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Abstract

We investigate inverse problems related to the transient semiconductor device
models. Our main focus is the identification of the doping profile from indirect
transient measurements of electrical currents and capacitances. We present the
underlying analysis and discuss the applied regularization methods. In addition, a
reduced model obtained by asymptotic expansion of the drift-diffusion equations
is considered, which leads to the special case of identifying piecewise constant
doping profiles. Furthermore we discuss the identifiabilityof doping profiles and
present uniqueness and non-uniqueness results for regularized solutions.

1 Introduction

The first fundamental semiconductor device model, called the drift-diffusion equations
was introduced by Van Roosbroeck [16] in 1950. Today different models of various
complexity exist, but the drift-diffusion equations seem to be a good compromise be-
tween efficiency and accurate description of the underlyingdevice physics. For detailed
information on the derivation of semiconductor device models and the corresponding
analysis we refer to [12] and [14].
Nowadays industry is strongly interested in the identification of doping profiles for
quality control purposes. Furthermore there has been a growing demand on optimiz-
ing the performance of semiconductor devices. For identification problems destructive
tests, like spreading resistance profiling or non-destructive techniques, such as current,
capacitance and or laser-beam-inducted current (LBIC) measurements, are used.
Identification and optimal design problems using current orcapacitance measurements
have been investigated concerning steady state models. There has been recent work on
optimizing the performance of devices (see e.g. [11],[5]) and in identifying relevant
material properties (see e.g. [3],[4],[2]). The inverse problem of reconstructing the
doping profile from LBIC measurements has been considered in[2] and [8].
The main focus of this paper is the identification of the doping profile from indirect
transient measurements. In steady state models current andcapacitance measurements
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are taken for several applied voltages in equilibrium. In case of the transient model
several measurements, taken at different time steps, are available for a single applied
voltage. This significant advantage motivates the use of time dependent models for the
reconstruction of the doping profile.
The transient drift-diffusion model is a system of nonlinear partial differential equa-
tions and requires consistent initial values. In practice it is assumed that a semiconduc-
tor device is at thermal equilibrium att = 0, therefore we use the equilibrium solution
as initial value for the transient problem. In this context we discuss inverse problems
related the different measurement techniques.
The paper is organized as follows. In section 2 we introduce the transient drift-diffusion
equations and discuss the underlying analysis briefly. The inverse problem of recon-
structing the doping profile from indirect measurements is presented in section 3. Fur-
thermore the adjoint approach, used for gradient evaluation is introduced shortly in sec-
tion 4. The identifiability of the doping profile from indirect measurements is discussed
in section 5. Finally we present solutions of computationalexamples in section 6.

2 The Transient Drift-Diffusion Equations

The drift-diffusion model stated on a bounded domainΩ ⊂ R
d, d = 1, 2, 3 reads as

div(ǫ∇V ) = q(n − p − C) (1a)

div Jn = q (∂tn + R) (1b)

div Jp = q (−∂tp − R) (1c)

Jn = q (Dn∇n − µnn∇V ) (1d)

Jp = q (−Dp∇p − µpp∇V ) . (1e)

The variables are the electrical potentialV ( −∇ V denotes the electric field), the
concentrations of free negatively charged carriersn (electrons) and positively charged
carriersp. The predefined doping profileC = C(x) of the semiconductor represents
the density of implanted ions. The current densities of the holes and the electrons are
denoted byJn andJp respectively. The total current densityJ is given by

J = Jn + Jp.

The parametersDn, Dp, µn, andµp are the diffusion coefficients and mobilities of
electrons and holes, respectively. In general they depend on the strength of the electric
field and can be modelled by positive functions. For the sake of simplicity they are
assumed to be constants in the following. Hereǫ andq are the permittivity constant
and the elementary charge, which are positive constants.
The functionR is the recombination-generation rate. It can be interpreted as the dif-
ference of the rate at which electron-hole carrier pairs recombine and the rate at which
they are generated in the semiconductor. Several models canbe found in literature, we
consider the Shockley-Read-Hall (SRH) recombination-generation rate

RSRH =
np − n2

i

τp(n + ni) + τn(p + ni)

whereni denotes the intrinsic density andτn andτp are the lifetime of the electrons
and holes respectively. Assuming that the system is in thermal equilibrium and that
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the space charge (given by the right hand side of (1a)) vanishes, the Dirichlet boundary
conditions can be computed as

n(x, t) = nD(x) =
1

2
(C(x) +

√

C(x)2 + 4n2
i ) on∂ΩD

p(x, t) = pD(x) =
1

2
(−C(x) +

√

C(x)2 + 4n2
i ) on∂ΩD

V (x, t) = VD(x, t) = U(x, t) + UT ln
nD(x)

ni

on∂ΩD,

whereUT is the thermal voltage andU(x, t) denotes the applied potential on∂ΩD.
The Neumann parts∂ΩN model insulating surfaces, therefore we obtain

∂V

∂ν
= 0 Jn(x, t) · ν = 0 Jp(x, t) · ν = 0 on∂ΩN ,

whereν denotes the unit outward normal vector on the boundary∂Ω.
Initial conditions for the free carrier concentrationsn andp at the timet = 0 are given
by

n(x, 0) = nI(x) p(x, 0) = pI(x) x ∈ Ω.

Applying a suitable scaling to (1) (cf. [14]), we obtain the dimensionless formulation
of the drift-diffusion equations

λ2△V = n − p − C (2a)

∂tn = div Jn − R (2b)

∂tp = − div Jp − R (2c)

Jn = µn (∇n − n ∇V ) (2d)

Jp = µp (−∇p − p ∇V ) . (2e)

The scaled Dirichlet boundary conditions on∂ΩD are

n(x, t) = nD(x) =
1

2

(

C(x) +

√

C (x)
2
+ 4σ4

)

p(x, t) = pD(x) =
1

2

(

−C(x) +

√

C (x)2 + 4σ4

)

V (x, t) = VD(x, t) = U(x, t) + Vbi(x)

Vbi(x) = ln

(

1

2σ2

(

C (x) +

√

C (x)
2
+ 4σ4

))

and on the Neumann boundary∂ΩN the scaled conditions are given by

∂V

∂ν
= 0 Jn(x, t) · ν = 0 Jp(x, t) · ν = 0.

The parametersλ, the so-called Debye length of the device, andσ are given by:

λ =

(

ǫUT

qC̃L2

)
1

2

σ =

(

ni

C̃

)
1

2

.

Both parameters depend on the characteristic lengthL of the semiconductor device and
the maximum doping concentratioñC. For small devices and highly doped semicon-
ductorsλ tends to zero acting as a singular perturbation parameter.
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2.1 The Equilibrium Case

A semiconductor device is in thermal equilibrium, ifU(x) ≡ 0, i.e., no potentials are
applied to the semiconductor contacts andR ≡ 0 i.e., the thermal generation is exactly
balanced by recombination.
Solutions of the reduced stationary drift-diffusion equations

λ2∆V = n − p − C

0 = µn (∇n − n ∇V )

0 = µp (∇p − p ∇V )

are then given by

n = σ2eV p = σ2e−V . (3)

The system then reduces to a nonlinear Poisson equation

λ2∆V = σ2eV − σ2e−V − C (4a)

for the potentialV with the boundary conditions

V (x) = Vbi(x) = ln (
1

2σ2
(C(x) +

√

C(x)2 + 4 σ4) ∀x ∈ ∂ΩD (4b)

∂V

∂ν
= 0 ∀x ∈ ∂ΩN . (4c)

In practice it is assumed that the process starts around equilibrium. Thereforen0 and
p0 given by (3), withV0 obtained by solving the Poisson equation (4), can be used as
initial value for the time-dependent problem (2a).

2.2 Analysis of the Transient Drift-Diffusion Model

In this section we discuss existence and uniqueness resultsfor the transient drift-
diffusion model (DD-model) and specialize them to the one-dimensional case.
In [9] existence and uniqueness of global-in-time solutions for the transient drift-diffusion
equations is proven. Letd denoted the space dimension andd ≤ r ≤ 6. Then
under the assumption that the doping profile satisfiesC ∈ Lr(Ω) it is shown that
(V − VD, n − nD, p − pD) ∈ W whereW is defined as follows:

W =
{

C([0, T ]; W 2
2,0) ∩ L2([0, T ]; W 2

r,0) ∩ H1([0, T ]; X)
}

× Y × Y,

with

Y = C([0, T ]; L2) ∩ L2([0, T ], X)∩ H1([0, T ], X∗)

X =
{

v ∈ W 1
2 | v = 0 on∂ΩD

}

.

We consider the following assumptions:

(A1) Ω = [0, 1];

(A2) The doping profile satisfiesC ∈ Lr(Ω);
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(A3) The mobilities satisfyµn ∈ L∞(Ω), µp ∈ L∞(Ω);

(A4) The recombination-generation rate satisfiesR ∈ C([0, T ], L2(Ω));

Note that assumption (A4) for the RSH recombination-generation rate is satisfied if
τn, τp ∈ L∞(Ω). For the special case of spatial dimension one we are able to show
higher regularity of(V, n, p).

Proposition 2.1. Under the assumptions (A1)-(A4) stated above every solution
(V − VD, n − nD, p − pD) ∈ W satisfies(V, n, p) ∈ W̃ whereW̃ is defined as
followsW̃ = C([0, T ], H2(Ω)) × C([0, T ], W 1

∞(Ω))2.

For the proof of Proposition 2.1 we refer to [17]. Furthermore in [13] it has been proven
that the linearization of the drift-diffusion equations isa strongly continuous semigroup
and invertible.

3 Identification of the doping profile

Inverse dopant profiling corresponds to the identification of the doping profileC(x)
in system (2a) from indirect measurements. The following types of measurements are
used in practice:

1) Current measurements:
The current flow through a contactΓ1 ⊂ ∂ΩD is given by

IΓ1
(U) =

∫

Γ1

(Jn + Jp) · ν ds (5)

2) Capacitance measurements:
The mean capacitance at a contactΓ1 ⊂ ∂ΩD is given by

CapΓ1
(U) =

d

dU

(
∫

Γ1

∂V

∂ν
ds

)

(6)

Note that forΓ1 = ∂Ω

Cap(U) =
d

dU

(
∫

∂Ω

∂V

∂ν
ds

)

=
d

dU

(
∫

Ω

∆V dx

)

=
d

dU
(Q) ,

whereQ denotes the total space charge.
In these cases we assume thatΓ1 ⊂ ∂ΩD is sufficiently regular with non zero measure.
A second contact is denoted byΓ2 ⊂ ∂ΩD with Γ1 ∩ Γ2 = ∅. In the following we
investigate whether the operators, mapping the applied potentialU onΓ2 to the current
or capacitance measurements, are well-defined and continuous between appropriate
spaces.

The Current-Voltage Map

The voltage current data are the measurements of the normal component of the current
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densityJ on a contactΓ1 ⊂ ∂ΩD for an applied time dependent voltageU(x, t). The
current-voltage map is given by:

ΣC : L2([0, T ], H
1

2 (Γ2)) → L2([0, T ]) (7)

U 7→ IΓ1
(U)

In [17] we proof the following proposition

Proposition 3.1. The nonlinear operatorΣC defined by (7) is well-defined, continuous
and Fréchet-differentiable.

Capacitance Measurements

Capacitance measurements are the variation of the electricflux in normal direction on a
contactΓ1 with U = 0 with respect to the applied voltageU onΓ2. The corresponding
operator is given by

TC : L2([0, T ], H
1

2 (Γ2)) → L2([0, T ])

φ 7→

∫

Γ1

∂V̂

∂ν
ds

whereV̂ is the solution of the linearized drift-diffusion equations around equilibrium,
i.e.

λ2∆V̂ = n̂ − p̂ (8a)

∂n̂

∂t
= div

(

µn

(

∇n̂ − σ2 eV0 ∇V̂ − n̂ ∇V0

))

(8b)

∂p̂

∂t
= div

(

µp

(

∇p̂ + σ2 e−V0 ∇V̂ + p̂ ∇V0

))

(8c)

with homogeneous initial conditions, homogeneous Neumannboundary conditions and
the Dirichlet boundary conditions on∂ΩD

V̂ = φ, n̂ = p̂ = 0.

Here V0 denotes the solution of the Poisson equation in thermal equilibrium given
by (4). We can show that the nonlinear operatorTC is well-defined, continuous and
Fréchet-differentiable between suitable Sobolev spaces,see [17].
In the next sections we discuss the identification of the doping profile from either cur-
rent or capacitance measurements.

3.1 Identification from Voltage-Current Data

The abstract formulation of the identification problem using current measurements is
given by

F (C) = Y δ (9)

with

F : D(F ) ⊂ X 7→ Y

C 7→ ΣC(U)
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andX = L2(Ω), Y = L2([0, T ]). The domain of the operator F is restricted to

D(F ) =
{

C ∈ H1(Ω) | C ≤ C(x) ≤ C a.e. inΩ
}

with positive constantsC andC.
Y δ represents the noisy current data bounded byδ,i.e.

∥

∥Y δ − Y
∥

∥ ≤ δ

Under these assumptions we are able to verify the following result.

Proposition 3.2. The map

F : D(F ) ⊂ X → Y

C 7→ ΣC(U)

is well-defined, continuous and Fréchet-differentiable. Furthermore the mapF is
weakly sequentially closed, i.e. for any sequence{Cn} ⊂ D(F ), weak convergence of
Cn to C ∈ X and weak convergence ofF (Cn) to y ∈ Y imply thatC ∈ D(F ) and
F (C) = y.

The main idea of the proof is to rewrite the operatorF as

F = F1 ◦ F2

F2 : C → (n, p, V )

F1 : (n, p, V ) → J · ν

and to show that both operators are continuous and Fréchet differentiable. For further
information on the proof we refer to [17].

3.2 Identification from Capacitance Measurements

Similar to the case of current-voltage data the identification problem can be written in
the abstract form

F (C) = Y δ (10)

with

F : D(F ) ⊂X 7→ Y (11)

C 7→ TC(U) (12)

andX = L2(Ω),Y = L2([0, T ]). The domain of the operatorF is the same as in the
case of the voltage-current map.

Proposition 3.3. The map

F : D(F ) ⊂ X → Y

C 7→ TC(U)

is well-defined, continuous and Fréchet-differentiable inX . Furthermore the operator
F is weakly sequentially closed.

The proof uses similar arguments as in case of current measurements, again we refer
to [17] for details.
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3.3 Regularization Methods

Because of the ill-posedness and the noise in the data causedby measurement errors,
standard iterative methods cannot be used to solve equation(9) or (10) in a stable way.
In this section regularization methods are discussed, which allow a stable solution of
the inverse doping problem.
The noisy dataY δ is bounded byδ, in case of current measurements one obtains

∫ T

0

|IΓ1
(U) − f(t)|2 dt ≤ δ2,

wheref(t) denotes the current measured onΓ1 ⊂ ∂ΩD. Using capacitance measure-
ments the assumption is given by

∫ T

0

|CapΓ1
(U) − q(t)|2 dt ≤ δ2,

whereq(t) is the capacitance measured onΓ1 ⊂ ∂ΩD.

Tikhonov Regularization

A standard regularization method for nonlinear problems isthe Tikhonov regulariza-
tion. Using Tikhonov regularization equation(9) is replaced by the minimization prob-
lem

∥

∥F (C) − Y δ
∥

∥

2

L2([0,T ])
+ α ‖C − C∗‖2

L2(Ω) → min
C∈D(F )

, (13)

whereα > 0, C∗ is a starting value andu = (V, n, p, V0). We refer toα as the
regularization parameter, which is determined by the Morozov’s discrepancy principle,
i.e. the largestα such that

∥

∥F
(

Cδ
α

)

− Y δ
∥

∥

L2([0,T ])
= δ, (14)

is satisfied. HereCδ
α denotes the regularized solution, which depends on the regular-

ization parameterα and on the noise levelδ.
SinceF is continuous and weakly sequentially we are able to verify the following
result.

Proposition 3.4. The minimization functional (13) admits a solutionC, if F is continu-
ous and weakly sequentially closed. Furthermore the problem has a stable dependence
on the perturbed dataY δ, i.e. if δ tends to zero the regularized solution converges to
the exact solution.

For detailed information on the proof we refer to [17], for the convergence analysis to
[7].

Total Variation Regularization

Another Tikhonov-type regularization method uses the total variation of a function.
This approach, introduced in [15], was originally used in image restoration, because
discontinuities in the solution are preserved. Because of the discontinuity of the doping
profile at the pn-junction this approach is interesting. Foradditional information we
refer to [6, 1].
The total variation functional is defined by:

J0(u) := sup
v∈V

∫

Ω

u div v dx,
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where the set of test functions is given by

V =
{

v ∈ C∞
0 (Ω)d | ‖g‖

∞
≤ 1
}

.

If u ∈ C1(Ω) one can show, using integration by parts that

J0(u) =

∫

Ω

|∇u| dx (15)

The seminorm (15) is not differentiable where∇u = 0 therefore one often considers
the slightly modified functional

Jβ(u) =

∫

Ω

√

|∇u|2 + β dx

with β ≥ 0. The corresponding regularized minimization problem is given by

∥

∥F (C) − Y δ
∥

∥

2
+ αJβ(C) → min

C∈D(F )
, (16)

whereα denotes the regularization parameter, determined by the discrepancy princi-
ple (14).
In [1] it is shown that a solution of the minimization problem(16) exists, if Q is weakly
lower semicontinuous and BV-coercive. For both current andcapacitance measure-
ments we are able to verify the properties in an analogous to Tikhonov regularization.

4 Sensitivities

For either type of regularization method one has to solve a constrained minimization
problem which can be written as

Q(u(C), C) → min
C

subject to P (u(C), C) = 0

The restrictionP (u(C), C) = 0 is the transient drift-diffusion system (2a) and the sys-
tem in thermal equilibrium (4) withu = (V, V0, n, p).
In the previous section we proved that for either regularization method a minimizer ex-
ists and that all operators are continuous and Fréchet differentiable. Therefore one can
use gradient based methods for minimization. The total derivative of the minimization
problem can be calculated via the corresponding Lagrange functional using the adjoint
equations. The Lagrange functionalL is given by

L(u, C, λ) = Q(u, C) + 〈P (u, C), λ〉 .

Using the Kuhn Tucker restrictions

∂L

∂u
(u, C, λ) =

∂Q

∂u
(u, C) +

∂P

∂u

∗

(u, C) λ = 0 (17a)

∂L

∂C
(u, C, λ) =

∂Q

∂C
(u, C) +

∂P

∂C

∗

(u, C) λ = 0 (17b)

∂L

∂λ
(u, C, λ) = P (u, C) = 0 (17c)
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the Lagrange parameterλ can be calculated using (17a). By the chain rule the lin-
earization ofQ is given by

dQ

dC
=

∂Q

∂u

du

dC
+

∂Q

∂C
(18)

subject to the constraint thatdu/dC solves the linearized equation

∂P

∂C

du

dC
+

∂P

∂C
= 0.

Then insertingλ into (17b) and rearranging (18) yields to

dQ

dC
h =

∂L

∂C
h ∀h ∈ L2.

Hence, the total derivativedQ
dC

can be calculated using the Fréchet derivative of the
corresponding Lagrange functionalL with respect toC.
For solving (13) or (16) we use a projected steepest descent algorithm or a projected
BFGS method. In case of unipolar diodes the additional constraint thatC(x) ≥ 0 had
to be satisfied.

Current Measurements

The adjoint system in case of current measurements and Tikhonov regularization is
given by

−λ1 −
∂λ2

∂t
− µn ∆λ2 − µn ∇V ∇λ2 + (λ2 + λ3)

∂R

∂n
= 0 (19a)

λ1 −
∂λ3

∂t
− µp ∆λ3 + µp ∇V ∇λ3 + (λ2 + λ3)

∂R

∂p
= 0 (19b)

λ2∆λ1 + µn n ∆λ2 − µp p ∆λ3 = 0 (19c)

in Ω × [0, T ] and

λ2 ∆λ4 − σ2 λ4 (eV0 + e−V0) = σ2 (λ2(·, 0) eV0 − λ3(·, 0) e−V0) (19d)

in Ω. The Dirichlet boundary conditions are

λ2 =

∫

∂Ω

[µn (∇n − n∇V ) − µp (∇p + p ∇V )] ν ds − f (t) onΓ1 × [0, T ]

λ3 = −

∫

∂Ω

[µn (∇n − n∇V ) − µp (∇p + p ∇V )] ν ds + f (t) onΓ1 × [0, T ]

λ2 = 0 onΓ2 × [0, T ]

λ3 = 0 onΓ2 × [0, T ]

λ1 = 0 on∂ΩD × [0, T ]

λ4 = 0 on∂ΩD.

Furthermore we have homogeneous Neumann boundary conditions and the terminal
conditions are given by:

λ2(x, T ) = λ3(x, T ) = 0 ∀x ∈ Ω.
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The partial derivative of the Lagrange functional in case ofTikhonov regularization
(13) is given by

∂L

∂C
hC =

∫ T

0

∫

Ω

λ1 hC dx dt +

∫

Ω

λ4 hC dx + α

∫

Ω

(C − C∗)∇C hC dx. (20)

Capacitance Measurements

In case of capacitance measurements the adjoint system is given by

λ2 ∆λ1 + µn σ2 eV0 ∆λ2 − µp σ2 e−V0 ∆λ2 = 0 (21a)

−λ1 −
∂λ2

∂t
− µn ∆λ2 − µn ∇V0 ∇λ2 = 0 (21b)

λ1 −
∂λ3

∂t
− µp ∆λ3 + µp ∇V0 ∇λ3 = 0 (21c)

and inΩ

λ2∆λ4 − σ2 eV0λ4 − σ2 e−V0λ4 =
∫ T

0

(

−µn n̂ ∆λ2 + σ2 eV0 ∇V̂ ∇λ2

)

dt +

+

∫ T

0

(

µp p̂ ∆λ3 + σ2 e−V0 ∇V̂ ∇λ3

)

dt +

+ λ2(x, 0) σ2 eV0 V̂ (x, 0) − λ3(x, 0) σ2 e−V0 V̂ (x, 0).

(21d)

The corresponding Dirichlet boundary conditions on∂ΩD = Γ1∪Γ2,with Γ1∩Γ2 = ∅
are

λ1 = −
1

λ2

(

∂V̂

∂ν
− q (t)

)

onΓ1 × [0, T ]

λ1 = 0 onΓ2 × [0, T ]

λ2 = 0 on∂ΩD × [0, T ]

λ3 = 0 on∂ΩD × [0, T ]

λ4 = 0 on∂ΩD

Om the rest of the boundary we have homogeneous Neumann boundary conditions.
Again we obtain homogenous terminal conditions forλ2 andλ3 instead of initial con-
ditions. The partial derivative of the corresponding Lagrange functional with respect
to C is given by

∂L

∂C
hC =

∫

Ω

λ4 hC dx + α

∫

Ω

(C − C∗)∇C hC dx. (22)

Algorithm

From the analysis of the preceding sections we can derive thefollowing algorithm
for the minimization problem (13).

Input: initial valueC∗ = C∗(x), applied potentialU = U(x, t),
measured currentf = f(t) or measured capacitanceq = q(t)
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(1) Solve drift-diffusion equations in thermal equilibrium (4) to obtainV0

(a) Solve the drift-diffusion equations (2a) forCk to obtain(V, n, p) and cal-
culate the total current flowJ (5)

(b) Solve the linearized drift - diffusion equations (8) to obtain
(V̂ , n̂, p̂) and the capacitance Cap given by (6).

(2) Solve (19) and or (21) for(λ1, λ2, λ3, λ4)

(3) Calculate∂L
∂C

(Ck) via (20) or (22)

(4) DetermineCk+1 using gradient based methods such as steepest descent

(5) If convergence criterion is satisfied stop, else return to (1)

Both (2a) and (8) are systems of time dependent partial differential equations, the com-
putation of the solutions is quite time consuming. For the reconstruction of the dop-
ing profile one can use either current measurements and/or capacitance measurements.
Using both types of measurements simultaneously requires the solution of five systems
of partial differential equations, first the equilibrium solution, then the drift-diffusion
equations and their linearization and finally their sensitivities. This causes a high nu-
merical effort in the reconstruction algorithm already in the one-dimensional case.

5 Non-uniqueness of Solutions

The main focus in this section is the question whether the data determines the dop-
ing profile uniquely. In mathematical terms this question iscalled the identifiability,
which determines whether the parameter-to-output mapF is injective. We furthermore
present numerical examples to illustrate the numerical difficulties.
Gajewski proved in [9] that for the transient drift-diffusion equations a unique solution
exists. Uniqueness results were presented in the steady state case under the assumption
that the applied voltage is small (see [3]).
In [3] it is shown that in one dimension the doping profile of a unipolar diode can
be identified uniquely from a single transient measurement.But for this result addi-
tional smoothness assumptions are required: The doping profile is assumed to be a
continuously differentiable function whose partial derivatives are Hölder continuous
with H"/older exponentα = 1, i.e. C ∈ C1,1(Ω). In case of discontinuous doping
profiles these results do not apply.
So far there has been no results on the unipolar multi-dimensional inverse doping prob-
lem. For more general devices like np-diodes no uniqueness results have been derived
yet.
Throughout this section only the one-dimensional case is considered and the following
assumptions are made:

• The mobilities of the electrons and holes are equal, i.e.µn = µp.

• The relaxation times of the electrons and holes are equal, i.e. τn = τp.

Under these assumptions we can show that the inverse problemfor the drift-diffusion
equations, considering both current and capacitance measurements admits at least two
solutions.

12



Proposition 5.1. There exist at least two solutionsCi ∈ H1(Ω), i = 1, 2 to the inverse
problem for the drift-diffusion equations (2a). In particular, if (n1, p1, V1, C1) is a
solution of (2a) there exists a second solution(n2, p2, V2, C2) given by

C2(x) = −C1(1 − x), (23a)

n2(x, t) = p1(1 − x, t), (23b)

p2(x, t) = n1(1 − x, t), (23c)

V2(x, t) = −V1(1 − x, t) + U(x, t), (23d)

such that

Jn2
= Jp1

, Jp2
= Jn1

Cap (V2) = Cap (V1).

For details on the proof we refer to [17].
We consider Tikhonov regularization and obtain the minimization problem

Qf(u, C) = |F (C) − f(t)|2 + α |C − C∗|2 → min
C

(24)

wheref(t) denotes the current measurements or

Qq(u, C) = |F (C) − q(t)|2 + α |C − C∗|2 → min
C

(25)

whereq(t) refers to the capacitance measurements. The operatorF maps the doping
profile C either to the current or to the capacitance measured at a contactΓ1. In both
cases the weak sequential closedness ofF , see Proposition 3.2, ensures the existence
of a solution for both minimization problems. Under the assumptions made above it
has already been shown that the inverse problem admits multiple solutions, therefore
one cannot expect unique minimizers of both functionals.
Indeed it is possible to construct cases where the multiple solutions are both minimizers
of (24) and (25).

Proposition 5.2. Let the assumptions of Proposition 5.1 and

C∗(x) = −C∗(1 − x).

hold. Then there exist at least two minimizers of the optimization problem (24) and
(25). The multiple solutions of the inverse problem given by(23) are minimizers of the
Tikhonov functionals (24) and (25). Furthermore

Qf(n1, p1, V1, C1) = Qf (n2, p2, V2, C2)

Qq(n1, p1, V1, C1) = Qq(n2, p2, V2, C2)

holds.

For the proof of the proposition we refer to [17]. In case of total variation regulariza-
tion one can show similar results.
We mention that our analysis of multiple solutions was motivated by similar results
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concerning the steady state DD-model (cf. [10]). Considering a slightly different mini-
mization functional one could avoid the existence of the multiple solutions constructed
above. This functional is given by:

Q(u, C) =

∫ T

0

∣

∣

∣

∣

∫

Γ1

Jn dν − fn(t)

∣

∣

∣

∣

2

dt +

∫ T

0

∣

∣

∣

∣

∫

Γ1

Jp dν − fp(t)

∣

∣

∣

∣

2

dt +

+ α

∫

Ω

| C − C∗ |2 dx.

(26)

For (26) the couple(n2, p2, V2, C2) constructed in (23) is not a minimizer any more.
This provides reasonable remedy for optimal design and optimal control tasks as con-
sidered in [10], but for the identification of the doping profile this means that one has
to measure the current caused by the holes and the current caused by the electrons sep-
arately, which is not possible in practice !

6 Numerical examples

In this section we present results of computational examples in case of one-dimensional
unipolar diodes . All computations have been performed on the software systems MAT-
LAB 7 and FEMLAB 3.1.
In our examples we used typical values of the parameters of silicon at room tempera-
ture(T = 300K), listed in Table 1.

Parameter Physical Meaning Numerical Value
q elementary charge 1.6 · 10−19 As
ni intrinsic density 1010 cm−3

ǫS permittivity constant 10−12 As V−1s−1

µn mobility of electrons 1.5 · 103 cm2V−1s−1

µp mobility of holes 103 cm2V−1s−1

UT thermal voltage 0.0259 V
τn lifetime of electrons 10−6 s
τp lifetime of holes 10−5 s

Table 1: Physical parameters for silicon at room temperature

To generate artificial measurement data, we solved the direct problem (2a) for an ap-
plied voltageU and a given doping profileC. The forward problem was solved on a
regular mesh with800 nodes, using a piecewise linear finite element base. In orderto
avoid an inverse crime we used a different sized mesh for the evaluation of the gradient
of (13) or (16).
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6.1 n-Diode

The simplest semiconductor device is a one-dimensional unipolar diode. The exact
doping profile is given by

C(x) =

{

1 0 ≤ x ≤ 0.5,

0 0.5 < x ≤ 1.

The drift-diffusion system (2a) and the sensitivities (19)are solved on a regular mesh
of 240 nodes. We choose a diode of lengthL = 10−4 cm and a maximum doping
concentration of̃C = 1016 cm−3.
The applied voltage is

U(x, t) = 10−5(t + sin(t)).

For the applied time scaling we obtain

t =
L2

UT µ̃
ts =

1e−8

1e−2
ts = 1e−6s.

Solving the DD-model over a large time interval[0 : 100 s : 10000 s] seems to be a
realistic setup.
Reconstructions have been performed using a projected steepest descent or a projected
BFGS algorithm with the constraint

C(x) ≥ 0.

Figure 1(a) shows the reconstructed doping profile of a unipolar diode using steepest
descent algorithm and Tikhonov regularization. The evaluation of the corresponding
cost function is given in Figure 1(b). After30 iterations a regularized solution is ob-
tained, the corresponding value of Q is10−6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Reconstructed doping profile of a unipolar diode

reconstructed solution
exact solution

(a) Reconstructed doping profile

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

iterations

Q
(u

,C
)

Evaluation of the cost functional Q

(b) Evaluation of the cost functional Q

Figure 1: Reconstructed doping profile using current measurements and Tikhonov reg-
ularization

In Figure 2(a) and 2(b) we see the regularized solution and the corresponding cost
functionalQ using total variation regularization, withβ = 10−5.The solution is similar
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(a) Reconstructed doping profile
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Evolution of the cost functional Q

(b) Evaluation of the cost functional Q

Figure 2: Reconstructed doping profile using current measurements and TV regular-
ization

to the one obtained by Tikhonov regularization, but the gradient of the doping profile
is steeper around the junction.
In case of noisy data the choice of the regularization parameter is important for the

quality of the regularized solution. According to the discrepancy principle (14) we
choose the regularization parameter such that

δ ≤
∣

∣F (C) − Y δ
∣

∣ ≤ τ δ (27)

with τ = 1.1.
Figure 3(a) shows the regularized solution for the noise level δ = 5%.
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(a) Reconstructed doping profile

0 5 10 15 20 25
0

5

10

15

20

25

30

35
Evolution cost functional Q

iter

Q

(b) Evaluation of the cost functional Q

Figure 3: Reconstructed doping profile using current measurements withδ = 5%
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6.2 n
+
nn

+ Diode

A n+nn+ Diode is the combination of a highly doped n-region, a lower doped n-region
and another higher doped n-region. The corresponding doping profile is given by:

C(x) =











1 0 ≤ x ≤ 0.3

0.1 0.3 < x < 0.7

1 0.7 < x ≤ 1.

We started with a good initial guess

C∗(x) =











1 0 ≤ x ≤ 0.3

0.2 0.3 < x < 0.7

1 0.7 < x ≤ 1.

The value of the applied potential was the same as in the case of a unipolar diode.
Because of the two jumps we used a finer mesh with480 nodes. After three iterations
the reconstruction stopped because the calculated gradient yielded no descent direction.
Figure 4(a) shows the reconstructed doping profile after 3 iterations, Figure 4(b) the
gradient evaluation for this doping profile.
In the case of capacitance measurements such issues do not occur. The parameters are
the same as in the case of current measurements. The reconstruction from capacitance
measurements is more time consuming than in case of current measurements due to
the numerical integration of the right hand side of equation(21d). The reconstructed
doping profile and the evolution of the cost functional can beseen in Figure 5(a) and
Figure 5(b).
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(a) Reconstructed doping profile
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Gradient evaluation

(b) Gradient after3 iterations

Figure 4: Reconstructed doping profile after3 iterations using current measurements

6.3 np-Diodes

In this section we present numerical examples, which illustrate the difficulties that arise
due to the non-uniqueness of the regularized solution. We used a finer mesh with1000
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Figure 5: Reconstructed doping profile using capacitance measurements

nodes to generate data and840 nodes to evaluate the gradient of the minimization
functional.
We consider a semiconductor device of lengthL = 10−4 cm and a maximum doping
concentratioñC = 1016 cm−3. Settingτn = τp = 1e−6 andµn = µp = 1000 allows
the existence of multiple solutions as described in Section5.
The exact doping profile is given by

C(x) =

{

1 0 ≤ x ≤ 0.5

−0.5 0.5 < x ≤ 1

the initial guess by

C∗(x) =

{

1 0 ≤ x ≤ 0.5

−0.3 0.5 < x ≤ 1.

In Figure 6(a) the two possible solutions that produce the same total current are illus-
trated. In Figure 6(b) the gradient of the initial guess is shown - this gradient would be
a steepest descent direction for the second solution, but not for the first one.
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(a) Possible multiple solutions
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(b) Gradient Evaluation

Figure 6: Multiple solution in case of a np-diode
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In the second example we setµn = 1500 andµp = 1000. Furthermore when consid-
ering the symmetric doping profile

C(x) =

{

1 0 ≤ x ≤ 0.5

−1 0.5 < x ≤ 1

the two possible solutions are identical. In this case we could reconstruct the doping
profile using Tikhonov regularization. The reconstructed solution is displayed in Figure
7(a) and the corresponding cost functional Figure 7(b).
After 90 iterations (about 4 hours) the regularized solution was obtained. The results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Identification of the doping profile of a np−Diode

exact data
reconstructed data

(a) Reconstructed doping profile
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iterations

Q

(b) Evaluation of the cost functional Q

Figure 7: Reconstructed doping profile using current measurements

are very satisfactory, due to regularization the reconstructed solution is smoother than
the exact one.
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