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Abstract. We present techniques for creating an approximate implicit represen-
tation of space curves and of surfaces of revolution. In both cases, the proposed
techniques reduce the problem to that of implicitization of planar curves. For
space curves, which are described as the intersection of two implicitly defined
surfaces, we show how to generate an approximately orthogonalized implicit
representation. In the case of surfaces of revolution, we address the problem of
avoiding unwanted branches and singular points in the region of interest.

1 Introduction

Traditionally, most CAD (Computer Aided Design) systems rely on piecewise rational
parametric representations, such as NURBS (Non–Uniform Rational B–Spline) curves
and surfaces. The parametric representation offers a number of advantages, such as
simple sampling techniques, which can be used for quickly generating an approxi-
mating triangulation for visualization. On the other hand, the use of implicitly defined
curves/surfaces also offers a number of advantages, e.g., for solving intersection prob-
lems, or for visualization via ray–tracing.

In order to exploit the potential benefits of using the implicit representation of
curves and surfaces, methods for conversion from parametric to implicit form (implic-
itization) are needed. As an alternative to exact methods, such as resultants, Groebner
bases, moving curves and surfaces, etc. [2, 4, 5, 8, 12], a number of approximate tech-
niques have emerged [3, 7, 9, 10]. As demonstrated in the frame of the European GAIA
II project [6, 13, 15], these techniques are well suited to deal with general free–form
curve and surface data arising in an industrial environment.

On the other hand, CAD objects typically involve many special curves and surfaces,
such as natural quadrics, sweep surfaces, surfaces of revolution, etc. While implicit
representations of simple surfaces are readily available, this paper studies approximate
approximation of two special objects, namely space curves and surfaces of revolution.
Space curves arise frequently in geometric modeling. An implicit representation of a
space curve is given by the intersection of two implicitly defined surfaces. A surface of
revolution is created by rotating 2D profile curve about an axis in space. Rotation is one
of the standard geometric operations defined in any CAD/CAM interface.

This paper presents techniques for approximate implicitization of space curves and
of surfaces of revolution, which are based on the (approximate) implicitization of planar
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curves. The proposed techniques are fully general in the sense that they can be combined
with any (exact or approximate) implicitization method for planar curves. For creating
the examples shown in this paper, we used a technique for simultaneous approximation
of points and associated normal vectors [9, 10, 14].

This paper is organized as follows. First we summarize the approximate implici-
tization method for planar curves. Section 3 presents techniques for approximate im-
plicitization of space curves, first as the intersection of two general cylinders, and later
as the intersection of two general surfaces which intersect approximately orthogonal.
Representing the space curve by two ‘orthogonal’ surfaces provides a more robust def-
inition for the curve. Finally, in Section 4, two methods for approximate implicitization
of surfaces of revolution are presented. It is shown that – in many cases – only approx-
imate implicitization is capable of producing an implicit representation that is free of
unwanted branches and singularities.

2 Simultaneous approximation of points and normals

For the sake completeness, we give a short description of the approximate implicitiza-
tion method presented in [9]. This method is characterized by the simultaneous approx-
imation of sampled point data pi = (xi, yi), i ∈ I = {1, . . . , N}, and estimated unit
normals ni at these points. The method consists of three main steps:

– Step 1 – Preprocessing: If no other information is available (e.g., from a given
parametric or procedural description of the curve), then each unit normal vector ni

is estimated from the nearest neighbors of the point pi. A consistent orientation of
the normals is achieved by a region–growing–type process. If the data have been
sampled from a curve with singularities, then it may be necessary to organize the
data into several segments, see [14] for details.

– Step 2 – Fitting: We generate an approximate implicit representation of the form

f(x) =
∑

j∈J

cj φj(x) (1)

with certain coefficients cj ∈ R, finite index set J and suitable basis functions
φj . For instance, one may choose tensor–product B-splines with respect to suitable
knot sequences, or Bernstein polynomials with respect to a triangle containing the
data.
The coefficients of f are obtained as the minimum of

∑

i∈I

f(pi)
2 + w1||∇f(pi) − ni||

2 + w2 T, (2)

where w1 and w2 are positive weights satisfying 1 > w1 >> w2 > 0. The first
weight controls the influence of the estimated normal vectors ni to the resulting
curve. As observed in our experiments, increasing the weights w1 or w2 can be
used to ‘push away’ unwanted branches of the curve from the region of interest.
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exact w1 = 1.0 w1 = 0.0001

Fig. 1. Exact (left) vs. approximate (center and right) implicitization (thin curves) of a given
parametric curve (bold curves), see Example 1.

The tension term T in (2) is added in order to control the shape of the result-
ing curve. It pulls the approximating curve towards a simpler shape. A possible
quadratic tension term is

T =

∫∫

Ω

f2

xx + 2 f2

xy + f2

yy dx dy (3)

This choice of the tension term leads to a positive definite quadratic objective func-
tion. Consequently, the coefficients cj are found by solving a system of linear equa-
tions. In the case of tensor–product B-splines, this system is sparse.

– Step 3 – Iteration: One may iterate the second step, by replacing the normals ni

with the gradients∇f(pi), and re–computing the result. One the one hand, this may
help to improve the result of the fitting. On the other hand, it can create problems
with unwanted branches. This is described in some detail in [9].

Example 1. We illustrate the behaviour of exact and approximate implicitization by an
example. Figure 1 shows the results (algebraic curves of order 4) of both methods (thin
curves) for a segment of a rational planar curve of degree 4 (bold curves). The approxi-
mate implicitization produces an exact implicitization, but with additional branches and
even a singular point in the region of interest. Depending on the choice of w1, the fitting
method produces implicit approximations with different level of accuracy. The weight
w1 can be used to control unwanted branches and singular points. In this example,
w2 = 0 has been chosen, and three iterations were applied to improve the result.
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3 Approximate implicitization of space curves

After presenting some preliminaries, we discuss the approximate implicitization of two
space curves as the intersection of two generalized cylinders and as the intersection of
algebraic surfaces which are approximately orthogonal to each other.

3.1 Preliminaries

For any function f :
�

3 →
�

, the zero contour (or zero level set) Z(f) is the set

Z(f) = {x | f(x) = 0} = f−1({0}) (4)

A space curve C can be defined as the intersection curve of two zero sets of functions
f and g,

C(f, g) = Z(f) ∩ Z(g). (5)

If both f and g can be chosen as polynomials, then C(f, g) is called an algebraic curve.
A point x ∈ C(f, g) is said to be a regular point of the space curve, if the gradient
vectors ∇f(x) and ∇g(x) are linearly independent. The tangent vector of the space
curve is then perpendicular to both gradient vectors.

The two zero contours Z(f) and and Z(g) intersect orthogonally along the space
curve C(f, g), if

∇f(x) · ∇g(x) = 0 (6)

holds for all x ∈ C(f, g).
Representing the space curve by two surfaces which intersect orthogonally provides

a more robust definition for the curve [1], since small perturbations of the defining two
surfaces have less impact on the space curve. It has several additional advantages, e.g.,
for estimating the Euclidean distance of a point to the curve. As a natural generaliza-
tion of the so–called Sampson distance f(p)/||∇f(p)||, see [11], this distance can be
estimated as

L =

√

f2

‖∇f‖2
+

g2

‖∇g‖2
(7)

In the case of two surfaces which intersect each other orthogonally, L provides a good
local (i.e., in the vicinity of the intersection curve) approximation of the distance field.

Example 2. Fig. 2 visualizes this observation. Two surfaces, their intersection curve and
a level set of the function L are shown. In the case of two orthogonal surfaces (right),
the level set is more similar to a pipe surface than in the general situation (left).

3.2 Intersection of generalized cylinders

A generalized cylinder is obtained by extruding a profile curve Z(f) along a straight
line. If the straight line is parallel to one of the coordinate axes, say the z–axis, then the
zero contour of any function of the form (x, y, z) → f(x, y) defines such a generalized
cylinder.

This simple observation leads to algorithm 1 which generates an approximate im-
plicit representation of a space curve.
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Fig. 2. Two surfaces, their intersection curve and a level set of the function L, see Example 2.

Algorithm 1 Approximate implicitization by generalized cylinders

Input A parametric space curve C or a set of sampled points pi.
Output An implicit representation of the given space curve as the intersection of two generalized
cylinders.

1: Project the parametric space curve C (the points pi) orthogonally into two orthogonal planes
(e.g. xy-plane and xz-plane).

2: Apply an implicitization method to the data in xy-plane and xz-plane. Let the bivariate func-
tions f(x, y) and g(x, z) define the implicit curves in xy-plane and xz-plane respectively.

3: Define the two generalized cylinders by the polynomials f(x, y) and g(x, y) respectively.
4: Represent the curve C(x, y, z) as the intersection of the two generalized cylinders f(x, y)

and g(x, z).

Example 3. The left plot in Figure 4 (see page 7) shows a space curve (white) which
is represented as the intersection of two generalized cylinders Z(f) (black) and Z(g)
(grey), where f = f(x, y) and g = g(x, z).

3.3 Approximately orthogonal representation

Our method for generating an approximate implicitization by two approximately or-
thogonal surfaces is based on the following simple observation.

Lemma 4. At all regular points x ∈ C(f, g), the gradients of the two functions

F (x) = ‖∇f(x)‖ g(x) + ‖∇g(x)‖ f(x) (8)

G(x) = ‖∇f(x)‖ g(x) − ‖∇g(x)‖ f(x) (9)

are orthogonal.

This observation can be verified by a direct computation.

Remark 5. This result cannot be used at points where the two original surfaces inter-
sect each other tangentially. In the case of two generalized cylinders produced by Al-
gorithm 1, this happens only if the curve C has a tangent which lies in a plane that
is perpendicular to both projection planes. One may easily choose the two projection
planes such that this is not the case.
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Fig. 3. Approximation of the scalar field ||∇f ||, see Example 6.

Clearly, even if the function f and g are piecewise polynomials, neither F nor G
are piecewise polynomials in general. We propose to approximate them by piecewise
polynomials, as follows.

The functions ‖∇f‖ and ‖∇g‖ depend on x, y and x, z respectively. We would like
to approximate them by two piecewise polynomials f̄(x, y) and ḡ(x, z) in the area of
interest, which is the region near the zero contours of the functions f and g. The two
approximating functions are to minimize

∫∫

Ω′

w(f) (f̄ − ‖∇f‖)2 dx dy and
∫∫

Ω′′

w(g) (ḡ − ‖∇g‖)2 dx dz (10)

where w is a suitable weight function. For instance, one may use

w(h) =
1

h2 + ε
, (11)

where ε > 0 is used in order to avoid division by zero.
Note that the objective functions depend quadratically on f̄ and ḡ. Consequently,

if these approximants are represent as a linear combination of certain basis functions
(such as tensor–product B-splines), similar to (1), then the minimizers of (10) can be
computed by solving symmetric positive definite systems of linear equations. In the
B-spline case, these systems are sparse. The coefficients of the equations have to be
evaluated by numerical integration, e.g., by Gaussian quadratures.

Example 6. We consider the gradient field of f = 4x2 + 8y2 − 1 on [0, 1] × [0, 0.6]

and approximate the scalar field ||∇f || = 8
√

x2 + 4y2 by a quadratic polynomial. For
different values of ε we obtain different approximations. The white region in Fig. 3
shows where the error |f̄ − ||∇f || | is below 0.15. For smaller values of ε, this region
follows the elliptic arc Z(f), which is shown as a black line.

Algorithm 2 combines the previous algorithm with the approximation of the norms
of the gradients.

Example 7. We consider a given a space curve and apply the two algorithms to it. Fig-
ure 4 shows the approximate implicitization by two generalized cylinders (left) and by
two approximately orthogonal algebraic surfaces (right).
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Algorithm 2 Approximate implicitization by approximately orthogonal surfaces
Input A parametric space curve C or a set of sampled points pi.
Output An approximate implicit representation as the intersection of two approximately orthog-
onal surfaces.

1: Run Steps 1, 2, 3 of Algorithm 1.
2: Approximate ‖∇f‖ and ‖∇g‖ by polynomials or piecewise polynomials f̄ and ḡ by mini-

mizing (10).
3: Introduce the two auxiliary function F and G as in (8) and (9), where the norms of the

gradients are replaced by their piecewise polynomial approximants.
4: Represent the given curve as the intersection of the two approximately orthogonal algebraic

surfaces F , G.

Fig. 4. Approximate implicitization of a space curve using Algorithm 1 (left, intersection of two
generalized cylinders) and 2 (right, intersection of two approximately orthogonal surfaces).

4 Approximate Implicitization of Surfaces of Revolution

A surface of revolution is obtained by rotating a profile curve q(v) about (e.g.) the z–
axis. We propose two techniques for generating an approximate implicit representation
by a piecewise polynomial. Both techniques reduce the problem to the implicitization
problem of a planar curve.

4.1 Implicitization via elimination

First we apply a method for approximate (or exact) implicitization to the profile curve
in the rz–plane, where the radius r denotes the distance to the z–axis. For example, one
may use the method which was described in Section 2. We obtain an implicit represen-
tation of the form f(r, z) = 0, where f is a (piecewise) polynomial.

In order to obtain an implicit representation of the form g(x, y, z) = 0, one could
substitute r =

√

x2 + y2. However, the resulting scalar field

(x, y, z) 7→ f(
√

x2 + y2, z) (12)
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Fig. 5. Approximate implicitization of a surface of revolution using elimination, see Example 8.
Left: profile curve, right: the surface.

is no longer given by a piecewise polynomial representation, due to the square root.
Instead, we eliminate r using a resultant,

g(x, y, z) = Resr(f(r, z), r2 − x2 − y2). (13)

Clearly, the resultant can be evaluated only if f is a polynomial. In the case of a piece-
wise polynomial (spline function), this approach has to be applied to the polynomial
segments.

Example 8. We apply the technique of Section 2 to the profile curve (black line) shown
in Figure 5 (left) and obtain an approximate implicitization by a bi–quartic tensor–
product polynomial (grey curve). After computing the resultant, this leads to an ap-
proximate implicit representation of the the corresponding surface of revolution (right).
The function g is a tensor–product polynomial in x, y, z of degree (8,8,8). Only even
powers of x and y are present. Note that the approximate implicitization produces two
additional branches, which do not intersect the surface.

This method for approximate implicitization of surfaces of revolution has two major
drawbacks.

– First, in the case of a piecewise polynomial representation f(r, z) = 0 of the profile
curve, the resulting piecewise polynomial g will not necessarily inherit the smooth-
ness properties of f . E.g., if f is a C1 spline function, then g will not necessarily
be C1.

– Second, even if the approximate implicitization of the profile curve has no un-
wanted branches and singular points in the region of interest, these problems may
be introduced by the eliminating r, see Example 9. Indeed, this elimination is equiv-
alent to computing the polynomial g from

g(x, y, z) = f(−
√

x2 + y2, z) · f(
√

x2 + y2, z). (14)
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Fig. 6. The elimination of r may produce additional branches and singular points. Top row: Re-
gion of interest [0, 2]2 , Bottom row: global view. Left: Approximate implicitization Z(f) of the
profile curve in the rz–plane. Right: Intersection of the approximate implicitization Z(g) with
the xz–plane. The original profile curve is shown in grey.

Note that this produces indead a polynomial, since only even power of the square
root are present! The product (14) leads to a symmetrized version of the approxi-
mate implicitization of the profile curve. Consequently, additional branches from
the half–plane r < 0 may cause problems.

Example 9. Approximate implicitization of the profile curve (a cubic Bézier curve) by
a cubic polynomial using the method described in Section 2 produces an implicit curve
without additional branches and singular points, see Fig. 6, left. However, these prob-
lems are present after the elimination step (13), see Fig. 6, right. The reason for this
phenomenon can be seen from the global view (bottom row in the picture): the elim-
ination produces a symmetrized version of the approximate implicitization. Note that
methods for exact implicitization of the profile curve have similar problems.

Remark 10. The first problem can be resolved by using Eq. (14) instead of (13).

4.2 Implicitization via substitution

In order to avoid the problems of the first approach, we propose to implicitize the profile
curve q(v) in the rz-plane by the zero contour of a bivariate function f(r2, z). The
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Fig. 7. Approximate implicitization of a surface of revolution via substitution avoids potential
problems with additional branches and unwanted singular points. Left: Region of interest, right:
global view. The original profile curve is shown in grey.

bivariate function f(r2, z) can be chosen from the space of all bivariate functions with
even power in r. We may use any basis (e.g., tensor–product B–splines) and express the
bivariate function f(r2, z) as

F (r2, z) =
∑

i∈I

ci φi(r
2, z) (15)

with real coefficients ci, where J is a certain index set. The method for approximate
implicitization described in Section 2 is applied to this representation. The approximate
implicit representation of the surface of revolution is then obtained by a substitution,

g(x, y, z) = F (x2 + y2, z). (16)

Example 11. We apply this approach to the profile curve of Example 9, using a poly-
nomial F of total degree 3. The implicit equation of the profile curve has degree (6,3),
and the approximate implicit equation of the surface of revolution has degree (6,3,3).
As shown in the figures, we may achieve a similar accuracy in the region of interest by
using an approximate implicitization of the profile curve that is symmetric with respect
to the axis of revolution. Due to this symmetry, no problems with unwanted branches
and singular points are present.

Example 12. We consider the discretized profile curve shown in Fig. 8, left, and apply
the method of Section 2 to it. The function F is a bi–quadratic tensor–product spline
function whose domain is the union of the cells shown in the figure. This leads to
an approximate implicit representation of the profile curve (Fig. 8, center) and of the
surface (right) of degree 4(×4) × 2. In the surface case, the spline function is defined
with respect to ring–shaped cells, obtained by rotating the cells shown in the left figure.
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Fig. 8. Approximate implicitization of a surface of revolution of degree 4 × 4 × 2, using a bi-
quadratic spline function F , see Example 12.

5 Conclusion

Several techniques for approximate implicitization of space curves and surfaces of rev-
olution have presented. These techniques are based on algorithms for (exact or approx-
imate) implicitization of planar curves. In the case of space curves, a representation of
two approximately orthogonal surface can be obtained, which provides several advan-
tages, such as a geometrically robust definition of the curve and the possibility to obtain
a good approximation of the distance field to a space curve. As shown in the case of sur-
faces of revolution, only approximate implicitization is able to produce a representation
which is free of unwanted branches and singular points in the region of interest.
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