument was enough. I also think that it is
sufficiently clear. Perhaps the argument which we used was more formal, but I think
it may be a good idea to include this simple reasoning
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Vi, assuming that we were working on a fixed Rk; similarly, the real roots of
F over Xk, i.e. the functions Yj,k with j ∈ {1, . . . , lk}, were also denoted by
Yj. Now, let us recover the notation with two subindexes. Thus, taking into
account Lemma 11, there exist functions R1, . . . ,Rr

Rk : {1, . . . , sk} −→ {1, . . . , lk}

such that
YRk(i),k ⊂ V̄i,k.

Therefore, Rk maps a subindex i, which corresponds to a real root of F over
Rk, onto a subindexRk(i) that corresponds to the real root of F over Xk which
lies in the closure. See, for example, Figure 5: here, one has that Rk(1) =
Rk(2) = 1 because it holds that Y1,k ⊂ V̄1,k and also Y1,k ⊂ V̄2,k.

Similarly, one may define functions L1 . . . ,Lr

Lk : {1, . . . , sk+1} −→ {1, . . . , lk}

such that
YLk(i),k ⊂ V̄i,k+1.

Thus, Lk maps a subindex i corresponding to a real root of F over Rk+1, onto
a subindex Lk(i) corresponding to the real root of F over Xk which lies in the
closure. For example, in Figure 5 one has that Lk+1(1) = Lk+1(2) = 1.

Fig. 5. Functions Rk and Lk

Remark 12 Note that the functions Lk and Rk need be neither surjective nor
injective. In Figure 5 one may see this phenomenon. 7

7 Originally the remark was longer
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Phase 3 of the Proof: Graph Equality

In order to prove that the level curves Sz1 and Sz2 have the same topology
type, we give a construction of a planar graph which 8 describes the topology
type of any level curve in the interval [z1, z2]. This fact follows immediately
from the results in the preceding subsection, specially Lemma 11. In other
words, this planar graph is associated with any of these level curves in the
sense of (16), (14), etc.

Let us see how the planar graph construction works. First, we introduce the
vertices. Thus, for each k ∈ {1, . . . , r}, we add vertices with coordinates (see
Figure 6)

(k, 1), . . . , (k, lk).

We will refer to these vertices as integer vertices; furthermore, recall that lk
was the number of F -sections over Xk. Moreover, for each k ∈ {1, . . . , r + 1},
we add vertices of coordinates (see Figure 7)

(k − 1

2
, 1), . . . , (k − 1

2
, sk);

recall that sk was the number of F -sections over Rk.

Fig. 6. Vertices (left), Edges (right)

Now, we introduce the edges; for this purpose, we use the functions Lk and Rk

defined in Phase 2. Thus, for each k ∈ {1, . . . , r} and for each i ∈ {1, . . . , sk},
we join the vertices (k− 1

2
, i) and (k,Rk(i)) (see Figure 6), and we also connect

8 I have eliminated some words
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the vertices (k,Lk(i)) and (k + 1
2
, i) (see also Figure 6); note that the vertex

(k+ 1
2
, i) can be written as ((k+1)− 1

2
, i), and so it has been added previously. 9

We denote by G to the graph constructed by the process described above. By
construction, it follows that this graph describes the topology type of the level
curves. Hence, the following theorem holds.

Theorem 13 For every z̄ ∈ [z1, z2], the topology type of the level curve Sz̄

is described by the graph G. In other words, there is a homeomorphism of R2

into itself such that Sz̄ is mapped onto G. 10

Now, the main theorem, namely Theorem 4, follows directly from Theorem
13.

The special case R = 0 11

In the preceding subsections, we have assumed that the polynomial R(z) was
not identically 0. Here, we will consider the special case where R = 0. Now,
taking into account the definition of the polynomial R in Section 2, R = 0
implies that degx(M) = 0, i.e. M = M(z). In this situation, the following
theorem holds:

Theorem 14 If degx(M) = 0, then the set A of all the real roots of Dy(F )
is a critical set of S. That is, if z1, z2 ∈ R, z1 < z2, verify that no element in
[z1, z2] is a root of Dy(F ), then Sz1 and Sz2 have the same topology type.

PROOF. Let A = {a1, . . . , ar}, with a1 < · · · < ar, be the set of real roots

of M ; i.e of
√

Dy(F )); note that M only depends on z. Also, let a0 = −∞,
ar+1 = +∞. Then, for k = 1, . . . , r + 1, we introduce the sets

Rk = {(x, z) ∈ R2|ak−1 < z < ak}.

Note that the Rk are horizontal, non-bounded, stripes of the xz plane. Rea-
soning similarly as in Theorem 7, one proves that F , seen as a univariate
polynomial y, is delineable over Rk. This implies that there exist analytic real
functions V1,k < · · · < Vsk,k (i.e. the real root functions of F over Rk), such
that the real part of S over Rk consists of the union of the function graphs of
these functions. Now, since the function graphs of the Vi are non-intersecting,

9 In the previous version, there were a graphic showing the process in the situation
of Figure 5. I have also eliminated it
10 I have eliminated the proof of this theorem, as well as a previous lemma
11 I have eliminated a graphic here
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one has that the level curve Sz1 consists of sk non-intersecting real branches,
and the same happens for Sz2 . Therefore both level curves have the same
topology type.

5 Application to offsets

In this section, we show an application of the results in this paper to the
topological behavior of offset curves. The notion of offset is directly related to
the concept of envelope. More precisely, the offset curve, at distance d, to an
irreducible curve C over C is “essentially” the envelope of the system of circles
centered at the points of C with fixed radius d.

More formally, the offset curve to the plane curve C at distance d is defined
as the Zariski closure in C2, of the constructible set Ad(C0) in C2 of the in-
tersection points of the circles of radius d ∈ C centered at each point P ∈ C0

and the normal line to C at P, where C0 ⊂ C is the set of all regular points of
C having nonzero isotropic normal vectors to C (for further details see (3) and
(21)).

Offsets play an important role in many practical applications such as toler-
ance analysis, geometric control, robot path-planning and numerical-control
machining problems, like the description of the curve that a cylindrical tool
executes when it moves through a prescribed path. The study of offsets is
an active research area. Indeed, as a consequence of this research, many in-
teresting questions related to algebraic geometry, such as the study of the
unirationality of the components of the offset, or the construction of rational
parametrizations of the components of an offset, or the analysis of algebraic
and geometric properties of the offset in terms of the corresponding properties
of the initial variety (e.g., geometric genus offset curves, offset degree, etc),
or the development of special implicitization techniques for offsets, have been
treated.

Nevertheless, topological aspects for offsets have not been treated so exten-
sively; some local results can be found in (7) and (8). The intuitive interpreta-
tion of the notion of offset curve suggests that the topology type of the original
curve should be somehow “duplicated” by the offsetting process. However, this
does not necessarily happen (see for example (7), (8)). In fact, the topological
features of the offset curves of a given C may vary as d takes different values,
and the study of this topological behavior was an open problem.
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Now, with the results introduced in this paper, we see how to solve this prob-
lem. More precisely, if one computes the implicit equation F (x, y, d) of the
offset curve, where the distance d is treated as a new variable, one can see
F (x, y, d) as the implicit equation of an algebraic surface. In this situation,
the topology type of the level curves of this new surface indicates how the
topology of the offset behaves. Let us illustrate these ideas by two examples.

Example 1. The implicit equation of the offset to the parabola y−x2 = 0 at
distance d is:

F (x, y, d) = −1/16y2 + 2x2d2y2 − 1/2x2yd2 + 1/16d2 + 5/4x2d2 − 2x2y2 +
1/2d2y2 + 1/8yx2 − 1/2yd2 + 3x4d2 − x4y2 − 3x2d4 + 5/2x4y + 2x2y3 − d4y2 −
2d4y + 2d2y3 − 1/16x4 + 1/2d4 + 1/2y3 − x6 + d6 − y4

We consider the surface S defined by F (x, y, d). In order to study the level
curves of S corresponding to d > 0 (note that for d < 0 one has an equivalent
behavior), we compute the roots of the double discriminant R(d), and we find
that the only real root, greater than 0, is 1/2.

Fig. 7. Topology Types of the Offsets to the parabola y = x2

Thus, we get that there are at most three topology types of the offsets to
the parabola, corresponding to the cases 0 < d < 1/2, d = 1/2 and d > 1/2,
respectively. The graphs corresponding to these three cases are shown in Figure
7, where the graph of the parabola has also been included (in dotted lines).
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Note that when 0 < d < 1/2 and d = 1/2, one obtains what one expects,
i.e. the offset “duplicates” the topology of the original curve (except for the
isolated real point obtained for 0 < d < 1/2). However, for d > 1/2 the picture
is different (in fact, in this case two cusps appear).

Example 2. Now, let us consider the curve of equation y2 − x3 = 0. As in
Example 4, the double discriminant R(d) corresponding to the polynomial
F (x, y, d) (obtained from the implicit equation of the family of offset curves),
has also just one real root d0 greater than 0, than can be approached as
d0 = 0.3009908371. However, in this case the graphs corresponding to 0 <
d < d0, d = d0 and d > d0, respectively, are all equal. Therefore, we get just
one topology type for the offset curves, which is kept ∀d ∈ R. The graph
describing this topology type is shown in Figure 8; here, we have also included
the graph of y2 − x3 = 0, in dotted lines.

Fig. 8. Only one Topology Type in the Offsets to the Curve y2 − x3 = 0
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