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Abstract

This paper is devoted to the incorporation of topological derivative like expansions
of first and second order in volume and perimeter into level set methods for perimeter
regularized geometric inverse problems.

Based on these expansions we provide a steepest descent type and a Newton-type
algorithm to force topology changes in level set methods.

Numerous numerical examples are provided that show the strong and also the weak
points of these estimates.
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1 Introduction

Identification of unknown geometries via minimizing appropriate objective functionals is
challenging task, appearing in various applications ranging from topology optimization (cf.
Bendsøe & Sigmund [11]) over image processing (see cf. Tsai & Osher [41]) to inverse
problems (cf. Burger & Osher [18]). During the last years it got very common to use level
set methods (cf. Osher & Fedkiw [35], Litman, Lesselier & Santosa [32]) with veloc-
ities dependent on shape derivatives (cf. Delfour & Zolésio [20]) to solve such problems.
For several optimization problems, these level set methods were successfully applied to com-
pute optimal geometries without a-priori knowledge of the number of connected components
(cf. Burger [13, 15], Dorn, Miller & Rapport [21], Hintermüller & Ring [29], Ito,
Kunisch & Li [30], Santosa et al. [32, 36, 37]).

Level set methods are gradient like methods that allow a simple and flexible geometry
representation and evolution. The evolution of the geometry happens just locally, i.e. just
the boundary of the geometry is evolved. Hence topological changes like splitting and merging
can occur during the “time” evolution. However, due to their local nature they might easily
get stuck in local minima and one can construct examples where this is indeed the case. This

∗e-mail: benjamin.hackl@oeaw.ac.at
†This work was supported by the Austrian National Science Foundation (FWF) under the grant SFB F

013 / 08 and RICAM

1



1 INTRODUCTION 2

was also observed practically (cf Allaire, Jouve & Toader [4, 5] Burger, Hackl &
Ring [16]).

Recently a new concept, called topological derivatives (cf. Eschenauer, Schumacher
et al. [22, 23], Sokolowski & Żochowski [38, 39]) appeared, where one considers the
variation of an objective function with respect to the introduction of infinitesimally small
holes at a certain point. The topological derivative then indicates whether it is favorable
to introduce a hole at this point or not. Already the definition of the topological derivative
suggests an algorithm that was successfully applied to several problems (cf. Amstutz et
al. [7, 8, 9], Guillaume & Idris [25], Guzina & Bonnet [26], Masmoudi et al. [9, 33]).
Also algorithms just based on topological derivatives may stuck in local minima, mainly due
to their “disability” to reduce the number of connected components.

Hence several authors (cf. Allaire, Gournay, Jouve & Toader [3], Burger, Hackl
& Ring [16], Hintermüller [28]) tried successfully to combine classical level set methods
with the concept of topological derivatives. Their are basically two ideas how to combine
these methods. In one method an additional source term, that depends on the topological
derivative, is added to level set methods such that the level set methods allow not just
local changes, i.e. evolution of the boundary, but also global changes, due to the of the
whole domain defined source term. The other method simply restarts the level set evolution
after some fixed time (or due to “clever” chosen stopping criteria), where the initial value is
determined via the topological derivative and the last time step. The rational behind these
methods is to fulfill the combined necessary optimality condition for shape and topological
derivatives (see Sokolowski & Żochowski [40]).

Nonetheless there are still some problems. First, in geometric inverse problems one usually
uses perimeter regularization, which is not topological differentiable at all. Second, topological
derivatives sometimes provide only a very rough information, especially do they not provide
information about a reliable size and shape of the topology change such that the objective
function decreases, when performing this topology change.

By means of a geometric inverse problem we develop an algorithm based on classical
level set methods and topological derivatives such that, first, we can deal with perimeter
regularizations, second, that topology changes are forced such that the objective function
(with perimeter) decreases and the decrease can be estimated from above by the minimum
of another, “simpler” minimization problem. In more detail we do a Taylor expansion of the
objective function in the volume and the perimeter of the topology change. The expansion
up to the first order term in volume, provides us with the topological derivative and together
with the remainder, which is of higher order in volume, we get a reliability estimate like for
descent methods in the functional analytic framework. Minimizing the first order estimate
plus remainder provides a topology change which guarantees a descent in the objective func-
tion (with perimeter), where the descent is estimated from above by the minimum of this
minimization problem. Likewise for Newton-Trust-region methods, we provide an expansion
up to the second order in volume plus remainder of higher order, that provides an estimate
whose minimizer is again a topology change with guaranteed descent. As for Newton meth-
ods, the calculation of this minimizer is more expensive but provides “close” at the solution,
very reliable estimates. The difference of the first and the second order minimization problem
is mainly due to an additional partial differential equation as constraint, for the second order
problem, that depends on the topology change itself.
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The geometric inverse problem we investigate in
the following consists of, identifying a compact set
Ω ∈ K(D) from measurements û, with an L2-error
bound, provided on ΓM , where ΓM ⊂ D is either a
domain or ΓM ⊂ ΓN . The map of the geometry Ω to
the measurements u on ΓM is defined via the partial
differential equation

−∆u+ cΩ u= f in D
∂u
∂n =h on ΓN
u = g on ΓD ,

(1.1)

where cΩ = c+(c− c)χΩ and χΩ is the characteristic
function of Ω.

For a stable identification of the set Ω one usually minimizes the perimeter regularized
least squares functional

Jα(Ω) =
1
2

∫
ΓM

|u− û|2 ds+ α|∂Ω| , (1.2)

where α acts as regularization parameter and is chosen in dependence of the noise level of
the measurements û. The regularization property of the perimeter and the choice of the
parameter α will not be dealt with in this paper (cf. Ben Ameur, Burger & Hackl
[10] for a detailed analysis), but only the appearance of the perimeter in the minimization
functional will be in the focus in the following, since it prevents the application of known
approaches based on topological derivatives.
Notation: We denote with Lp(Ω) functions on Ω whose p-th power is integrable, with
W k,p(Ω) the Sobolev space of k-times differentiable functions whose derivatives are in Lp(Ω).
Furthermore we abbreviate the Hilbert-space W k,2(Ω) by Hk(Ω) and by H1

D,0(D) ⊂ H1(D
the function space with boundary values zero at the boundary ΓD ⊂ ∂D. Finally we often
use the notation � which means ≤ up to a constant that does not depend on the important
properties.

The paper is organized as follows: In Section 2 we provide the shape and the topological
derivative for the objective function (1.2). Then, based on the proof of the topological deriva-
tive we provide in Section 3 the first order and also second order expansion of the objective
function in volume and perimeter. The first and second order expansions allow to construct
steepest descent respectively Newton-type iterations to force topology changes. Hints about
the numerical implementation of level set methods and the incorporated steepest descent re-
spectively Newton-type iteration to force topological changes are provided in Section 4. By
means of some numerical examples we show in Section 5 the applicability and performance
of the, in this paper, suggested methods and finally draw the conclusion in Section 6.

2 Shape- and topological- derivatives

In this section we recall two different notions of shape (geometry) perturbations and consider
the sensitivity of the objective function (1.2) with respect to these perturbations. The first
perturbation is a pure boundary perturbation by moving a shape (geometry) in a velocity field
V . This notion results into the concept of shape derivatives. For a comprehensive introduction
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to this topic we refer to Delfour & Zolésio [20]. The second perturbation changes the
topology of the shape (geometry) by introducing a fixed additional shape with varying size and
position. The sensitivity of the objective function (1.2) with respect to the size of the newly
introduced shape results into the notion of topological derivatives which were first introduced
by Eschenauer, Schumacher et al. [22, 23] in the context of topology optimization and
made mathematically rigorous by Sokolowski & Żochowski et al. [38, 39].

In the following we briefly introduce the notion of shape derivatives where we just state
the well-known result about the shape derivative of the objective function (1.2), while we
derive the result on the topological derivative of the objective function (1.2) in more detail.
The reason for the detailed proof is that it provides an argument which allow estimates of the
variation of the objective functional (1.2) in volume and perimeter of the shape (geometry)
perturbation.

2.1 Shape derivatives

Shape derivatives for geometric problems allow to characterize extrema and yield directions of
steepest descent for appropriate objective func-
tionals, like the Gateaux- and Fréchet derivative
in a functional analytic framework.

The basic idea is to define a perturbation of a
domain Ω (piecewise C2) via the time evolution
of the domain in a vector field V : RN → RN ,
where V fulfills

∃ τ > 0∀x ∈ Rd : V (., x) ∈ C([0, τ ],Rd)
∃L > 0∀x, y ∈ Rd :
‖V (., y)− V (., x)‖C([0,τ ],Rd) ≤ L|y − x| .

(2.1)
That is, one defines the perturbed domain Ωt by

Ωt(V ) = Tt(Ω, V ) ,

where Tt(., V ) is the solution map (the flow) of the dynamical system

dTt(x, V )
dt

=V (t, Tt(x, V ))

T0(x, V ) =x .
(2.2)

With this perturbations we are able to define (formally) the shape derivative of a shape
functional J(Ω) as

J ′(Ω)[V ] =
d

dt
J(Tt(Ω, V ))

∣∣
t=0

.

A basic structure theorem (cf. Delfour and Zolésio [20]) proves that the shape derivative
depends only on V |∂Ω. Furthermore, for smooth shapes, the perturbation vector field V
can be decomposed into a normal and a tangential component on ∂Ω, where the tangential
component leaves Ω invariant. Hence the shape derivative is independent of the tangential
component and we obtain

J ′(Ω)[V ] = J ′(Ω)[(V.n)n] .
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In the case that the shape functional J(Ω) is an objective function in a minimization
problem a necessary condition for the shape Ω to be optimal is

∀V : J ′(Ω)[V ] = 0 .

When the shape functional is not zero we can construct a velocity V such that the objective
function decreases, which allows the construction of gradient like descent algorithms, like level
set methods (see Section 4.1).

To calculate the shape derivative of the objective functional Jα (1.2) we need the shape
derivative of domain, respectively boundary integrals and the solution of the partial differ-
ential equation (1.1). These derivatives are well known in the literature (cf. Delfour &
Zolésio [20] for shape derivatives of domain and boundary integrals and Hettlich & Run-
dell [27] for shape derivative of equation (1.1)) and we just state them in the following
theorems.

Theorem 2.1 (Shape derivative domain & boundary integrals). Let Ω be a open, bounded
measurable domain of class C2 with boundary Σ = ∂Ω, V ∈ C0

(
[0, τ ], C1

loc(Rd,Rd)
)

fulfill
(2.1) and ϕ ∈ C

(
0, τ,W 1

loc(Rd) ∩ C1(0, τ,H2
loc(Rd))

)
, then the semi-derivative of the shape

functionals

JD(Ωt) :=
∫

Tt(Ω,V )

ϕ(t) dx JB(Σt) :=
∫

Tt(Σ,V )

ϕ(t) ds(t)

at t = 0 are given by

J ′D(Ω)[V (0)]=
∫
Ω

ϕ′(0) dx+
∫
Σ

ϕ(0)V (0).n dx

J ′B(Γ)[V (0)] =
∫
Σ

ϕ′(0) +
(∂ϕ(0)

∂n
+ κϕ(0)

)
V (0).n ds ,

where κ is the mean curvature

Theorem 2.2. Let Ω be a domain with C1 boundary and the velocity field V be as in the
previous theorem. Then the solution u of equation (1.1) is shape differentiable and its shape
derivative is characterized by the unique solution u′ = u′0[V (0)] to the transmission problem

−∆u′ + cΩ u
′ =0 in Ω ∪ D \ Ω

r∂u′

∂n

z
=−

q
cΩ

y
V (0).n on ∂Ω

q
u′

y
=0 on ∂Ω

∂u′

∂n
=0 on ΓN

u′ =0 on ΓD ,

(2.3)

where J . K denotes the jump across the interface ∂Ω.

Summing up, the shape derivative of the objective functional Jα (1.2) becomes

J ′α(Ω)[V (0)] =
∫

ΓM

u′[V (0)](u− û) ds+ α

∫
∂Ω

κV (0).n ds .
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We can simplify this shape derivative when we introduce the adjoint state w defined by

−∆w + cΩw=−χΓM
(u− û) in D

∂w
∂n =−χΓM

(u− û) on ΓN
w =0 on ΓD .

(2.4)

The shape derivative of the objective function Jα(Ω) finally gets

J ′α(Ω)[V (0)] =
∫
∂Ω

(uw + ακ)V (0).n ds . (2.5)

First note that we just solve two partial differential equations, namely (1.1), (2.4) to
calculate the full shape derivative. Second, the first order necessary condition for optimal
shapes Ω requires ∀V : J ′α(Ω)[V (0)] = 0, hence (uw+ακ) = 0 and if this is not the case we
can construct a velocity such that J ′α(Ω)[V (0)] < 0. For example take V = −(uw + ακ)n,
but other choices are possible (see Burger [14]).

2.2 Topological derivatives

Opposed to the shape derivative where one considers the variation of a shape the topological
derivative aims for variations of the topology.

The basic idea of the topological deriva-
tive is to add a small ball with center x
and radius ε to the domain Ω and con-
sider the variation of the objective functional
J(Ω∪Bε(x)) with respect to the radius of this
sphere (different shapes than balls are possi-
ble and might result into different values of
the derivatives).

Definition 2.3 (Topological Derivative).
Let J : Ω ⊂ Rd → R be a objective function.
Then the topological derivative is defined as
the limit (if it exists)

dτJ(x) := lim
ε→0+

J(Ω ∪Bε(x))− J(Ω)
|Bε(x)|

(2.6)

A negative topological derivative dτJ(x) < 0 indicates that it might be reasonable to
add an infinitely small sphere at the point x to reduce the objective function. Hence it is an
indicator that allows to force topology changes.

Instead of adding material it is also possible to subtract material i.e. take the “set-minus”
instead of the “union” in (2.6). We will use both notions without mentioning it.

Remark 1. In practice, topology changes forced by the topological derivative are neither
spherical nor infinitesimally small. Hence a descent in the objective function is not guaran-
teed any more. Nonetheless the practical experience by most authors, using the topological
derivative as an indicator to force topology changes, are rather positive.
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First of all consider the topological derivative of the perimeter |∂Ω|. From the definition
we get

dτ |∂Ω| = lim
ε→0

|∂Bε(x)|
|Bε(x)|

' lim
ε→0

εd−1

εd
= ∞ .

Hence the perimeter is not topologically differentiable. In practical applications one usually
neglects this fact and calculates the topological derivative of the objective function without
perimeter, i.e. for J0(Ω). The topological derivative of J0(Ω) is already well known (see
Amstutz [6]). Nonetheless we provide a detailed proof, that is based on Hölder estimates,
Sobolev embeddings (cf. Adams [1]) and regularity results for elliptic partial differential
equations (cf. Giaquinta [24]). Parts of the proof will play a crucial role in the rest of the
paper. Let us first state Sobolev’s embedding theorem and the interior regularity result for
elliptic partial differential equations:

Theorem 2.4 (Sobolev embedding). Let Ω be a domain having the cone property in Rn. Let
j, n ∈ N0 and p ∈ [1,∞[. Then, if

n > mp: W j+m,p(Ω) →W j,q(Ω) for p ≤ q ≤ np
n−mp ,

n = mp: W j+m,p(Ω) →W j,q(Ω) for p ≤ q <∞,

n < mp: W j+m,p(Ω) → CjB(Ω)

In the following arguments we will, for 2-dimensions, often meet the case n = mp which
would require a case study. This is a little bit tedious, hence we are sloppy at this point and
keep in mind that we need to adapt the final results to this case.

Theorem 2.5 (Interior regularity). Let u be the weak solution to the linear elliptic equation

−Di

(
AijDju

)
= f −Difi ,

where Aij ∈ C0,1(D) is elliptic, f ∈ L2(D) and F = (fi) ∈ H1(D,Rn), then u ∈ H2
loc(D) and

even more,

‖u‖2
H2([D]−ε) ≤ C(n)

(
‖f‖2

L2(D) + ‖DF‖2
L2(D) +

1
ε2
‖∇u‖2

L2(D)

)
(2.7)

where [D]−ε := cl
(
int{x ∈ D |dist(x, ∂D) ≥ ε}

)
.

We will need the interior regularity result quite often, especially estimate (2.7). To keep
writing shorter we denote above estimate a little bit sloppy by

‖u‖2
H2

loc(D) � ‖f‖2
L2(D) + ‖DF‖2

L2(D) + ‖∇u‖2
L2(D)

)
but keep always in mind that this estimate depends on the distance to the boundary ∂D.

Note that ‖u‖H1(D) is usually the solution to some boundary value problem and can be
estimated by

‖u‖H1(D) � ‖f‖L2(D) + ‖F‖L2(D) + ‖g‖
H

1
2 (ΓD)

+ ‖h‖
H− 1

2 (ΓN )
,

where the constant in above estimate depends just on the ellipticity of Aij and geometric
properties of D, ΓD. Furthermore note that with additional smoothness assumptions on ∂D,
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regularity and compatibility conditions of the boundary conditions the interior regularity can
be extended to a regularity everywhere, i.e. instead of H2([D]−ε) we get an estimate of above
type for H2(D) where the constant depends just on C(n,D).

Finally, before we calculate the topological derivative, let us recall the direct (1.1) and
adjoint (2.4) partial differential equation, but in their weak form.

Direct problem:
〈∇u,∇v〉+ 〈cΩu, v〉 = 〈f, v〉 ∀ v ∈ H1

0,D(D) (2.8)

Adjoint problem:

〈∇v,∇w〉+ 〈cΩv, w〉 = −DuJ(Ω)[v] ∀ v ∈ H1
0,D(D) (2.9)

In the following we will often use the topologically perturbed domain Ω̃ and the corre-
sponding solution ũ of (1.1). Furthermore note that due to the interior regularity result we
have:

‖u‖H2
loc(D)

�‖f‖L2(D) + ‖g‖
H

1
2 (ΓD)

+ ‖h‖
H− 1

2 (ΓN )

‖w‖H2
loc(D)

�‖u− û‖L2(ΓM )

Proposition 2.6. For every point x ∈ intD the topological derivative of the shape function
J0 (1.2) is given by

dτJ0(Ω)(x) = −2(χΩ −
1
2
)(c− c)u(x)w(x) .

Proof. Let Ω̃, Ω ⊂ intD be arbitrary domains with positive Lebesgue measure and consider
a Taylor expansion of the objective function J0 with respect to the state u.

J0(Ω̃)− J0(Ω) = DuJ0(Ω)[ũ− u] +D2
uJ0(Ω)[ũ− u]2 +O(‖ũ− u‖3

H1(D)) .

In our case we have a quadratic functional, hence the remainder term vanishes. In the
following we deal with every term of the expansion separately.

‖ũ− u‖H1(D) ' |Ω̃∆Ω|
n+2
2n : We subtract the two determining partial differential equations for

u respectively ũ and rearrange the terms to get

〈∇(ũ− u),∇v〉+ 〈cΩ̃(ũ− u), v〉 = −〈(cΩ̃ − cΩ)u, v〉 � |c− c|‖u‖
L

2n
n+2 (Ω̃∆Ω)

‖v‖H1(D)

D2
uJ0(Ω)[ũ− u]2 ' |Ω̃∆Ω|2: First note that D2

uJ0(Ω)[ũ− u]2 = 1
2‖ũ− u‖

2
L2(ΓM ) . Next, let s

be the solution to a modified adjoint problem

〈∇v,∇s〉+ 〈cΩv, s〉 = −D2
uJ0(Ω)[ũ− u][v] ∀ v ∈ H1

0,D(D) .

The interior regularity result also applies to s, i.e ‖s‖2
H2

loc(D)
� D2

u[ũ − u]2 and we get
‖s‖H2

loc(D)
� ‖ũ− u‖L2(ΓM ) . Hence we obtain from a standard technique

D2
uJ0(Ω)[ũ− u]2 = −〈∇(ũ− u), s〉 − 〈cΩ(ũ− u), s〉 = 〈(cΩ̃ − cΩ)ũ, s〉

� |c− c|
(
|Ω̃∆Ω|

n+2
2n ‖ũ− u‖H1(D) + ‖u‖L1(Ω̃∆Ω)

)
‖s‖H2

loc(D) .
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DJ0(Ω)[ũ− u] = 〈(cΩ̃ − cΩ)u,w〉+O
(
|Ω̃∆Ω|

n+2
n

)
: Finally we estimate the linear term in the

Taylor expansion:

DJ0(Ω)[ũ− u] = −〈∇(ũ− u),∇w〉 − 〈cΩ(ũ− u), w〉 = 〈(cΩ̃ − cΩ)ũ, w〉
= 〈(cΩ̃ − cΩ)u,w〉+ 〈(cΩ̃ − cΩ)(ũ− u), w〉
≤ 〈(cΩ̃ − cΩ)u,w〉+O

(
|c− c|‖ũ− u‖H1(D)‖w‖

L
2n

n+2 (Ω̃∆Ω)

)
Summing up all the estimates we get

J0(Ω̃)− J0(Ω) ≤ 〈(cΩ̃ − cΩ)u,w〉+O
(
|Ω̃∆Ω|

n+2
n

)
.

Now set Ω̃ = Bε(x) ∪ Ω and perform the limit according to the definition of the topological
derivative. The limit exists due to the Lebesgue differentiation theorem (cf. Giaquinta [24])
and the fact that u, w ∈ Cloc(D).

Like the shape derivative (2.5), the topological derivative depends on the solution u of
(1.1) and the adjoint w (2.4) only, which is standard for adjoint methods. Moreover, both
derivatives seem to be the same, which is not true in general, but holds, up to a constant, for
surprisingly many cases.

3 Topological expansions up to the first and second order

While we developed two different notions of derivatives in the last section, where the shape
derivative fitted quite well into a functional analytic framework and allowed the development
of steepest descent type and even Newton-type algorithms which is not true for the topological
derivatives because it is just an indicator, we develop in this section estimates for topology
changes, that again allow to construct steepest descent type and even Newton-type steps.
The estimates for the objective function Jα(Ω), we develop in the following, are accurate in
the first respectively second order in volume and perimeter of the topology change. Hence we
phrase them first and second order topological expansion. These expansions correspond very
well to functional analytic ideas where one expands objective functionals J(x), where x ∈ X
is an element of some normed function space X equipped with the norm ‖ . ‖X , up to first
and second order, i.e.

First order expansion: J(x̃)− J(x) ≤ ∂xJ(x)[x̃− x] + c‖x̃− x‖1+β
X

Second order expansion: J(x̃)− J(x) ≤ ∂xJ(x)[x̃− x] + ∂2
xJ(x)[x̃− x]2 + c‖x̃− x‖2+β

X

where β > 0. Minimizing the right hand side of above estimates, in x̃, result into steepest
descent type steps for the first order expansion and Newton-type steps for the second order
expansion.

In the following we develop similar estimates where we replace the function space elements
x, x̃ by geometric objects Ω, Ω̃, which are not elements of function spaces, and the norm
‖x̃− x‖X by the volume |Ω̃∆Ω| and the perimeter |∂(Ω̃∆Ω)|.
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3.1 First order topological expansion

A closer look at the proof of the topological derivative (Proposition 2.6) shows that we already
have an estimate of a topology change in the objective function Jα(Ω) (1.2) up to the first
order namely

Jα(Ω̃)− Jα(Ω) ≤ 〈(cΩ̃ − cΩ)u,w〉+ α|∂(Ω̃∆Ω)|+O
(
|Ω̃∆Ω|

n+2
2

)
. (3.1)

Our aim is to minimize the objective function Jα(Ω) (1.2) with respect to the geometry
Ω. Hence, when we already have an initial guess Ωk we can “improve” it and calculate a
new geometry Ωk+1 such that we reduce the objective function Jα(Ωk), when we solve the
minimization problem

Ωk+1 = argmin
Ω∈K(D)

〈(cΩ − cΩk
)u,w〉+ α|∂(Ω∆Ωk)|+ c

(
|Ω∆Ωk|

n+2
2

)
, (3.2)

where only c is an unknown constant arising from the embedding and regularity results. In
principle the constant c can be estimated from above, but algorithmically it seems favorable
to perform a trust region approach and vary c until the predicted decrease of the objective
function Jα(Ω) is close to the actual decrease.

In principle above argument would already suggest an steepest descent type algorithm to
solve the original minimization problem of Jα(Ω), but we are more interested to use just one
step of this algorithm in level set methods to force systematically reliable topology changes
such that the objective function Jα(Ω) decreases.

Any way, we first have to prove that the minimization problem (3.2) has a solution, not
necessarily unique.

Proposition 3.1. Minimization problem (3.2) has a solution in the class of sets with finite
perimeter K(D).

Proof. First note that the minimization problem (3.2) in the class of sets with finite perimeter
is equivalent to

min
p∈BV(D,{0,1})

−2(c− c)〈(χΩk
− 1

2
)pu,w〉+ α|p|BV + c

(
|p|

n+2
2

L1(D)

)
.

Due to the perimeter regularization term a minimizing sequence (pn) is uniformly bounded in
BV. Hence it has a BV weak-* limit p which is, due to the compact embedding of BV ↪→ L1,
also the strong limit in L1. Finally, the lower semi-continuity of | . |BV in the functions of
bounded variation BV(D) guarantees that p is a solution to the minimization problem and
hence Ωk+1 =

(
Ωk \ {χΩk

p = 1}
)
∪ {(1− χΩk

)p = 1} is a minimizer to (3.2).

Note that the minimizer might be Ωk itself, i.e. no topology change is favorable to generate
a guaranteed descent in the objective function Jα(Ω). This happens when the perimeter term
dominates the first order term, i.e. when the topology changes get too small or when the
topology is already the optimum to Jα(Ω).

Remark 2. Algorithmically it might be even better to take the refined estimate, that comes
from an accurate collection of the remainder terms in the proof of Theorem 2.6.

Jα(Ω̃)− Jα(Ω) ≤ 〈(cΩ̃ − cΩ)u,w〉+ α|∂(Ω̃∆Ω)|
+O

(
|c− c|2‖u‖

L
2n

n+2 (Ω̃∆Ω)

(
‖u‖

L
2n

n+2 (Ω̃∆Ω)
|Ω̃∆Ω|

n−2
n + ‖w‖

L
2n

n+2 (Ω̃∆Ω)

))
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3.2 Second order topological expansion

As for the topological derivative we start with a Taylor expansion of the objective function
J0(Ω) with respect to the state variable, but this time we perform a expansion up to the
second order in volume. For this sake we have to introduce a linearization of the partial
differential equation (1.1).

Linearized problem:

−∆ulin + cΩu
lin =−(cΩ̃ − cΩ)u in D

∂ulin

∂n =0 on ΓN
ulin =0 on ΓD

We will need the weak form of the linearized problem, which is given by

〈∇ulin,∇v〉+ 〈cΩulin, v〉 = −〈(cΩ̃ − cΩ)u, v〉 ∀ v ∈ H1
0,D(D) (3.3)

Hence the refined Taylor expansion for the gets.

J(Ω̃)− J(Ω) = DuJ(Ω)[ũ− u] + 1
2D

2
uJ(Ω)[ulin]2

+D2
uJ(Ω)[ũ− u− ulin][ulin] + 1

2D
2
uJ(Ω)[ũ− u− ulin]2 +O

(
‖ũ− u‖3

H1(D)

)
Again we estimate the higher order terms in the second row and reformulate the terms in

the first row to obtain.

‖ulin‖H1(D) � |Ω̃∆Ω|
n+2
2n :

〈a∇ulin,∇v〉+ 〈cΩulin, v〉 = −〈(cΩ̃ − cΩ)u, v〉 � ‖u‖
L

2n
n+2 (Ω̃∆Ω)

‖v‖H1(D)

‖ũ− u− ulin‖H1(D) � |Ω̃∆Ω|
n+6
2n :

〈a∇(ũ− u−ulin),∇v〉+ 〈cΩ(ũ− u− ulin), v〉 = −〈(cΩ̃ − cΩ)(ũ− u), v〉
� |Ω̃∆Ω|

2
n ‖ũ− u‖H1(D)‖v‖H1(D) � |Ω̃∆Ω|

2
n ‖u‖

L
2n

n+2 (Ω̃∆Ω)
‖v‖H1(D)

DJ(Ω)[ũ− u] = 〈(cΩ̃ − cΩ)(u+ ulin), w〉+O
(
|Ω̃∆Ω|

n+4
n

)
:

DJ(Ω)[ũ− u] = −〈a∇(ũ− u),∇w〉 − 〈cΩ(ũ− u), w〉 = 〈(cΩ̃ − cΩ)ũ, w〉
= 〈(cΩ̃ − cΩ)(u+ ulin), w〉+ 〈(cΩ̃ − cΩ)(ũ− u− ulin), w〉
� 〈(cΩ̃ − cΩ)(u+ ulin), w〉+ ‖w‖

L
2n

n+2 (Ω̃∆Ω)
‖ũ− u− ulin‖H1(D)

� 〈(cΩ̃ − cΩ)(u+ ulin), w〉+ |Ω̃∆Ω|
2
n ‖u‖

L
2n

n+2 (Ω̃∆Ω)
‖w‖

L
2n

n+2 (Ω̃∆Ω)

When we sum up the different contributions we end up in the second order topological
expansion

Jα(Ω̃)−Jα(Ω) ≤ 〈(cΩ̃−cΩ)(u+ulin), w〉+1
2
D2
uJ(Ω)[ulin]2+α|∂(Ω̃∆Ω)|+O

(
|Ω̃∆Ω|

n+4
n

)
. (3.4)
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In contrast to the first order topological expansion (3.1) the second order expansion is a
partial differential equation constraint problem. Again, like for optimization problems in func-
tion spaces, we can “improve” an initial geometry Ωk, such that the objective function Jα(Ω)
decreases, when we solve the partial differential equation constraint minimization problem

Ωk+1 = argmin
ulin solves (3.3),Ω∈K(D)

〈(cΩ−cΩk
)(u+ulin), w〉+ 1

2
D2
uJα(Ωk)[ulin]2 +α|∂(Ω∆Ωk)| (3.5)

The constraint minimization problem is similar to Newton-type step. Later we will use
the solution to the minimization problem to force a topology change in level set methods.
But before we have to proof that this constraint minimization problem has a solution.

Proposition 3.2. The partial differential equation constraint minimization problem (3.5) has
a solution in the class of sets with finite perimeter K(D).

Proof. The partial differential equation constraint minimization problem (3.5) in the class of
sets with finite perimeter is equivalent to

min
ulin solves (3.3),p∈BV(D,{0,1})

−2(c− c)〈(χΩk
− 1

2
)p(u+ ulin), w〉+

1
2
D2
uJα(Ωk)[ulin]2 + α|p|BV .

The minimization problem is bounded from below because ulin is uniformly bounded in H1.
Hence we can take a minimizing sequence (pn) which is due to the perimeter regularization
term bounded from above in BV. The minimizing sequence converges weak-* in BV to p
and due to the compact embedding BV ↪→ L1, also strong in L1. Furthermore the to pn
corresponding solution ulin

n (3.3) converges even strongly in H1. This strong convergence and
the lower semi-continuity of the perimeter in the function space BV guarantees that p is a
minimizer and hence Ωk+1 =

(
Ωk \ {χΩk

p = 1}
)
∪ {(1 − χΩk

)p = 1} is a minimizer of
(3.5).

In principle, minimization problem (3.5) is as difficult as the original problem but first
we do not need to solve it too accurately. It is enough to correct the first order solution.
Second, it might be much easier to construct efficient solvers for problems with “linear” (in
the shape) partial differential equation constraints. For example in imaging it is possible to
reformulate problems in BV({0, 1}) to problems in BV([0, 1]) (cf. Burger & Hintermüller
[17]). Furthermore there is a well developed theory for BV-regularization for linear problems
(cf. Osher et al. [34]). Third, it is possible to solve the second order estimate problem
with phase-field methods (for an introduction cf. Alberti [2]) and it is probably easier to
prove Γ-convergence for the minimization problem (3.5) than for the original one.

4 Numerical solution

In this section we discuss on one hand how to incorporate the topological steepest descent
(3.2) respectively the Newton-type (3.5) step into level set methods and on the other hand how
to solve these minimization problems (3.2), (3.5) for the topological steepest descent respec-
tively Newton-type step. Furthermore we describe the setting used for numerical calculations
presented in Section 5.

We start with a brief introduction into level set methods. For a detailed exposition about
level set methods for the propagation of interfaces refer to Osher & Fedkiw [35]. Next
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we provide the so called phase I/II method which was already used by several authors (cf.
Allaire et al. [3], Burger, Hackl & Ring [16], Hintermüller [28]) to incorporate the
topological gradient into level set methods. Finally we describe solution methods to solve the
minimization problems (3.2), (3.5).

4.1 Level Set Methods

The main idea of level set methods is to represent an evolving front Σ(t) = ∂Ω(t)
as the zero level set of a continuous function,
i.e.

Ω(t) =
{
x ∈ D

∣∣φ(x, t) > 0
}

Σ(t) =
{
x ∈ D

∣∣φ(x, t) = 0
}

The geometric motion of the level set with
normal velocity ~V = Vn.n is given by the
Hamilton-Jacobi equation

∂φ

∂t
− Vn|∇φ| = 0 in Rd × R+ (4.1)

which is the analog to the flow equation
(2.2).

As already mentioned in Section 2.1 the crucial point is an appropriate choice of the
velocity, such that the objective function Jα(Ω) (1.2) decreases. This resembles the classical
speed method in shape optimization (cf. Delfour & Zolésio [20]), but the weak formulation
via the level set method allows for more general evolutions and in particular for topological
changes such as splitting or merging of domains.

Let us recall the shape derivative J ′α(Ω)[Vn] for the objective function Jα(Ω) (1.2).

J ′α(Ω)[Vn] =
∫
∂Ω

(
uw + ακ

)
Vn ds

The simplest choice for the normal velocity Vn to reduce the objective function (1.2) would
be Vn = −

(
uw + ακ) . This choice results into a very regular velocity. Due to Burger

[14] a preconditioned velocity Vn ∈ H− 1
2 (∂Ω) is more appropriate and results into faster

convergence. This H− 1
2 velocity can be calculated when we solve the subproblem

〈ψ, v〉 = −〈uw + ακ,
r∂v
∂n

z
〉∂Ω ∀ v ∈ H1

0 (D) ,

and set Vn =
r
∂ψ
∂n

z
.

We solve the level set equation (4.1) with a standard fifth order WENO scheme for the
spatial and a third order explicit Runga-Kutta scheme for the time discretization (see Jiang,
Peng [31]).

4.2 Phase I/II algorithm

In Burger, Hackl & Ring [16] the topological derivatives were incorporated as an extra
source term in the level set methods.

∂φ

∂t
− Vn|∇φ|+ S = 0 Vn = Vn(J ′α), S = S(dτJ0)
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This idea fits very well to the basic idea of topological derivatives because the topological
changes usually appear at a very small size (like infinitesimally small balls) and grow (shrink)
according to the shape derivatives. An inherent time step control in the level set methods
guaranteed that the topological change was such that the objective function decreased. An-
other method, also suggested in Burger, Hackl & Ring [16] but also in Allaire et al.
[3] and Hintermüller [28] is to restart the level set evolution after a fixed time (or due
to “clever” criteria) with an initial level set function generated by the last time step plus
the topological change due to the topological derivatives. This algorithm was phrased phase
I/II algorithm by Hintermüller [28] where phase I corresponds to the algorithm for the
topology change and phase II to the “classical” level set evolution. Let us put this into a more
mathematical formulation: Let (Ti)i∈N0 be a series of time steps, either fixed or generated due
to a termination criterion in the level set evolution. Set φ−1(T−1) to an initial guess (usually
no material or material everywhere), Then the phase I/II algorithm is given by

∂φi

∂t + Vn(J ′α)|∇φi|=0
φi(t = 0) =S(dτJ0, φi−1(Ti−1)) ,

where S(., .) describes phase I, i.e. the algorithm that forces the topology change. Usually
phase I, that depends just on the topological derivative dτJ0 might increase the objective func-
tion Jα. Only a clever algorithm, like the line search algorithm proposed by Hintermüller
[28], guarantees a descent in the objective J0, also for phase I. An extension of the line search
algorithm to problems with perimeter constraints Jα is possible with the methods developed
in this paper.

Our main idea was to construct topological changes such that the decrease in the objective
functional Jα(Ω) is guaranteed and even maximal with respect to the first, respectively second
order topological expansion. Hence we choose for S(Jα, φi−1(Ti−1)) the solution-map of the
minimization problem (3.2) respectively (3.5). In the following we will describe just briefly
how to solve these minimization subproblems numerically.

Phase I

We proposed two sub-minimization problems (3.2), (3.5), where the first provides a steepest
descent type topology change and the second a Newton-type topology change. Both are
different in their numerical treatment.

Steepest descent type topology changes

First recall the associated minimization problem (3.2) whose minimizer provide a steepest
descent type topology change.

Ωk+1 = argmin
Ω∈K(D)

〈(cΩ − cΩk
)u,w〉+ α|∂(Ω∆Ωk)|+ c|Ω∆Ωk|

n+2
2︸ ︷︷ ︸

=:FΩk
(Ω)

As soon as the direct problem u (1.1) and the adjoint problem w (2.4) is given, we can solve
this minimization problem, without solving further partial differential equations. Furthermore
the objective function FΩk

(Ω) depends just on domain and boundary integrals. Hence we can
easily calculate, using Theorem 2.1, its shape derivative

F ′
Ωk

(Ω)[V (0)] =
∫

∂(Ω∆Ωk)

(
2(c− c)(χΩk

− 1
2
)uw + c

n+ 2
2

|Ω̃∆Ω|
n
2 + ακ

)
V (0).n ds .
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This allows us to use level set methods to solve above minimization problem, using the velocity

Vn = −
(
(c− c)(χΩk

− 1
2
)uw + c

n+ 2
2

|Ω̃∆Ω|
n
2 + ακ

)
.

As an initial guess we solve either the above minimization problem with α = 0 which results
into finding the level sets

2(c− c)(χΩk
− 1

2
)uw

∣∣
∂(Ω̃∆Ω)

+ c
n+ 2
n

|Ω̃∆Ω|
n
2 = 0 ,

and can be solved by bisection, or we start with the classical guess

Ω \
{
χΩdτJ0 ≤ pmin(χΩdτJ0, 0)

}
∪

{
(1− χΩ)dτJ0 ≤ pmin((1− χΩ)dτJ0, 0)

}
,

with p ∈ [0, 1].

Newton-type topology changes

Again we first recall the minimization problem, whose minimizer results in Newton-type
topology changes.

Ωk+1 = argmin
u′ solves (3.3),Ω∈K(D)

〈(cΩ − cΩk
)(u+ u′), w〉+

1
2
D2
uJα(Ω)[u′]2 + α|∂(Ω∆Ωk)|︸ ︷︷ ︸

=:GΩk
(Ω)

This minimization problem has a partial differential equation as constraint. Hence it is
as difficult to treat as the original minimization problem of the objective functional Jα(Ω)
(1.2) and allows also the same tools. So one way to solve above minimization problem is to
calculate its shape derivative, chose an appropriate velocity and apply level set methods. We
do not follow this approach her. Instead we use a phase field approach which is based on
the equivalent formulation of above minimization problem in the space BV(D, {0, 1}), that
we already met in the proof of Proposition 3.2. In the phase-field approach the minimization
problem, formulated in BV(D, {0, 1}), is relaxed, in the framework of Γ-convergence (cf.
Braides [12]) to a Hilbert-space problem, namely:

pk+1 = argmin
u′ solves (3.3), p∈H1

0 (D)

2(c− c)〈(1
2 − χΩk

)p(u+ u′), w〉+ 1
2D

2
uJα(Ωk)[u′]2

+
(
ε‖∇p‖2

L2(D) + α2

ε

∫
D
WN (p) dx

)
.

WN (.) is a normalized double well potential with WN (0) = WN (1) = 0, WN (s) > 0 s ∈

R \ {0, 1} and 2
1∫
0

√
WN (s) ds = 1.

The double well potential on one hand forces p to approach {0, 1} when ε → 0, whereas
the H1-seminorm of p requires smooth solutions. More or less, with ε→ 0 the H1-seminorm
term forces the solution to switch smoothly form 0 to 1 in an ε-region. All together these two
terms approximate with ε→ 0 the perimeter term. The minimization problem is now posed
in a Hilbert-space setting and one can use Richardson or Newton-type methods to solve this
problem. For our numerical tests we chose

WN (s) =

{ (
4
π

)2
s(1− s) s ∈ [0, 1]

∞ else
.
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and perform a Gauss-Newton algorithm. The implementation should not be discussed further
at this point but let us point out some hints how to chose ε appropriately.

From the theoretical point of few ε should be very small to approximate the original
problem best, but numerically there should be a relation that connects ε

α to the mesh-size h.
Practical experience led us to set this relation to

ε

α
= τh τ ≥ 2

Furthermore, when one starts the optimization with a very small ε, then the double well
potential provides a too strict restriction and the algorithm cannot perform topology changes
other than merging and splitting. In this case the algorithm behaves more like classical level
set methods and therefore it is better to use a level set method, due to its clear, reliable and
simple implementation. Hence ε should be chosen large at the beginning and get close to the
finally chosen ε.

5 Numerical results

In this section we compare the classical level set method to the, in this paper, proposed level set
method that incorporates steepest descent type (3.2) and Newton-type (3.5) topology changes.
We just restrict our attention to problems with more than one connected component, namely
to the identification of two ellipses and of an elliptic hole in another ellipse. The two ellipse
case we consider for full measurements, i.e. ΓM = D as well as for boundary measurements,
i.e. ΓM = ΓN , while we consider the ellipse in ellipse case just for full measurements.

We perform all numerical tests on a fixed domain D = [−1, 1]2. To avoid inverse crime
(cf. Colton & Kress [19, p 133]), we generate the data on a different grid (finer mesh and
higher order basis functions) and perturb it with 1% Gaussen noise, measured in the ‖ . ‖L2(ΓM )

norm. We use 1% noise because we expect the numerical error of our discretization to be of
the same magnitude.

To visualize the evolution of the geometry for each algorithm, we present a series of
pictures (see Figure 4, 5, 6), starting with the first iteration up to the final solution. The
pictures are arranged such that each column represents the evolution for one algorithm,
namely the left column represents the classical level set method, the middle column represents
the level set method with incorporated steepest descent type topology change and the right
column represents the level set method with incorporated Newton-type topology change.
Furthermore we provide graphs that show the iteration number versus objective Jα(Ωk), L1-
distance dL1(Ωk,Ωexact) and the Hausdorff-distance dH(Ωk,Ωexact) of Ωk to the exact solution
Ωexact (see Figure 1, 2, 3). The L1-distance is defined via

dL1(Ω, Ω̃) := |Ω∆Ω̃| ,

and the Hausdorff-distance is defined by

dH(Ω, Ω̃) := max
(

sup
x∈Ω

inf
y∈Ω̃

|x− y|, sup
y∈Ω̃

inf
x∈Ω

|x− y|
)
.

Our theoretic results for the topological derivative (Theorem 2.6) as well as for the steepest
descent type (3.2) and the Newton-type (3.5) topology change are just valid inside the domain
D and all constants depend on the distance to the boundary ∂D. To respect this restriction,
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which can be relaxed in most cases, we restrict our algorithm to the domain [−0.9, 0.9]2, i.e.
we solve (3.2), (3.5) just for sets Ω ∈ K([−0.9, 0.9]2).

Our objective functional Jα(Ω) incorporates perimeter regularization. To get a proper
choice of α in our numerical tests we chose α such that the classical level set method, started
at the exact solution (with 1% noisy data), does not iterate away from the exact solution too
far. A too large α would not allow to get topology changes in our algorithms and a too small
α does not regularize the problem enough.

As initial guess we take for all of our test examples a circle with radius r = 0.7 and
centered at the origin (0, 0) for the classical level set method, while we started with no
material for the level set method incorporating steepest descent type respectively Newton-
type topological changes.

For the level set method incorporating a steepest descent type topology change we solve
(3.2) after every 10th classical level set iterations, while for Newton-type topology changes we
solve (3.5) after every 50th classical level set iteration.

5.1 Full measurements ΓM = D

In this section we consider the identification of two ellipses and an ellipse with an elliptic
hole from full measurements, i.e. ΓM = D. The full measurement case is mildly ill-posed,
something like twice differentiation, and provides a lot of data, such that we can expect good
results for all algorithms. Most challenging is probably the ellipse with elliptic hole. For this
case we expect that the classical level set method does not perform a topology change.

The partial differential equation (1.1), (2.4) is described by

(-1,-1) (1,-1)

(1,1)(-1,1)

u = 1

u = 1

u
=

1

u
=

1

Σ
Ω

D

−∆u+ χΩu =0 in D
u|ΓD

=1
∂u
∂n |ΓN

=0

−∆w + χΩw=−(u− û) in D
w|ΓD

=0
∂w
∂n |ΓN

=0

Measurements:

û =u|D inL2(D)
Jα(Ω) = 1

2‖u− û‖2
L2(D) + α|∂Ω|

Due to the Dirichlet boundary conditions u = 1 on ∂D and the “weak” influence of the
material to the solution u, solution u is close to the solution of the system without material
u(∅) = 1. Hence the linearized problem (3.3) approximates the original problem (1.1) quite
good and we can expect that the level set method, incorporating Newton-type topology
changes, performs very well and indeed we will see that already the first solution to (3.5)
provides a very good initial guess and predicts the correct topology of the desired geometry.

Two ellipses, ΓM = D

We choose α = 10−3‖û‖2
L2(ΓM )1% and compare the classical level set method to a level set

method incorporating a steepest descent type topology change (3.2) and a level set method
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incorporating a Newton-type topology change (3.5). As expected all three methods perform
very well and approximate the exact geometry quite accurately (see Figure 4 last row).

Classical level set method (Figure 4, 1st-column): The classical level set method per-
forms quite well and even performs the necessary topology change, by splitting, to
approximate the exact geometry. The number of iterations needed to approach the
solution is large but reasonable. The distance to the exact geometry in both, the L1-
and the Hausdorff-metric, is reasonable small see Figure 1.

Steepest descent type topology change (Figure 4, 2nd-column): The level set method
incorporating steepest descent type topology changes (3.2), does not predict the correct
topology within the first solution to (3.2). It needs a second call (Figure 4, 2nd row,
2nd column) to generate a further topology change. Even when this topology change
does not result into a sever decrease in the objective functional (see Figure 1(a), the
topological change can be observed in the jump of the Hausdorff-distance of the exact
geometry to the current geometry (see Figure 1(c)). Interestingly this topology change
adds two new geometries at the right position but does not try to reduce the “wrong”
geometry. Further calls of (3.2) does not cause any changes of the geometry. The only
topology change that occur, happens during the level set evolution where the above two
geometries merge together. Even when the level set method incorporating a steepest
descent type topology change almost reaches the minimum of the objective functional
Jα(Ω) before the classical level set method (see Figure 1(a)) it needs more iterations
until it stays at the final geometry.

Newton-type topology change (Figure 4, 3rd-column): The level set method incorpo-
rating Newton-type topology changes (3.5), already predicts the topology correct within
the first solution of (3.5) (see Figure 4 1st row, 3rd column). Also the objective function
Jα(Ω) as well as the L1- and Hausdorff-distance (see Figure 1) gets very close to its
optimum and need just a few correction steps with the classical level set method. This
is probably not too unexpected because the linearized problem (3.3) approximates the
nonlinear partial differential equation (1.1) very accurate. Even when the number of
iterations, to approach to the solution, is very low, note that one solution of (3.5) is
more expansive. We solve (3.5) only once and it takes approximately as much time
as 33 classical level set iterations, but even than the level set method incorporating
Newton-type topology changes is significantly faster than the two other methods.

Ellipse in ellipse, ΓM = D

For the elliptic hole in an ellipse we choose α = 10−3‖û‖2
L2(ΓM )1% and do the same compar-

isons as before. This geometry is more challenging and we expect that the classical level set
method stucks in a local minima and does not predict the correct geometry, even when the
objective function Jα(Ω) gets close to the optimum, while the power of the other two methods
should show up. Again the linearized partial differential equation (3.3) approximates the orig-
inal partial differential equation (1.1) very good and we can expect that the level set method
incorporating Newton-type topology changes perform very well within the first solution of
(3.5).
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(a) Iteration vs. Objective (b) Iteration vs. L1-Distance (c) Iteration vs. Hausdorff-
distance

Figure 1: Two ellipse, ΓM = D: Iteration vs. Objective, L1-distance, Hausdorff-distance

Classical level set method (Figure 5, 1st-column): As expected the classical level set
method does not identify the correct topology. Nonetheless the identified geometry
does not look to bad (visually) and also the L1- respectively the Hausdorff-distance (see
Figure 2(b), 2(c)) is not too bad. Also the objective function Jα(Ω) at the solution (see
Figure 2(a))is close to the minimum of the problem. The number of iterations is again
large, but still reasonable.

Steepest descent type topology change (Figure 5, 2nd-column): As for the two el-
lipse case the steepest descent type topology change (3.2) does not generate the correct
topology within one step but needs two steps (Figure 5, 2nd row, 2nd column). Further
solver calls of (3.2) does not force further changes. Hence after the second solution call
of (3.2) we evolve the geometry just by the classical level set method. This can also
be seen in the Hausdorff-distance (see Figure 2(c)) and this time also in the objective
function (see Figure 2(a)) which have a jump at iteration 12. We are at the final solu-
tion at approximately 40 level set iterations which makes an equivalent, due to 3 times
calling a solver for (3.2), of 50 classical level set iterations in total.

Newton-type topology change (Figure 5, 3rd-column): Again the level set method in-
corporating Newton-type topology changes (3.5), already predict the topology correct
within the first solution of (3.5) (see Figure 5 1st row, 3rd column) but this time the
objective function Jα(Ω) as well as the L1- and Hausdorff-distance (see Figure 2 are
not yet too close to its optimum. Hence we additionally need 20 to 40 classical level set
iteration to end at the final solution. Due to just one solution call of (3.5) these 40 iter-
ations plus solving (3.5) once, are equivalent to 76 iteration steps for the classical level
set method. In total the level set method incorporating Newton-type topology changes
is slightly more expansive than the level set method incorporating steepest descent like
topology changes

5.2 Boundary measurements ΓM = ΓN

Finally we consider the identification of two ellipses from just one set of boundary measure-
ments, i.e. ΓM = ΓN . This case is supposed to be exponentially ill-posed. Exponentially
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(a) Iteration vs. Objective (b) Iteration vs. L1-Distance (c) Iteration vs. Hausdorff-
distance

Figure 2: Ellipse in ellipse, ΓM = D: Iteration vs. Objective, L1-Distance, Hausdorff-
distance

ill-posed problems are an extreme challenge to every algorithm and usually one can not ex-
pect too good results for it. Especially topology changes are extremely difficult to achieve.
We expect that the classical level set method is not able to perform the desired topology
change, even when it managed it for the full measurements case. To deal with boundary
measurements we have to change slightly our boundary conditions for the partial differential
equations (1.1), (2.4), namely

(-1,-1) (1,-1)

(1,1)(-1,1)

∂u
∂n = sin(3πx)

∂u
∂n = sin(4πx)

∂
u
∂
n

=
si
n
(5
π
y
)

u
=

1

Σ
Ω

D

−∆u+ χΩu =0 in D
u|ΓD

=1
∂u
∂n |ΓN

=h

−∆w + χΩw=0 in D
w|ΓD

=0
∂w
∂n |ΓN

=−(u− û)

Measurements:

û =u|ΓN
inL2(ΓN )

Jα(Ω) = 1
2‖u− û‖2

L2(ΓN ) + α|∂Ω|

Due to the Neumann boundary conditions the solution u to above system, is not close to
the solution u(∅) = 1 (solution without material). Hence the linearized partial differential
equation (3.3) does not approximate the original problem (1.1) very good (when starting with
no material). As a consequence of this the first step of a Newton-type topology change (3.5)
shall not perform as good as in the full measurement cases.

Two ellipse ΓM = ΓN

Again we choose α = 10−3‖û‖2
L2(ΓM )1% and compare the classical level set method to a

level set method incorporating a steepest descent type topology change (3.2) and a level set
method incorporating a Newton-type topology change (3.5).
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Classical level set method (Figure 6, 1st-column): As expected the classical level set
method does not split. Nonetheless the finally identified geometry does not look too
bad. The number of iterations needed, til it appraoches its optimum, is very high but
this is not uncommon for exponentially ill posed problems. Although we do not get
the correct topology, the objective function Jα(Ω) (see Figure 3(a)) gets close to its
minimum.

Steepest descent type topology change (Figure 6, 2nd-column): As before the level
set method incorporating steepest descent type topology changes (3.2), does not predict
the correct topology within the first solution to (3.2). Even worse, this time the first
step seems to be far away and looks intuitively unreasonable. Iterating further and
calculating several times the solution to (3.2), the algorithm forces further topology
changes, some of them reasonable, some not (see Figure 6, 1st-column). Nonetheless
the objective function decreases, as predicted by the theory. After many iterations the
algorithm stops with four non-connected components, where two are reasonable and the
others are not.

Newton-type topology change (Figure 6, 3rd-column): Finally we consider the level
set method incorporating Newton-type topology changes (3.5). Already the first cal-
culation of the solution to (3.5) predicts the correct number of connected components
and later solution calls of (3.5) does not force any additional topology changes. As for
the steepest descent type topology changes, the first solution to (3.5) does not look too
good, but it is enough for the classical level set method to approach the exact solution.
For the final result presented in Figure 6 3rd column, 4th row the objective function and
also the L1- and Hausdorff-distance (see Figure 3) would decrease further. Hence, iter-
ating further would still improve the result. Nonetheless we terminated the algorithm,
because the number of iteration is already very high and we can already see from Figure
6 3rd-column, that the algorithm behaves better than the two other.

(a) Iteration vs. Objective (b) Iteration vs. L1-Distance (c) Iteration vs. Hausdorff-
distance

Figure 3: Two ellipse, ΓM = ΓN : Iteration vs. Objective, L1-distance, Hausdorff-distance
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6 Conclusion

In this paper we presented a way to generalize the notion of topological derivatives such that
we can also deal with perimeter regularized objective functionals. The generalization allows
to formulate sub minimization problems similar to steepest descent type and Newton-type
minimization problems, such that a descent in the objective function is guaranteed. This is
in contrast to classical topological derivatives where one gets just an indicator where to force
topology changes, but the indicator does not guarantee a descent in the objective function.

We incorporated this generalization of topological derivatives into the classical level set
method and showed at hand of some examples its applicability. While, in some cases, the
classical level set method failed to predict the correct topology, the suggested level set methods
with incorporated steepest descent type respectively Newton-type topology changes, succeed
to get the correct topology or at least forced topology changes.

The numerical results for the specific example, presented in this paper, were quite promis-
ing and an extension to more complicated problems might be of interest.
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[7] S. Amstutz and H. Andrä. A new algorithm for topology optimization using a level-set
method. Technical Report ITWM 78, ITWM, 2005.

[8] S. Amstutz and N. Dominguez. Topological sensitivity in the context of ultrasonic non-
destructive testing. Technical Report RICAM 2005-21, RICAM, 2005.



REFERENCES 23

[9] S. Amstutz, I. Horchani, and M. Masmoudi. Crack detection by the topological gradient
method. Control and Cybernetics, 34(1):81–101, 2005.

[10] H. Ben Ameur, M. Burger, and B. Hackl. Level set methods for geometric inverse
problems in linear elasticity. Inv. Prob., 20(3):673–696, 2004.

[11] M. P. Bendsøe and O. Sigmund. Topology Optimization: Theory, Methods and Applica-
tions. Springer, Berlin, 2002.

[12] A. Braides. Γ-convergence for beginners. Oxford University Press, 2002.

[13] M. Burger. A level set method for inverse problems. Inverse Probl., 17(5):1327–1355,
2001.

[14] M. Burger. A framework for the construction of level set methods for shape optimization
and reconstruction. Interfaces and Free Boundaries, 5:301–329, 2003.

[15] M. Burger. Levenberg-Marquardt level set methods for inverse obstacle problems. Inverse
Problems, 20:259–282, 2004.

[16] M. Burger, B. Hackl, and W. Ring. Incorporating topological derivatives into level sets
methods. J. Comp. Phys., 194(1):334–362, 2004.

[17] M. Burger and M. Hintermüller. Projected gradient flows for BV / level set relaxation.
PAMM, 5:11–14, 2005.

[18] M. Burger and S. J. Osher. A survey on level set methods for inverse problems and
optimal design. European J. Appl. Math., 16:263 – 301, 2005.

[19] D. Colton and R. Kress. Inverse Acoustic and Electromagnetic Scattering Theory.
Springer, second edition, 1998.

[20] M. Delfour and J.-P. Zolésio. Shapes and Geometries: Analysis, Differential Calculus,
and Optimization. Advances in Desing and Control. SIAM, Philadelphia, 2001.

[21] O. Dorn, E. Miller, and C. Rappaport. A shape reconstruction method for electromag-
netic tomography using adjoint fields and level sets. Inverse Problems, 16:1119–1156,
2000.

[22] H. A. Eschenauer, V. Kobelev, and A. Schumacher. Bubble method for topology and
shape optimization of structures. Journal of Structural Optimization, 8:42–51, 1994.

[23] H. A. Eschenauer and A. Schumacher. Topology Optimization Procedure using Hole
Positioning Criteria - Theory and Applications, pages 135–196. Number 374 in CISM
Courses and Lectures. Springer, Wien New York, 1997.

[24] M. Giaquinta. Introduction to Regularity Theory for Nonlinear Elliptic Systems.
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(a) Classical Level Set Methods (b) Steepest descent like topology
changes

(c) Newton-type topology changes

Figure 4: Two ellipse, ΓM = D: Evolution of algorithm
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(a) Classical Level Set Methods (b) Steepest descent like topology
changes

(c) Newton-type topology changes

Figure 5: Ellipse in ellipse, ΓM = D: Evolution of algorithm
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(a) Classical Level Set Methods (b) Steepest descent like topology
changes

(c) Newton-type topology changes

Figure 6: Two ellipse, ΓM = ΓN : Evolution of algorithm


