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Abstract

We investigate inverse problems related to the transientcemductor device
models. Our main focus is the identification of the dopingdfifedrom indirect
transient measurements of electrical currents and capaeis. We present the
underlying analysis and discuss the applied regularizatiethods. In addition, a
reduced model obtained by asymptotic expansion of the-difffision equations
is considered, which leads to the special case of identfgiecewise constant
doping profiles. Furthermore we discuss the identifiabdityloping profiles and
present uniqueness and non-uniqueness results for regalaolutions.

Introduction

The first fundamental semiconductor device model, calleditift-diffusion equations
was introduced by Van Roosbroe¢k]16] in 1950. Today difieraodels of various
complexity exist, but the drift-diffusion equations seerbe a good compromise be-
tween efficiency and accurate description of the underlgiengce physics. For detailed
information on the derivation of semiconductor device msdad the corresponding
analysis we refer ta [12] and[1L4].

Nowadays industry is strongly interested in the identif@abof doping profiles for
quality control purposes. Furthermore there has been aiggosemand on optimiz-
ing the performance of semiconductor devices. For ideatific problems destructive
tests, like spreading resistance profiling or non-destreitéchniques, such as current,
capacitance and or laser-beam-inducted current (LBICkmeanents, are used.
Identification and optimal design problems using curreragracitance measurements
have been investigated concerning steady state modelee fias been recent work on
optimizing the performance of devices (see elg. [LL],[50) & identifying relevant
material properties (see e.d.l [8],[4],[2]). The inverselpem of reconstructing the
doping profile from LBIC measurements has been considerfg] and [8].

The main focus of this paper is the identification of the dgpginofile from indirect
transient measurements. In steady state models currestpagditance measurements
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are taken for several applied voltages in equilibrium. Isecaf the transient model
several measurements, taken at different time steps, afkalale for a single applied
voltage. This significant advantage motivates the use @& tependent models for the
reconstruction of the doping profile.

The transient drift-diffusion model is a system of nonlinpartial differential equa-
tions and requires consistent initial values. In practiceassumed that a semiconduc-
tor device is at thermal equilibrium at= 0, therefore we use the equilibrium solution
as initial value for the transient problem. In this contex #liscuss inverse problems
related the different measurement techniques.

The paper is organized as follows. In secfibn 2 we introdeg¢ransient drift-diffusion
equations and discuss the underlying analysis briefly. mherse problem of recon-
structing the doping profile from indirect measurementsésented in sectidd 3. Fur-
thermore the adjoint approach, used for gradient evalnaimtroduced shortly in sec-
tiond. The identifiability of the doping profile from indiremeasurements is discussed
in sectiord. Finally we present solutions of computati@aa@mples in sectidd 6.

2 The Transient Drift-Diffusion Equations

The drift-diffusion model stated on a bounded donir R4, d = 1,2, 3 reads as

div(eVV) =g(n—p—C) (1a)
divJ, = ¢(dn + R) (1b)
divJ, = q(—0ip — R) (1c)

Jn = q(DpVn — pu,nVYV) (1d)

Jp = q(=DpVp — pippVV). (1e)

The variables are the electrical potential( —V V denotes the electric field), the
concentrations of free negatively charged carrie(slectrons) and positively charged
carriersp. The predefined doping profil€ = C(z) of the semiconductor represents
the density of implanted ions. The current densities of thlediand the electrons are
denoted by/,, and.J, respectively. The total current densifyis given by

J = Jn+ Jp.

The parameter®,,, Dy, i1,,, and p,, are the diffusion coefficients and mobilities of
electrons and holes, respectively. In general they depetideostrength of the electric
field and can be modelled by positive functions. For the sdlksnoplicity they are
assumed to be constants in the following. Hem@nd g are the permittivity constant
and the elementary charge, which are positive constants.

The functionR is the recombination-generation rate. It can be intergratethe dif-
ference of the rate at which electron-hole carrier pairsmgmne and the rate at which
they are generated in the semiconductor. Several modelsecByund in literature, we

consider the Shockley-Read-Hall (SRH) recombinationegation rate
np — n?
Tp(n 4+ ni) + (P + 14)

Rsry =

wheren; denotes the intrinsic density ang andr, are the lifetime of the electrons
and holes respectively. Assuming that the system is in thkeqguilibrium and that



the space charge (given by the right hand sid&df (1a)) vasjshe Dirichlet boundary
conditions can be computed as

n(x,t) =np(x) = %(C’(x)+\/0(:p)2+4n?) ondflp
p(x,t) =pp(x) = %(—C(m) +4/C(2)? + 4n?) ondNp

np(x)

%

V(z,t) =Vp(z,t) =U(x,t) + Urln onodQp,

whereUr is the thermal voltage and(x, t) denotes the applied potential 6f2 .
The Neumann part8Q2 y model insulating surfaces, therefore we obtain

av
o
wherev denotes the unit outward normal vector on the boundéry
Initial conditions for the free carrier concentrationandp at the timet = 0 are given
by

0 Jn(z,t) - v=0 Ip(z,t) - v=0 on oy,

n(z,0) = n(z) p(x,0) = p'(x) x € Q.

Applying a suitable scaling tdX1) (cfi_TiL4]), we obtain thienénsionless formulation
of the drift-diffusion equations

NAV=n—-p-C (2a)
on=divJd, — R (2b)
Op=—div, — R (2c)

In = pin (Vn —n VV) (2d)
Jp = pp (=Vp—pVV). (2e)

The scaled Dirichlet boundary conditions @92, are

n(z,t) =np(z) = % (C(ac) +4/C (2)* + 404)
pat) = (o) = (~C) +\/C 0 1 107)

V(z,t) = Vp(x,t) = U(z,t) + Vii()

Vi) = (505 (0 @)+ /O (@ + 01 )

and on the Neumann bounda?§2 v the scaled conditions are given by

ov
e =0 Jp(z,t)-v=0 Jy(z,t)-v=0.

The parameters, the so-called Debye length of the device, anare given by:

= — g = = .
qCL? C

Both parameters depend on the characteristic lehgththe semiconductor device and
the maximum doping concentratign For small devices and highly doped semicon-
ductors) tends to zero acting as a singular perturbation parameter.




2.1 The Equilibrium Case

A semiconductor device is in thermal equilibrium,if(x) = 0, i.e., no potentials are
applied to the semiconductor contacts dhek 0 i.e., the thermal generation is exactly
balanced by recombination.

Solutions of the reduced stationary drift-diffusion edoias

NAV=n—-—p-C
0=, (Vn—nVV)
0=p, (Vp—pVYV)
are then given by
n=o%" p=oc2". 3)
The system then reduces to a nonlinear Poisson equation

NAV =c¢2e" — g%V - C (4a)

for the potential” with the boundary conditions

V(z) = Vpi(z) =1n (%‘2(0(1’) ++/C(x)?+40%) Vo € 0p (4b)
88—‘: =0 Vo € 0QnN. (4c)

In practice it is assumed that the process starts aroundlegquin. Thereforeng and
po given by [B), with1}, obtained by solving the Poisson equatibh (4), can be used as
initial value for the time-dependent problel(2a).

2.2 Analysis of the Transient Drift-Diffusion Model

In this section we discuss existence and uniqueness rdsulthe transient drift-
diffusion model (DD-model) and specialize them to the oimaahsional case.

In [9] existence and uniqueness of global-in-time solwtifor the transient drift-diffusion
equations is proven. Let denoted the space dimension afnd< r < 6. Then
under the assumption that the doping profile satisfies L"(Q) it is shown that
(V—-Vp,n—np,p—pp) € W whereW is defined as follows:

W ={C([0,T); W3 ¢) N L*([0, T); W) N H ([0, T]; X)} x Y x Y,
with

Y = C([0,T]; L*) N L*([0,T], X) N H*([0, T], X*)
X={veW; |v=00nd0p}.

We consider the following assumptions:
(A1) @ =10,1];
(A2) The doping profile satisfie§ € L"(2);



(A3) The mobilities satisfy:,, € L>(Q), u, € L>=(Q);
(A4) The recombination-generation rate satisfies C([0, 7], L?(Q2));

Note that assumption (A4) for the RSH recombination-geimraate is satisfied if
Tn, Tp € L™(Q). For the special case of spatial dimension one we are ableotw s
higher regularity of V, n, p).

Proposition 2.1. Under the assumptions (A1)-(A4) stated above every salutio
(V—Vp,n—np,p—pp) € W satisfies(V,n,p) € W whereW is defined as
followsW = C([0,T], H2(Q2)) x C([0,T], WL (£2))2.

For the proof of Propositidnd.1 we refer [0[17]. Furthermior[13] it has been proven
that the linearization of the drift-diffusion equationsistrongly continuous semigroup
and invertible.

3 Identification of the doping profile

Inverse dopant profiling corresponds to the identificatibthe doping profileC(z)
in system[[Za) from indirect measurements. The followinges/of measurements are
used in practice:

1) Current measurements:
The current flow through a contalct C 0 is given by

IFI(U):/F (Jn + Jp) - vds (5)

2) Capacitance measurements:
The mean capacitance at a confactC 0Qp is given by

Cap, (U)%</Fnlaa—‘:d8> (6)

Note that forT'; = 99

Ca[(U)%</6.Qaa—‘:ds>%(/QAde)%(Q),

where(@ denotes the total space charge.

In these cases we assume thatC 9 is sufficiently regular with non zero measure.
A second contact is denoted by C 9Qp with 'y N Ty = @. In the following we
investigate whether the operators, mapping the applieghpiatl on T’ to the current
or capacitance measurements, are well-defined and consriugtween appropriate
spaces.

The Current-Voltage Map
The voltage current data are the measurements of the noomglanent of the current



densityJ on a contact’; C 99 for an applied time dependent voltagéx, t). The
current-voltage map is given by:
e : L((0,T), H (T2)) — L*([0,71) )
U~ Ip, (U)

In [L4] we proof the following proposition

Proposition 3.1. The nonlinear operatoX defined byl{l7) is well-defined, continuous
and Fréchet-differentiable.

Capacitance Measurements

Capacitance measurements are the variation of the el8uatcio normal direction on a
contactl’; with U = 0 with respect to the applied voltageonI's. The corresponding
operator is given by

Te : L2([0,T), H? (T)) — L*(0,T))
ov

A N T

whereV is the solution of the linearized drift-diffusion equataround equilibrium,
ie.

NAV =i —p (82)
% = div (un (Vﬁ —o2e VvV —n VV())) (8b)
% = div (up (Vﬁ +o2e Vo VV + P VVQ)) (8c)

with homogeneous initial conditions, homogeneous Neurbanndary conditions and
the Dirichlet boundary conditions aif)p

V=¢, n=p=0.

Here 1 denotes the solution of the Poisson equation in thermallibgjum given
by (). We can show that the nonlinear operafpris well-defined, continuous and
Fréchet-differentiable between suitable Sobolev spaees[1V].

In the next sections we discuss the identification of the mipprofile from either cur-
rent or capacitance measurements.

3.1 Identification from Voltage-Current Data

The abstract formulation of the identification problem gsturrent measurements is
given by
F(C)=Y* (9)

with
F:D(F)CX Y
C—Yc(U)



andX = L*(Q), Y = L*([0,T]). The domain of the operator F is restricted to
D(F)={CeH'(Q)|C<C(z) <Cae. inQ}

with positive constant§’ andC.
Y represents the noisy current data bounded, bg.

[v*-v] <o
Under these assumptions we are able to verify the followasgilt.
Proposition 3.2. The map
F:DF)CX =Y
C— Yo (U)

is well-defined, continuous and Fréchet-differentiableurtRermore the mapF is
weakly sequentially closed, i.e. for any sequeficg} C D(F'), weak convergence of
C, to C € X and weak convergence 6f(C,,) toy € Y imply thatC € D(F') and
F(C)=uy.

The main idea of the proofis to rewrite the operafibas

F=Fy ok,
F:C — (n,p,V)
F:(n,pV)—J v

and to show that both operators are continuous and Frédfexteditiable. For further
information on the proof we refer to [117].

3.2 Identification from Capacitance Measurements

Similar to the case of current-voltage data the identificafiroblem can be written in
the abstract form

F(O)=Y? (10)

with
F:D(F)CcX—)Y (11)
CwTc(U) (12)

andX = L%(Q),Y = L3([0,T]). The domain of the operatdt is the same as in the
case of the voltage-current map.

Proposition 3.3. The map
F:DIFYcXx—Y
Cw— Te(U)

is well-defined, continuous and Fréchet-differentiable&iinFurthermore the operator
F is weakly sequentially closed.

The proof uses similar arguments as in case of current merasunts, again we refer
to [17] for details.



3.3 Regularization Methods

Because of the ill-posedness and the noise in the data chysadasurement errors,
standard iterative methods cannot be used to solve equ@ian (I0) in a stable way.

In this section regularization methods are discussed, w&liow a stable solution of

the inverse doping problem.

The noisy data™ is bounded by, in case of current measurements one obtains

/T e, (U) = f(O) dt < 6,
0

wheref(t) denotes the current measuredlonC 0 p. Using capacitance measure-
ments the assumption is given by

T
/ (Capry (U) — q(t)? dt < &,
0

whereq(t) is the capacitance measuredIonC 0Qp.
Tikhonov Regularization

A standard regularization method for nonlinear problemtiésTikhonov regulariza-
tion. Using Tikhonov regularization equatid®) is replaced by the minimization prob-
lem

|F(C) - )+a|\c—c*|\§2(m — min (13)

SN2
Y HLZ([O,T] ceD(F)
wherea > 0, C* is a starting value and = (V,n,p, Vo). We refer toa as the
regularization parameter, which is determined by the Mov&zdiscrepancy principle,

i.e. the largestv such that

s s
[F(Ca) -Y HL2([0,T]) =94 (14)
is satisfied. Here&”? denotes the regularized solution, which depends on thdaegu
ization parametes and on the noise levél

Since F' is continuous and weakly sequentially we are able to veh#y following

result.

Proposition 3.4. The minimization functiondl{1 3) admits a soluti@nif F is continu-
ous and weakly sequentially closed. Furthermore the pralilas a stable dependence
on the perturbed dat&®, i.e. if § tends to zero the regularized solution converges to
the exact solution.

For detailed information on the proof we refer fo][17], foe ttonvergence analysis to
(21
Total Variation Regularization

Another Tikhonov-type regularization method uses thel tessiation of a function.
This approach, introduced i 15], was originally used irage restoration, because
discontinuities in the solution are preserved. Becauseadiscontinuity of the doping
profile at the pn-junction this approach is interesting. &odditional information we
referto [6/1].

The total variation functional is defined by:

Jo(u) = sup/ udivo de,
veV JQ



where the set of test functions is given by

V={velF®@llgll, <1}

If w € C1(Q) one can show, using integration by parts that

:/Q|Vu|da: (15)

The seminorm[{d5) is not differentiable wheve: = 0 therefore one often considers
the slightly modified functional

u) :/Q\/|Vu|2+6dx

with 5 > 0. The corresponding regularized minimization problemiggiby

512 .
|F(C)-Y°||" + as(C) — min_ (16)
wherea denotes the regularization parameter, determined by Swefiancy princi-
ple (13).
In [@] it is shown that a solution of the minimization probldfi@) exists, if Q is weakly
lower semicontinuous and BV-coercive. For both current empiacitance measure-
ments we are able to verify the properties in an analogouitwmov regularization.

4 Sensitivities

For either type of regularization method one has to solverettained minimization
problem which can be written as

Qu(C),C) — mcin subjectto P(u(C),C) =0

The restrictionP(u(C), C) = 0 is the transient drift-diffusion systerfi{2a) and the sys-
tem in thermal equilibriundd4) witkk = (V, Vo, n, p).

In the previous section we proved that for either regulgioremethod a minimizer ex-
ists and that all operators are continuous and Fréchetgiiffiable. Therefore one can
use gradient based methods for minimization. The totaldtvie of the minimization
problem can be calculated via the corresponding Lagrangsifinal using the adjoint
equations. The Lagrange functionals given by

L(u,C,\) = Q(u,C) + (P(u,C), \).

Using the Kuhn Tucker restrictions

gﬁ(u C,\) = (222( ,C)—l—g—]:*(u,C))\:O (17a)

oL 0Q OP* _

aC( ,CoN) = aC( C)—i-% (u,C)A=0 (17b)
gﬁ (u,C,\) =P(u,C) =0 (17c)



the Lagrange parametercan be calculated usinf{17a). By the chain rule the lin-
earization ofQ is given by

Q _ 0@ du  0Q
dC  dudC  aC

subject to the constraint thét:/dC solves the linearized equation

(18)

OP du 9P _
o0 dC  oC
Then inserting\ into (IZB) and rearranginf{lL8) yields to

dQ, 0L 9
%hfach Vh e L~

0.

Hence, the total derivativ%% can be calculated using the Fréchet derivative of the
corresponding Lagrange functionahwith respect ta”.

For solving [IB) or[[1I6) we use a projected steepest destgmitam or a projected
BFGS method. In case of unipolar diodes the additional camdtthatC'(x) > 0 had

to be satisfied.

Current Measurements

The adjoint system in case of current measurements and fidkhegularization is
given by

O OR

A= =2 Ao — Ao+ (o + Ag) — = 19
1= T H 2 — pin VV V2 + (A2 + 3)(9” 0 (199)

O\ OR
)\1fa—tgf,upA)\gﬁL/LpVVV)\ng()\gﬁL)\g)a—p:0 (19b)
NAN + i n Adg — 1, p AXg =0 (19¢)

in x [0,7]and
M AN — 02 Ay (€Y +e7V0) = 0% (Na(+,0) €0 — N3(-,0) e Y0) (19d)

in Q2. The Dirichlet boundary conditions are
Ao = / [n (VR =nVV) — u, (Vp+pVV)|vds — f(t) onT'; x [0,T]
a0

Agz—/ [t (V1 = nVV) = i, (Vp + p VV)]wds+ £ (t)  onl'y x [0,7]
o0

A =0 onTy x [0,7)
A3 =0 onTy x [0,T]
A =0 onop x [0,T)
A=0 onop.

Furthermore we have homogeneous Neumann boundary cordaind the terminal
conditions are given by:

)\2($,T):)\3(IL',T):O Vx € Q.

10



The partial derivative of the Lagrange functional in caséidhonov regularization
(@3) is given by

T
oL hc://Al hcdzdt+/ )\4hcdz+a/ (C—C*)VC he dz. (20)
oC 0JQ Q Q

Capacitance Measurements

In case of capacitance measurements the adjoint systeneis loy

M AN+, 02 eV ANy — p o?2e V" Ady =0 (21a)
)
“Ap — 8—; — fin AXg — pin, VVy VAz = 0 (21b)
O\
M= 2 =ty A o+ iy VVo V5 =0 (21c)

and inQ2

MNAN — 2 eV, — g2 e Vo), =

T
/ (fun A Adg + 02 Vo VT VAQ) dt +
0. (21d)
+ / (Mp PANs + 02 eV VY V)\3) dt +
0
+ Xa(2,0) 02 "0 V(2,0) — A3(z,0) 02 e~V V(z,0).

The corresponding Dirichlet boundary conditionsi§y, = T'; UTs,withT'y NTy = ()
are

1 [V
)\1 = —F <E — q(t)) 0n1"1 X [O,T]

A =0 onTy x [0,7)
A2 =0 onoflp x [0,T]
A3 =0 onoflp x [0,T]
A =0 ondflp

Om the rest of the boundary we have homogeneous Neumann éyucohditions.
Again we obtain homogenous terminal conditionsXgrand A3 instead of initial con-
ditions. The partial derivative of the corresponding Lamya functional with respect
to C'is given by

%hcz/A4hcdx+a/(C—c*)VChcdx. (22)
aC 0 0

Algorithm

From the analysis of the preceding sections we can derivéotlosving algorithm
for the minimization problenf{13).

Input initial value C* = C*(x), applied potentiall = U(z, ),
measured current = f(t) or measured capacitange= ¢(t)

11



(1) Solve drift-diffusion equations in thermal equilibniufd) to obtainl/

(a) Solve the drift-diffusion equation§{2a) f6%, to obtain(V,n, p) and cal-
culate the total current flow (&)

(b) Solve the linearized drift - diffusion equatioh$ (8) totain
(V,n,p) and the capacitance Cap given Bl (6).

(2) Solve m) and Oml) fqr)q, A2, Az, )\4)
(3) Calculate2s (Cy) via (Z0) or Z2)
(4) Determine’y; using gradient based methods such as steepest descent

(5) If convergence criterion is satisfied stop, else retardl)

Both {Z&) and[{B) are systems of time dependent partialrdiffial equations, the com-
putation of the solutions is quite time consuming. For thmnestruction of the dop-
ing profile one can use either current measurements andgdacitance measurements.
Using both types of measurements simultaneously requieesdiution of five systems
of partial differential equations, first the equilibriumlstion, then the drift-diffusion
equations and their linearization and finally their sewsigis. This causes a high nu-
merical effort in the reconstruction algorithm alreadyhie bne-dimensional case.

5 Non-uniqueness of Solutions

The main focus in this section is the question whether tha datermines the dop-
ing profile uniquely. In mathematical terms this questiorafied the identifiability,
which determines whether the parameter-to-output Mapinjective. We furthermore
present numerical examples to illustrate the numericétdifies.

Gajewski proved in[9] that for the transient drift-diffesi equations a unique solution
exists. Uniqueness results were presented in the steadycatse under the assumption
that the applied voltage is small (séé [3]).

In [3] it is shown that in one dimension the doping profile of @polar diode can
be identified uniquely from a single transient measuremBnt. for this result addi-
tional smoothness assumptions are required: The dopirfdepi® assumed to be a
continuously differentiable function whose partial datives are Holder continuous
with H"/older exponenty = 1, i.e. C € C11(Q). In case of discontinuous doping
profiles these results do not apply.

So far there has been no results on the unipolar multi-difoaakinverse doping prob-
lem. For more general devices like np-diodes no uniquemrsssts have been derived
yet.

Throughout this section only the one-dimensional casernsidered and the following
assumptions are made:

e The mobilities of the electrons and holes are equali.e= y,,.

e The relaxation times of the electrons and holes are eqaat,i.= 7,.
Under these assumptions we can show that the inverse prdbidahe drift-diffusion

equations, considering both current and capacitance mexasats admits at least two
solutions.

12



Proposition 5.1. There exist at least two solutiofis € H'(€), i = 1,2 to the inverse
problem for the drift-diffusion equation{2a). In partiay if (nq,p1,V1,C1) is a
solution of [Zh) there exists a second solutien, ps, V2, C2) given by

Ca(x) = —C1(1 — x), (23a)
na(x,t) = p1(1 — x,t), (23b)
p2(x,t) =ny (1 — 2, t), (23c)
Va(z,t) = =Vi(1 — z,t) + U(z, t), (23d)

such that

JTIQ = JPU JPQ = Jn1
Cap (Vo) = Cap (V1).

For details on the proof we refer to ]17].
We consider Tikhonov regularization and obtain the minatian problem

Q(u,C) = |F(C) = ()" + a|C = C*|* — min (24)
wheref(t) denotes the current measurements or
Qy(u,C) = [F(C) = q(D)]* + a|C = [ — min (25)

wheregq(t) refers to the capacitance measurements. The opdrateaps the doping
profile C' either to the current or to the capacitance measured at act@nt In both
cases the weak sequential closednesE,afee Propositioh 3.2, ensures the existence
of a solution for both minimization problems. Under the asptions made above it
has already been shown that the inverse problem admitspieustblutions, therefore
one cannot expect unique minimizers of both functionals.

Indeed itis possible to construct cases where the multgigiens are both minimizers

of Z4) and[(Zb).

Proposition 5.2. Let the assumptions of Propositibnls.1 and
C*(x) =-C*"(1 — x).

hold. Then there exist at least two minimizers of the optitium problem[2ZK) and
(239). The multiple solutions of the inverse problem give Xy are minimizers of the
Tikhonov functionald(24) anf{R5). Furthermore

Qf(n17p1) V1701) = Qf(n25p27‘/2) 02)
Qq(n1,p1,V1,C1) = Qq(n2,p2, V2, C2)

holds.
For the proof of the proposition we refer {0 [17]. In case détwariation regulariza-

tion one can show similar results.
We mention that our analysis of multiple solutions was naigd by similar results
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concerning the steady state DD-model (cfl[10]). Consitgai slightly different mini-
mization functional one could avoid the existence of thetipld solutions constructed
above. This functional is given by:
T
dt + /
0

2 2

dt +

T

Q.0 = [

0

/F1 In dv — fn(t)

/. Jp dv — fp(t)
I

. (26)

+a | |C—-C* | dr.

Q

For (28) the coupléns, p2, Vo, Cs) constructed in[{A3) is not a minimizer any more.
This provides reasonable remedy for optimal design anargbitontrol tasks as con-
sidered in[[1D], but for the identification of the doping pl®fihis means that one has
to measure the current caused by the holes and the curresgicchy the electrons sep-
arately, which is not possible in practice !

6 Numerical examples

In this section we present results of computational exagiplease of one-dimensional
unipolar diodes . All computations have been performed emstitware systems MAT-

LAB 7 and FEMLAB 3.1.

In our examples we used typical values of the parameterdiadisiat room tempera-

ture (T = 300K), listed in Tabld1L.

Parametern Physical Meaning Numerical Value

q elementary charge | 1.6- 1079 As

n; intrinsic density 1019 em—3

€s permittivity constant| 10712 As V—1s~!
fin mobility of electrons| 1.5 - 103 cm?V 157!
o mobility of holes 10% cm?V—1s7!

Ur thermal voltage 0.0259 V

T lifetime of electrons | 1076 s

s lifetime of holes 107°s

Table 1: Physical parameters for silicon at room tempeeatur

To generate artificial measurement data, we solved thetgireblem [Zh) for an ap-
plied voltageU and a given doping profil€’. The forward problem was solved on a
regular mesh witt800 nodes, using a piecewise linear finite element base. In ooder
avoid an inverse crime we used a different sized mesh fontleiation of the gradient

of (13) or [I6).
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6.1 n-Diode

The simplest semiconductor device is a one-dimensionglalai diode. The exact
doping profile is given by

Clz) =
0 05<z<l.

{ 1 0<z<0.5,
The drift-diffusion systeml{2a) and the sensitivitiEsl (488 solved on a regular mesh
of 240 nodes. We choose a diode of length= 10~* cm and a maximum doping
concentration o’ = 106 cim 3.
The applied voltage is

Uz, t) = 107°(t +sin(2)).

For the applied time scaling we obtain

L? le—8

t= ——ty = ——
Urit © le—2

ts = le Ss.

Solving the DD-model over a large time interjal: 100 s : 10000 s] seems to be a
realistic setup.

Reconstructions have been performed using a projectegestedescent or a projected
BFGS algorithm with the constraint

C(z) > 0.

Figure[I(d) shows the reconstructed doping profile of a Uaipdiode using steepest
descent algorithm and Tikhonov regularization. The eu#uneof the corresponding

cost function is given in Figufg I{b). Aft&0 iterations a regularized solution is ob-
tained, the corresponding value of Qli&°.

Reconstructed doping profile of a unipolar diode Evaluation of the cost functional Q

1

0.8

0.6

0.4

0.2

o

|
o o1 02 03 04 05 06 07 08 09 1 o 5 10 15 20 25 30
iterations.

(a) Reconstructed doping profile (b) Evaluation of the cost functional Q

Figure 1: Reconstructed doping profile using current measants and Tikhonov reg-
ularization

In Figure[2({@) an{l 2(b) we see the regularized solution amdcthresponding cost
functionalQ using total variation regularization, with= 10~5.The solution is similar
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Reconstructed doping profile n-Diode
TV-regularization alpha = 0.1 Evolution of the cost functional Q

reconstructed solution
— — — exact solution

06 07 08 09 1 o 5 10 15 20 25
iter

(a) Reconstructed doping profile (b) Evaluation of the cost functional Q

Figure 2: Reconstructed doping profile using current meamsants and TV regular-
ization

to the one obtained by Tikhonov regularization, but the gnaidof the doping profile
is steeper around the junction.

In case of noisy data the choice of the regularization paranie important for the
quality of the regularized solution. According to the deszancy principle[[14) we
choose the regularization parameter such that

§<|F(C)-Y°| <74 (27)

with 7 = 1.1.
Figure[3(d) shows the regularized solution for the noiselléw= 5%.

Reconstructed doping profile n Diode
noise level 5%, alpha = 0.5 Evolution cost functional Q

reconstructed solution
1 <~ — — — exact solution

08

0.6

0.4

0.2

06 07 08 09 1 0 5 10 15 20 25
iter

(a) Reconstructed doping profile (b) Evaluation of the cost functional Q

Figure 3: Reconstructed doping profile using current mesmsants withy = 5%
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6.2 nTnn' Diode

A n*nn™ Diode is the combination of a highly doped n-region, a lowepet n-region
and another higher doped n-region. The corresponding dgpufile is given by:

0<z<0.3
C(z)=1¢0.1 03<z<0.7
0.7<z <1,
We started with a good initial guess
1 0<x<0.3
C*(x) =402 03<z<0.7
1 0.7<z < 1.

The value of the applied potential was the same as in the dageunipolar diode.
Because of the two jumps we used a finer mesh withnodes. After three iterations
the reconstruction stopped because the calculated gtgttéaed no descent direction.
Figure[4{@) shows the reconstructed doping profile afteefiions, Figur§ 4(p) the
gradient evaluation for this doping profile.

In the case of capacitance measurements such issues dacnatBlee parameters are
the same as in the case of current measurements. The remtiostifrom capacitance
measurements is more time consuming than in case of curreasurements due to
the numerical integration of the right hand side of equaf@). The reconstructed
doping profile and the evolution of the cost functional carseéen in Figur§ 5(h) and

Figure[5(0).

Reconstructed doping profile of n+nn+ Diode
after 3 iteration: Gradient evaluation

14

12

08

0.6

|
! 0
,
0.4 K
e -0.05 9
02 N
T

1 ~
0O o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(a) Reconstructed doping profile (b) Gradient afteB iterations

Figure 4: Reconstructed doping profile af§dterations using current measurements

6.3 np-Diodes

In this section we present numerical examples, which illistthe difficulties that arise
due to the non-uniqueness of the regularized solution. \&d aginer mesh with000
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Reconstructed doping profile of a nn+n Diode

from capacitance measurements Evoluation of the cost functional Q
14 10
reconstructed solution

— — — exact solution
12 — — initial guess

0o o1 02 03 04 05 06 07 08 09 1 o 10 20 30 40 50 60 70 80
iter

(a) Reconstructed doping profile (b) Evaluation of the cost functional Q

Figure 5: Reconstructed doping profile using capacitancesorements

nodes to generate data afd0 nodes to evaluate the gradient of the minimization
functional.

We consider a semiconductor device of length= 10~* cm and a maximum doping
concentratiorC' = 106 cm~2. Settingr,, = 7, = le~% andpu,, = 1, = 1000 allows
the existence of multiple solutions as described in Sefion

The exact doping profile is given by

1 0<z<0.5
C(z) = -r=
—0.5 0o<z<1
the initial guess by
1 0<z<0.5
C*(z) = -t

-0.3 0.5 <z <L
In Figure[6(d) the two possible solutions that produce timeesttal current are illus-

trated. In Figur@ 6(b) the gradient of the initial guess isvsh - this gradient would be
a steepest descent direction for the second solution, hdionthe first one.

Mulitple solution of the drift—diffusion euqations Gradient Evaluation

solution1
soution2

0O 01 02 03 04 05 06 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1

(a) Possible multiple solutions (b) Gradient Evaluation

Figure 6: Multiple solution in case of a np-diode
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In the second example we get = 1500 andy,, = 1000. Furthermore when consid-
ering the symmetric doping profile

1 0<2<0.5
Clz) =
-1 05<zx<1

the two possible solutions are identical. In this case wddcoeconstruct the doping
profile using Tikhonov regularization. The reconstruci@dson is displayed in Figure
[7(a] and the corresponding cost functional Figure] 7(b).

After 90 iterations (about 4 hours) the regularized sohutias obtained. The results

Identification of the doping profile of a np-Diode x10° Evolution of functional Q

T 01 02 03 04 05 06 07 08 09 1 0 10 20 30 40 50 60 70 80 90

iterations.

(a) Reconstructed doping profile (b) Evaluation of the cost functional Q

Figure 7: Reconstructed doping profile using current measants

are very satisfactory, due to regularization the recoostdisolution is smoother than
the exact one.
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