
Y-Scale Regularization∗

Herbert Egger

Spezialforschungsbereich SFB F013/F1308, Johann Radon Institute
for Computational and Applied Mathematics, A-4040 Linz, Austria
email: herbert.egger@oeaw.ac.at

Abstract

Inverse problems are usually ill-posed in the sence that their solution is unstable with respect to
data perturbations and so-called regularization methods have to be used for their stable solution.
Two drawbacks of standard regularization methods are

• saturation, i.e., only suboptimal approximations can be found for smooth solutions. This is
the case, e.g., for Tikhonov regularization.

• the large number of iterations, e.g., for Landweber iteration.

A framework that allows to overcome both effects for certain classes of inverse problems is regu-
larization in Hilbert scales. There, the solution is searched in a different space out of a scale of
spaces (Hilbert scale) over the pre-image space, but convergence is achieved in the original space.
Regularization methods in Hilbert scales can be viewed as modified (preconditioned) versions of
standard methods.

In order to make the advantages of the Hilbert scale approach applicable to a new class of prob-
lems, we propose to use a scale of spaces over the image space instead. This result in a new family
of Y−scale regularization methods, whose (optimal) convergence properties are analyzed. One of
the key steps in the analysis is the formulation of an adequate a-posteriori stopping rule, which
provides optimal convergence rates. The theoretical results are illustrated in several numerical
examples.

1 Introduction

Let X and Y denote Hilbert spaces and T ∈ L(X ,Y) be a linear bounded injective operator (‖T‖ ≤ 1
w.l.o.g). We consider the solution of inverse problems

Tx = yδ, (1)

from perturbed measurements yδ satisfying

‖y − yδ‖ ≤ δ, (2)

where y = Tx† ∈ R(T ) denotes the unperturbed data corresponding to the true solution x†, i.e.,
y = Tx†. It is well-known (cf., e.g., [5, 7]) that in case R(T ) is not closed in Y, problem (1) is ill-posed,
i.e., (1) might not be solvable, and even if it is, a solution may not be unique and does in general
not depend stably on the data noise level δ; the Moore-Penrose inverse T † is only densly defined and
unbounded. For a stable (approximate) solution of (1) we apply regularization methods of the form

xδ
α := Rαyδ := gα(T ∗T )T ∗yδ, (3)

generated by a family of piecewise continuous (filter-) functions {gα}α∈R+ . A minimal property that
ensure convergence of the regularized solutions xδ

α towards x† with α → 0 at least for unperturbed
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data δ = 0 is that the functions gα(λ) → 1/λ as α → 0 pointwise for all λ > 0. For a convergence
(rate) analysis in case of perturbed data, the following stronger assumptions are usually made, cf. [5]:

sup
0≤λ≤1

|gα(λ)| ≤ c∗α−1, (4)

sup
0≤λ≤1

λµ|rα(λ)| ≤ cµαµ, 0 ≤ µ ≤ µ0. (5)

Here rα(λ) := 1 − λgα(λ), and cµ, c∗ are positive constants independent of α ∈ R+. A maximal
constant µ0 for which (5) holds is usually called qualification of the method. In case of iterative
regularization methods, the regularization parameter α will be replaced by 1

k respectively 1
k2 (see the

examples below). Moreover, condition (4) already follows from (5) by Markov’s inequality if gα =: gn

is a polynomial, which is typically the case for iterative regularization methods.
For illustration and later reference, we mention some important examples of regularization methods

of this form:

1. Tikhonov regularization [6, 27]: The approximate solutions are defined by

xδ
α = (T ∗T + α)−1T ∗yδ. (6)

Tikhonov regularization is of the form (3) with gα(λ) := (λ + α)−1, and (5) holds for all µ ≤ 1,
i.e., the qualification of Tikhonov regularization is µ0 = 1.

2. Landweber iteration [9, 13]: The approximations xδ
n are defined by the iteration

xδ
k+1 = xδ

k + ωT ∗(yδ − Txδ
k), xδ

0 = 0.

Replacing α by 1
k , Landweber iteration has the form (3) with gk(λ) =

∑k−1
i=0 (1 − ωλ)i and

rk(λ) = (1− ωλ)k, respectively, and satisfies (5) for all µ ≥ 0.

3. The ν-methods by Brakhage [2, 8]: (Semi-) iterative methods whose residual polynomials rk

form an orthogonal sequence with respect to some positive weight function satisfy a three-term-
recurrence, which also carries over to the iterates, i.e., there exist sequences µk and ωk such
that

xδ
k = xδ

km
+ µk(xδ

km
− xδ

k−2) + ωkT ∗(yδ − Txδ
km

), k ≥ 1,

with xδ
0 = xδ

−1 = x0. The choice µ1 = 0, ω1 = (4ν + 2)/(4ν + 1) and

µk = (k−1)(2k−3)(2k+2ν−1)
(k+2ν−1)(2k+4ν−1)(2k+2ν−3) ,

ωk = 4 (2k+2ν−1)(k+ν−1)
(k+2ν−1)(2k+2ν−1) , k > 1

yields the ν-methods by Brakhage. Each ν-method satisfies (5) (with α replaced by 1
k2 for

0 ≤ µ ≤ ν.

Under condition (4) the regularized solutions xδ
α converge to x† with δ → 0 if α → 0 such that

δ2/α → 0. In general, this convergence will be arbitrarily slow [23], and convergence rates can be
obtained if (and only if) the true solution satisfies certain smoothness requirements, e.g., for x† ∈
R((T ∗T )µ) the rate

‖xδ
n − x†‖ = O(δ

2µ
2µ+1 ) (7)

holds (and is optimal) for the parameter choice

α = α(δ) ∼ δ
2

2µ+1 (8)

and for µ ≤ µ0. If µ > µ0, only a rate of δ
2µ0

2µ0+1 can be expected; this phenomenon is called sat-
uration. Tikhonov regularization, for instance, does not provide a better rate than δ

2
3 , while for

Landweber iteration the rate may be arbitrarily close to δ if µ is sufficiently large. Note that for an
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iterative method like Landweber iteration the number of iterations yielding opptimal convergence rates
is n∗ = O(δ−

2
2µ+1 ) ∼ O(δ−2) if µ is small. For δ = 10−3 one would thus need about 106 iterations to

stay within the regime of optimal convergence.

One way to overcome saturation or to the reduce the number of iterations is regularization in
Hilbert scales introduced by Natterer [18] for Tikhonov regularization, and later analyzed for more
general regularization methods in [5, 11, 25] and also for nonlinear problems [21, 22, 26]. We will recall
the definition of a Hilbert scale and the most important results on regularization in Hilbert scales in
Section 2. The general idea is to relate the operator T to a simpler operator L, e.g., a differential
operator. For the standard analysis of regularization in Hilbert scales a condition

m‖y‖ ≤ ‖LaT ∗y‖ ≤ m‖y‖ , for all y ∈ Y (9)

for some a, m, m > 0 is required, and instead of (3) the regularized solutions are defined by the
modified (preconditionied) method

xδ
α := gα(L−2sT ∗T )L−2sT ∗yδ, s ≥ −a/2. (10)

For a short illustration of the meaning of condition (9) we give a short example.

Example 1 Let T : L2(0, 1) → L2(0, 1) denote the solution operator to

−qy′′ = x, in [0, 1]; u(0) = u(1) = 0, (11)

i.e., Tx = y. We assume that q ∈ L2(0, 1) satisfies 0 < q0 ≤ q ≤ q1 for some positive constants q0,
q1 ∈ R. One can show that R(T ) = H2(0, 1) ∩ H1

0 (0, 1), and by the closed range theorem T is a
homeomorphism between the spaces L2(0, 1) and H2(0, 1) ∩H1

0 (0, 1).
Now let L : D(L) = H2(0, 1)∩H1

0 (0, 1) → L2(0, 1) be defined by Lx = −x′′. Since L is self-adjoint
and positive definit, one can define fractional powers of L and ‖Lsx‖ are natural norms on a scale
of (Sobolev) spaces, cf. Definition 1. Condition (9) cannot hold for any a ≥ 1/4 if q has jumps. If
however q ∈ H2(0, 1), then also (9) holds for a = 1. On the other hand, a condition

m‖x‖ ≤ ‖LaTx‖ ≤ m‖x‖ for all with x ∈ L2(0, 1) (12)

holds with a = 1 and for some positive constants m, m also for non-smooth parameters q. According
to (12) one might call T smoothing like two times integration, while (9) would only suggest smoothing
properties like intgration of power 1/2 at most.

Similar examples, where (12) characterizes the smoothing properties of T more tightly than (9) arise
from integral operators (Tx)(s) :=

∫
k(s, t)x(t)dt with kernels k(s, t) that allow differentiation with

respect to s but not with respect to t, see Section 5 for a detailed example.

As shown in [5, 18, 25], saturation effects of a method gα can be overcome by choosing s > 0 in
(10); in this case L−2s is smoothing. Conversely, for s < 0 the operator L−2s acts as a preconditioner,
and in this way iterative regularization methods can be accelerated, cf. [3, 4]. Note, that for s < 0 the
right inequality in (9) is already needed to ensure well-definedness of the method (10).

Condition (9) characterizes the smoothing properties of the operator T ∗ in terms of (the scale
of spaces over the pre-image space X generated by) the operator L. Hence, regularization in Hilbert
scales is applicable if the range of T ∗ consists of sufficiently smooth functions. As Example 1 ilustrates,
condition (9) may however not reflect the smoothing properties of T correctly, but (12) may be more
appropriate. Therefore, we will use (12) to analyse modified regularization methods of the form

xδ
α := gα(T ∗L−2sT )T ∗L−2syδ, s ≥ −a/2. (13)

In this way, the advantages of Hilbert scale regularization – overcoming saturation by choosing s > 0
respectively preconditioning by setting s < 0 – can be made accessible for a new class of problems.
Note that for methods (13) L is an operator on the image space Y and generates a scale of spaces over Y.
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The outline of the paper is as follows: We start by recalling the basic results on regularization in
Hilbert scales. In Section 3, we discuss regularization methods of the form (13), which we call Y-scale
regularization in the sequel, and derive the main error estimates. Section 4 is then concerned with
the analysis of Y−scale regulariaztion methods under relaxed assumptions with some emphasis on the
preconditioning of iterative regularization methods and the design of an order optimal a-posteriori
stopping rule. The presentation concludes with some examples and numerical tests illustrating the
theoretical results.

2 Regularization in Hilbert scales

Before we quote the most important results concerning regularization in Hilbert scales, we shortly
recall the definition of a Hilbert scale, see [12] or [5, Section 8.4] for details:

Definition 1 Let L be a densly defined, unbounded, selfadjoint and strictly positive operator in a
Hilbert space Z, and M :=

⋂∞
k=0 D(Lk). By Zs we denote the completion of M with respect to the

norm ‖z‖s := ‖Lsz‖Z ; (Zs)s∈R is called a Hilbert scale (induced by L).

Note that obviously ‖z‖0 = ‖z‖Z . Two implications of this construction are that Z−s = Z ′s and that
the following interpolation inequality holds, cf., e.g., [5, Section 8.4]:

‖z‖r ≤ ‖z‖
s−r
s−q
q ‖z‖

r−q
s−q
s , (14)

for −∞ < q < r < s < ∞ and z ∈ Zs.

Remark 1 Like in Example 1, L is chosen to be a (simple) differential operator in most situations
and the spaces Zs coincide with standard Sobolev spaces for a certain range of values of s. Note, that
the Sobolev spaces Hs do not form a Hilbert scale in general, cf. [20]. Fractional powers of L can then
be efficiently implemented by Fourier transfom or multi level techniques.

Another choice of L always yielding (9) with a = 1 is L := (T ∗T )−
1
2 . At least for preconditioning

(s < 0, e.g., s = −a/2), such a choice is impractical, since applying (T ∗T )−
1
2 in (10) or (13) is at least

as difficult as solving the original problem (1). If however T is self-adjoint, then L−2s = (T ∗T )−
1
2 can

formally be applied by skipping the terms L−2sT ∗ = I, and the method (3) simplifies to

xδ
α = gα(T )yδ.

The standard assumption for regularization in Hilbert scales is the following norm equivalence
condition:

m‖x‖−a ≤ ‖Tx‖ ≤ m‖x‖−a (15)

for some some m, m, a > 0. In fact, this condition is equivalent to (9) (cf. [4]; a similar result is derived
in Proposition 1). As shown in [5, 25], the Hilbert scale method (10) yields optimal convergence rates

‖xδ
n − x†‖ = O(δ

u
a+u ) (16)

under the source condition x† ∈ Xu for 0 < u ≤ 2(a + s)µ0, where µ0 denotes the qualification of the
method under consideration and

α(δ) ∼ δ
2(a+s)

a+u . (17)

By setting u = 2aµ, one can see that the rate (16) coincides with the standard results (7); note that
under assumption 15 the source condition x† ∈ Xu is then equivalent to x† ∈ R((T ∗T )µ) for 0 < u ≤ a.
Since the rate (17) holds for u ≤ 2(a + s)µ0, saturation can be overcome by choosing s large enough.

A different motivation for regularization in Hilbert scale has been geiven in [3, 4]: If an iterative
regularization method is used for the solution of (1), then optimal regularization parameter choice
(17) yields that the number of iterations needed to obtain the optimal convergence rates increases
with increasing s. Thus, from a numerical point of view (in particular for non-smooth solutions) it is
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advantageous to choose s as small as possible, eventually s < 0. In this case the operator L−2s in (10)
acts as a proconditioner, and by setting s = −a/2, the number of iterations needed to guarantee the
optimal rates (16) can be reduced to the square root, e.g., n(δ) = O(δ−

a
a+u ) for Landweber iteration.

Additionally, the analysis can be carried out under the weaker condition

‖Tx‖ ≤ m‖x‖−a respectively ‖T ∗y‖a ≤ m‖y‖Y . (18)

which allows to apply the approach for a significantly wider class of problems.

We will turn now to the analysis of Y−scale methods (13) and show that the basic convergence
results for regularization in Hilbert scales can be carried over to problems satisfying (12) instead of
(9).

3 Y-scale regularization

Let {Ys}s∈R be a Hilbert scale induced by some densely defined selfadjoint strictly positive operator
L : D(L) ⊂ Y → Y (cf. Definition 1), and let ‖ · ‖r denote the norm of Yr, i.e., ‖y‖r = ‖Lry‖ . In the
sequel we require that the operator T satisfies the following assumption:

Assumption 1 There exist positive real constants m, m and a, such that

m‖x‖ ≤ ‖Tx‖a ≤ m‖x‖ (19)

holds uniformly for all x ∈ X.

Note that Assumption 1 already implies injectivity of the operator T .

For the stable solution of the inverse problem (1) we consider modified regularization methods of
the form

xδ
α := gα(T ∗L−2sT )T ∗ L−2syδ = gα(B∗B)B∗L−syδ, with B := L−sT. (20)

Here and below we assume that the functions gα satisfy the standard assumptions (4), (5); s ∈ R
will be specified later. Throughout, A∗ denotes the adjoint of a linear operator A with respect to the
spaces X and Y. Under Assumption 1, the operator B is bounded as operator from X to Y for s ≥ −a.
Without loss of generality, we will assume ‖B‖ ≤ 1 below, which can always be achieved by proper
scaling.

Remark 2 Problem (1) is equivalent to

Bx = L−syδ, (21)

where B has to be understood as operator between X and Y, respectively T in (1) as an operator from
X to Ys. Note that T ∗L−2s is the adjoint of T with respect to these spaces. The Y-scale method (20)
hence corresponds to applying the regularization method defined by gα to the solution of (21). Note
that in case s < 0, the right hand side L−syδ may not be an element of Y. In any case the noise level
estimate (2) is not given in the appropriate norm if s 6= 0.

For the error analysis of Y-scale methods, we will need some preliminary results:

Proposition 1 Assumption 1 is equivalent to

m‖y‖−a ≤ ‖T ∗y‖ ≤ m‖y‖−a. (22)

Proof. First assume that (19) holds, let y ∈ Y and observe that

sup
y∈Y

‖T ∗y‖
‖y‖−a

= sup
y∈Y

sup
x∈X

〈T ∗y, x 〉
‖x‖ ‖y‖−a

= sup
x∈X

sup
y∈Y

〈 y, Tx 〉
‖x‖ ‖y‖−a

≤ sup
x∈X

‖Tx‖
‖x‖ ≤ m.
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Hence, T ∗ is extendable as a bounded linear operator to Y−a. The result than follows similarly as
above by noting that

sup
y∈Y−a

‖T ∗y‖
‖y‖−a

= sup
x∈X

‖Tx‖
‖x‖ .

The other implication follows similarly. ¤

Proposition 2 Let Assumption 1 hold and s ≥ −a. Then for |ν| ≤ 1

c(ν)‖y‖−ν(a+s) ≤ ‖(BB∗)
ν
2 y‖ ≤ c(ν)‖y‖−ν(a+s)

holds for y ∈ D((BB∗)
ν
2 ) with c(ν) = min(mν , mν) and c(ν) = max(mν ,mν). Moreover,

D((BB∗)−
ν
2 ) = R((BB∗)

ν
2 ) = Yν(a+s),

where in case ν > 0, (BB∗)
ν
2 is identified with its extension to Y.

Proof. The result follows by the inequality of Heinz, see, e.g., [5, Corollary 8.22] for details. ¤

It is well-known that in order to obtain convergence rates, the true solution x† has to satisfy some
smoothness assumptions, cf. [23]. As it will become clear from our analysis the appropriate source
condition for Y-scale regularization has to be stated in terms of the operator B (see also Remark 2).

Assumption 2 (Source condition) Let s > −a. There exists a real number u > 0 and w ∈ X such
that

x† = (B∗B)
u

2(a+s) w. (23)

We use here the notation for standard regularization in Hilbert scales, cf. [18, 25].

The total error ‖xδ
α− x†‖ can be decomposed into the two main components, namely the approxi-

mation error ‖xα− x†‖ and the propagated data error ‖xδ
α− xα‖ , where xα denotes the approximate

solution defined by (20) with yδ replaced by the correct data y = Tx†. We will now derive estimates
for the two error components in terms of α and δ:

Theorem 1 Let Assumption 1 hold, yδ satisfy (2), and xδ
α, xα be defined by the Y-scale method

(20) with some s ≥ −a/2. Furthermore, let gα satisfy (4), (5) for some µ0 > 0, and let x† satisfy
Assumption 2 for u ≤ 2(a + s)µ0. Then the following a-priori estimates hold:

‖xα − x†‖ ≤ C1 α
u

2(a+s) ‖w‖ , (24)

‖xδ
α − xα‖ ≤ C2 α−

a
2(a+s) δ, (25)

where C1, C2 denote generic constants dependending only on cµ, c∗, m and m. As a consequence

‖x† − xδ
α∗‖ = O(δ

u
a+u ) for α∗ ∼ δ

2(a+s)
a+u . (26)

Proof. We start by estimating the approximation error by using (5) and (23):

‖xδ
α − x†‖ = ‖gα(B∗B)B∗L−sy − x†‖

= ‖rα(B∗B)(B∗B)
u

2(a+s) w‖
≤ c u

2(a+s)
α

u
2(a+s) ‖w‖ .

Now consider the propagated data error: By Proposition 2 we have R(L−s) = Ys = R((BB∗)
s

2(a+s) ),
hence

xδ
α − xα = gα(B∗B)B∗L−s(yδ − y) = gα(B∗B)B∗(BB∗)

s
2(a+s) v,
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for some vδ ∈ Y with ‖vδ‖ ≤ c1‖y − yδ‖ . Thus, we can further estimate

‖xδ
α − xα‖ = ‖gα(B∗B)B∗(BB∗)

s
2(a+s) vδ‖

≤ c2 ‖gα(B∗B)(B∗B)
a+2s

2(a+s) ‖ ‖y − yδ‖
≤ c3 α−

a
2(a+s) δ,

where for the last estimate we utilized that

sup
λ∈[0,1]

|gα(λ)λµ| ≤ Cµ αµ−1, 0 ≤ µ ≤ 1,

which follows readily from (4) and (5). (26) is implied by (24) and (25). ¤

Remark 3 The estimates of Theorem 1 coincide with the convergence results for regularization in
Hilbert scales derived in [5, 18]. However, as indicated by Example 1, Y−scale regularization (13) is
applicable to a different class of problems. In contrast to standard regularization in Hilbert scales, the
source condition (23) cannot be interpreted in terms of the spaces Yr directly. However, the following
interpretation is possible: Define z by x = B∗z. Then problem (1) is equivalent to

BB∗z = L−syδ, x = B∗z.

The source condition (23) can be restated for z by noting

B∗z† = x† = (B∗B)
u

2(a+s) w = B∗(BB∗)
u−a−s
2(a+s) v

hence z† ∈ R((BB∗)
u−a−s
2(a+s) ) = Yu−a−s. The last identity is valid only for u ≤ a + s. A similar

restriction also holds for standard regularization in Hilbert scales, where the the source condition
x† ∈ Xu guarantees optimal convergence rates only for u ≤ a + 2s, cf. [5, Remark 8.24].

Since in practice the smoothness u of a solution x† is not known a-priori, an optimal parameter
choice (26) is not possible in general. Therefor, we next consider a parameter selection criterion based
on the discrepancy principle, cf. [5, 17], i.e.,

α∗ := sup{α : ‖Txδ
α − yδ‖ ≤ τδ}. (27)

The advantage of such a criterion is that it requires no a-priori information about the smoothness
of x†. Moreover, the residual rδ

n := Txδ
n − yδ has usually to be calculated anyway, in particular for

iterative regularzation methods.

Theorem 2 Let the Assumptions of Theorem 1 hold and let α∗ = α∗(δ) be determined by the discrep-
ancy principle (27). Then the rates (26) hold for 0 < u ≤ 2(a + s)µ0 − a.

Proof. We have to estimate the residual ‖Txδ
α − yδ‖ :

‖Txδ
α − yδ‖ = ‖Ls(Bgα(B∗B)B∗ − I)L−syδ‖

≤ c1 ‖rα(BB∗)B(B∗B)
u−s

2(a+s) ‖ ‖w‖ + c2 δ

≤ c u+a
2(a+s)

α
u+a

2(a+s) ‖w‖ + c2 δ,

where we used (5) and u ≤ 2(a + s)µ0 − a. Hence,

α∗ ≥ C δ
2(a+s)

a+u (28)

as long as τ > c2, which yields a sufficient bound for the propagated data error by (25). It remains to
consider the approximation error. First note that we have

‖T (xα∗ − x†)‖ ≤ ‖Txδ
α∗ − yδ‖ + ‖T (xα∗ − xδ

α∗)‖ + δ ≤ C δ.
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It then follows by the interpolation inequality and (23) that

‖xα∗ − x†‖ ≤ c3‖T (xα∗ − x†)‖ u
a+u ‖w‖ a

a+u ≤ c4δ
u

a+u ‖w‖ a
a+u ,

which completes the proof. ¤

Remark 4 For s = 0 the above results coincide with standard regularization theory by noting that
u = 2aµ. In Theorem 2 the restriction u ≤ 2(a + s)µ0 − a then amounts to µ ≤ µ0 − 1/2, which is the
well-known saturation for the discrepancy principle. As for standard regularization in Hilbert scales,
saturation effects of the applied method can be overcome by choosing s large enough.

4 Y-scale regularization under relaxed assumptions - precon-
ditioning

Probably the most severe drawback of Y-scale resgualrization as presented in the previous section is
the restrictive assumptions (19) (corresponding to (9) for standard regularization in Hilbert scales).
As we will show now, most of the results can still be derived if only one of the estimates in (19) is
available. We will treat the case where the right inequality holds and s ≤ 0 has to be chosen in detail
below; the corresponding results for the other inequality and the choice s ≥ 0 are indicated in remarks.

As can be seen from (26), the (optimal) regularization parameter α∗ can be increased by choosing
s < 0. For an iterative regularization method gα = gn, this means that the corresponding stopping
index decreases by setting s < 0. Note that, e.g., k∗ ∼ 1/α∗ for Landweber iteration. This motivates
to call the operator L−2s in (13) a preconditioner. In order to stay with the notation of the previous
section, we continue to write gα for general regularization methods, and mention some implications
for iterative regularization methods in seperate remarks.

Preconditioning of iterative regularization methods in Hilbert scales has been investigated in [3, 4]
under the standard assumption (9) and a relaxed version. Here, we are using scales of spaces over Y
and different Assumptions, namely (19) respectively (29). The derivation of the convergence results
of the following sections therefor requires different reasoning and a more sophisticated a-posteriori
stopping rule.

Let L and Ys be defined as above. Throughout this section we require the following assumption:

Assumption 3 T is injective and there exists a positive real constant a, such that

‖Tx‖a ≤ ‖x‖ (29)

holds uniformly for all x ∈ X.

Unlike (19), where the injectivity of the operator T was implied by the lower estimate, it has to
be assumed additionally here. Similarly as in the previous section we have the following equivalent
characterization of Assumption 3:

Proposition 3 Assumption 3 is equivalent to T being injective and

‖T ∗y‖ ≤ ‖y‖−a, ∀y ∈ Y−a. (30)

Proof. Let x, y, ŷ 6= 0 below. Assumption 3 can be restated as

1 ≥ sup
x∈X

‖LaTx‖
‖x‖ = sup

x∈X
sup
y∈Y

〈Tx,Lay 〉
‖x‖ ‖y‖

= sup
ŷ∈Y−a

sup
x∈X

〈x, T ∗ŷ 〉
‖x‖ ‖ŷ‖−a

= sup
ŷ∈Y−a

‖T ∗ŷ‖
‖ŷ‖−a

.

The other implication follows in the same way. ¤
Due to the relaxed assumption (29), Proposition 2 is no longer valid in its general form. Instead, only
the following weaker implications hold:
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Proposition 4 Let Assumption 3 hold, and B = L−sT for some s ≥ −a with ‖B‖ ≤ 1. Then the
estimates

‖(BB∗)
ν
2 y‖ ≤ ‖y‖−ν(a+s) ∀y ∈ Y−ν(a+s) ⊂ R((BB∗)−

ν
2 ), (31)

‖(BB∗)−
ν
2 y‖ ≥ ‖y‖ν(a+s) ∀y ∈ R((BB∗)

ν
2 ) ⊂ Yν(a+s) (32)

hold for 0 ≤ ν ≤ 1.

Proof. The results follow from the inequality of Heinz and standard results on Hilbert scales, see [5,
Section 8.5] for details. ¤

Assumption 3 and Proposition 4 are sufficient to prove the following a-priori error estimates corre-
sponding to those of Theorem 1.

Theorem 3 Let −a/2 ≤ s ≤ 0 and Assumption 3 hold. Additionally, let gα, x†, yδ satisfy the
assumptions of Theorem 1. Then (24), (25) and (26) hold.

Proof. The estimate for the approximation error xδ
α − x† follows as in the proof of Theorem 1. Now

observe that L−s(yδ − y) ∈ R(L−s) = Ys ⊂ R((BB∗)
s

2(a+s) ) is implied by (31) since s ≤ 0. Hence,
also the estimate for the propagated data error follows as in Theorem 1. ¤

Remark 5 In case s ≥ 0, condition (3) has to be replaced by

‖x‖ ≤ ‖Tx‖ ã. (33)

Proposition 4 then holds with opposite inclusions and the analogue to Theorem 3 follows verba-
tim. Again, similar as in the proof of Theorem 1, there exists a vδ ∈ Y such that L−s(y − yδ) =
(BB∗)

s
2(ã+s) vδ, since for s ≥ 0 and under condition (33)

R(L−s) = Ys ⊂ R((BB∗)
s

2(ã+s) )

follows from the analogue of Proposition 4 for this case.

4.1 A-posteriori parameter choice

The result of Theorem 3 is not of great use per-se, since it would require exact knowledge of the
smoothness of the solution x†. We will therefor consider a-posteriori parameter choice rules in the
sequel.

A discrepancy principle: In contrast to the results of the previous section, the discrepancy prin-
ciple (27) does not provide parameters that guarantee optimal convergence rates if only Assumption
3 is used. To see this, let us estimate the residual

‖Txδ
α − yδ‖ = ‖Ls(Bgα(B∗B)B∗ − I)L−syδ‖ (34)

≤ ‖Lsrα(BB∗)B(B∗B)
u

2(a+s) w‖ + ‖Lsgα(BB∗)BB∗L−s(yδ − y)‖ + ‖yδ − y‖
≤ c1α

u+a+s
2(a+s) + c2α

s
2(a+s) δ, (35)

for some positive constants c1 and c2. A careful inspection of the proof of Theorem 2 reveals that the
second term may disturb the convergence of the residual Txδ

α − yδ, i.e., one cannot guarantee that
inf{‖Txδ

α− yδ‖ : α > 0} ≤ τδ for any τ (independent of δ and yδ), for all possible data yδ. Hence, the
discrepancy principle (27) might not yield a parameter at all. A partial result can however be found
for the following modified criterion: Let αmax be defined by

αmax := sup{α : ‖Txδ
α − yδ‖ ≤ τδα

s
2(a+s) }, (36)
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for some appropriate τ > 1. We can estimate αmax from below by

τδα
s

2(a+s)
max ≤ ‖Txδ

α − yδ‖ ≤ c1 α
u+a+s
2(a+s) + c2 α

s
2(a+s) δ

for all α > αmax. Hence, assuming that τ > c2, we obtain with an appropriate constant C > 0 that

αmax ≥ Cδ
2(a+s)

a+u . (37)

In view of Theorems 1 and 2 a parameter choice α∗ = αmax cannot provide optimal convergence rates
in general, but at least the following sub-optimal result holds:

Proposition 5 Let the iterative method (13) be stopped at α∗ = αmax. Then the following (sub-
optimal) rate holds:

‖xδ
α − x†‖ = O(δ

u+ us
2(a+s)(a+u)

a+u ). (38)

Proof. In the same manner as (34) one obtains that

‖Txα − y‖ ≤ α
s

2(a+s) δ.

The result the follows similar as in the proof of Theorem 2. ¤

Remark 6 For s = 0 the rate (38) coincides with the optimal rate O(δ
u

a+u ). If s < 0, the convergence
rate observed for this parameter choice is not optimal, e.g., for s = −a/2 equation (38) yields

‖xδ
α − x†‖ = O(δ

u
2(a+u) ),

which is only half of the optimal rate (26).

We will show next, how optimal rates can be restored:

A Lepskij principle: In view of Theorem 1, αmax is a reasonable upper bound for appropriate
parameters yielding optimal convergence rates. On the other hand, according to Theorem 1 optimal
rates are always obtained for the choice

α∗ = αopt := Cδ
2(a+s)

a+u ≥ Cδ
2(a+s)

a =: αmin, (39)

with C as in (37). Hence, αmin is a in any case a reasonable lower bound for interesting regulariza-
tion parameters. A specific parameter yielding optimal convergence rates can be found in the range
[αmin, αmax] by means of the Lepskij principle, cf. [14, 16]; we use here a formulation similar to the
one presented in [1]:

Let αmin, αmax be determined according to (36), (39), and denote by αn := qn · αmax for some
0 < q < 1. We define the set M (of admissible parameters) by

M :=

{
αn ∈ [αmin, αmax] :

‖xδ
αn
− xδ

αm
‖ ≤ 4Cα

− a
2(a+s)

n δ

for all m = n + 1, . . . , N

}
, (40)

where N is the largest integer such that αN > αmin, and C is a generic constant such that

max{‖xδ
α − xα‖ , ‖xα − x†‖} ≤ Cα−

a
2(a+s) δ for all α ≤ αopt. (41)

Note that by the error estimates (24), (25), such a constant can be chosen depending on (a bound on)
‖w‖ , but without knowledge of u or αopt. As appropriate parameter, we then choose

α∗ :=
{

arg maxM if M 6= {},
N.

(42)
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Theorem 4 Let the assumptions of Theorem 3 be satisfied and let α∗ be defined by (42). Then the
rate

‖xα∗ − x†‖ = O(δ
u

a+u ) (43)

holds.

Proof. By definition of αopt we have αopt ∈ [αmin, αmax]. Additionally, it follows from the error
estimates (24), (25), and (41) that α∗ ≥ αopt. Hence, we obtain togehter with (40) that

‖xδ
α∗ − x†‖ ≤ ‖xδ

αopt
− x†‖ + ‖xδ

α∗ − xδ
αopt

‖ = O(δ
u

a+u) ).

¤

Remark 7 A disadvantage of the Lepskij principle is that its realization requires a higher computa-
tional effort than the standard discrepance principle (27). Note that assembling of the set (40) requires
to generate solution for a wide range of regularization parameters, which ensures that a parameter
providing optimal convergence rates is in the set M. Additionally, the solution xδ

αn
have to be stored.

By using the upper bound αmax on admissible parameters, the number of solutions xδ
αn

which have to
be stored can be reduced significantly; note, that usually αmax ∼ 1 is chosen, cf. [1, 16].

The Y−scale approach allows to choose the smallest regularization parameter αmin relatively large,
e.g., αmin ∼ δ for s = −a/2, whereas one would need αmin ∼ δ2 for standard regularization methods
(3), cf. [1, 16].

As already mentioned, setting α∗ = αmax, which can be determined by the modified discrepancy
principle (36), will only guarantee the sub-optimal rates (38). Even if the standard discrepancy prin-
ciple (27) provides a parameter, i.e., if there exists an α such that ‖Txδ

α− yδ‖ ≤ τδ, such a choice will
in general only yield sub-optimal rates similar to (38).

Remark 8 The results derived for general regularization methods (3) hold with obvious modifications
also for iterative regularization methods. Under the strong condition (19), and with s = −a/2, Theorem
2 yields optimal convergence rates when the method is stopped at iteration N∗ defined by

‖Txδ
N∗ − yδ‖ ≤ τδ < ‖Txδ

n‖

As can be seen from (26) respectively (17), the number of iterations needed to get the optimal rates
(16) can be reduced to about the square root by proper preconditioning (s = −a/2).

Under the weaker assumption (29), and with s = −a/2, one has to perform Nmax := 1/αmin ∼ δ−1

iterations in order to apply the Lepskij principle (42). Note that if x† is not very smooth, i.e., if µ in
(8) is small, which is the case we are interested in, then one would expect N∗ = O(δ

2
2µ+1 ) ∼ O(δ−2)

iterations for (the standard version of) Landweber iteration. Hence also in this case, the number of
iterations can be reduced to about the square root by choosing s = −a/2.

Remark 9 If instead of Assumption 3 condition (33) holds and s ≥ 0, then the results concerning
the discrepancy principle are slightly different to those presented here. E.g., the standard discrepancy
principle (27) can be used to determine αmax. However, as in the case s ≤ 0, a choice α∗ = αmax does
not yield optimal convergence rates in general. The result for the Lepskij principle follows as above
with obvoius modification. For s ≥ 0 and if iterative regularization methods are applied, the number
of iterations will be increased by application of L−2s, which in case s ≥ 0 is a smoothing operator.
Such choice seems to be disadvantageous from a numerical point of view, at least for iterative methods.

We only mention that if a condition (33) holds for some ã ≥ a additionally to (29) (cf. Example 3),
then some of the previous results can be strengthened. In particular, for ã = a, the results of Section
3 apply.
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5 Examples and numerical tests

In this section we verify Assumptions 1 respectively 3 for several examples, and present the results of
some numerical tests illustrating the theoretical results of the previous section.

Example 2 (Radon transform) Let f ∈ C∞0 (Ωn), for some compact domain Ωn ⊂ Rn, n ≥ 2. The
Radon transform Rf of f is defined by

Rf(ω, s) =
∫

x·ω=s

f(x)dx.

The Radon transform is important in many applications, e.g., in computerized tomography, and has
been studied extensively in the literature. The following very general stability estimate holds, cf.
[19, 24]:

c(α, n)‖f‖Hα
0 (Ωn) ≤ ‖Rf‖Hα+(n−1)/2(Z) ≤ C(α, n)‖f‖Hα

0 (Ωn) (44)

where Z denotes the unit cylinder in Rn, and

‖g‖Hα+(n−1)/2(Z) :=
∫

Sn−1

∫

R
(1 + σ2)α|ĝ(θ, σ)|2dσ dθ.

Here, the Fourier transform is only taken with respect to the second variable. Due to (44) the result
of Section 3 are applicable with Ly(θ, s) = −∂ssy(θ, s) + y(θ, s), and fractional powers of the operator
L can be realized by Fourier transform.

Example 3 (An integral equation allowing a lower bound) Consider the Fredholm integral equa-
tion Tx = y with operator T : L2(0, 1) → L2(0, 1) defined by

Tx(s) =
∫ 1

0

k(s, t)dt with k(s, t) =
√

t

{
s(1− t) , 0 ≤ s < t ≤ 1 ,

t(1− s) , 0 ≤ t ≤ s ≤ 1 .

Since k(s, t) ∈ L2([0, 1]2), it follows that T is compact and Tx = y is ill-posed. With

(Tx)(s) = (1− s)
∫ s

0

t3/2x(t)dt + s

∫ 1

s

t1/2(1− t)x(t)dt

we get (Tx)(0) = (Tx)(1) = 0. By twice differentiation we obtain that

(Tx)′′(s) = −s1/2x(s) ,

which yields
R(T ) = {y ∈ H2(0, 1) ∩H1

0 (0, 1) : s−1/2y′′(s) ∈ L2(0, 1)} .

As operator L generating a Y-scale, we choose

Lsy :=
∞∑

n=1

(nπ)s〈x, xn 〉yn , with yn :=
√

2 sin(nπ·) , (45)

i.e., L2x = −x′′ and Y2 = H2(0, 1) ∩H1
0 (0, 1). This choice yields R(T ) ( Y2 and R(T ) ⊃ Y2.5 = {y ∈

H2.5(0, 1) ∩H1
0 (0, 1) : ρ−1/2y′′ ∈ L2(0, 1)} with ρ(t) = t(1− t). By Theorem 11.7 in [15], we get

m‖x‖ ≤ ‖Tx‖2.5 and ‖Tx‖2 ≤ m‖x‖
for some positive constants m, m, thus we can apply the results of Section 4.

Next we apply Tikhonov regularization, Landweber iteration, and the ν-methods by Brakhage
[2, 8] for the numerical solution of Tx = y. As parameter choice we use the Lepskij principle (42). We
shortly describe how an implementation of this stopping rule is implemented for Landweber iteration:
As soon as the modified discrepancy principle (36) is satisfied, we set Mx := {xδ

kmin
}, where kmin
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plays the role of αmax in (36). At each iteration kn := 2n · kmin, n ∈ N, we add the element xδ
kn

to
the set Mx and check if the condition

‖xδ
kn
− xδ

km
‖ ≤ 4Ck

a
2(a+s)
n δ (46)

for all xδ
kn

, xδ
km

in the set Mx with m > n. If (46) does not hold for some n, we eliminate all elements
xδ

km
with m ≤ n and repeat until the condition holds for all elements in Mx or the set Mx consist of

only one element. This procedure is continued until the final iteration kmax = Cδ−1 is reached.

For a concrete numerical test, we set x†(s) = sign(1 − 2s). With a = 2, s = −1 and the above
choice of a Hilbert scale, we have x† ∈ R(B∗B)

u
2(a+s) = {x ∈ Y2 : 1√

s
( x√

s
)′′ ∈ L2(0, 1)} for 0 ≤ u < 1.

The correct data y = Tx† are perturbed by uniformly distributed random noise such that ‖y−yδ‖ = δ
for several values of delta. In a first test, we set δ = 0.002, τ = 1.1 and compare the two error compo-
nents (approximation error and propagated data error) for Landweber iteration with preconditioning
(s = −a/2). According to Figure 1, the optimal stopping index is 230, whereas the standard discrep-
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propagated data error
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Figure 1: Approximation, propagated data and total error, Example 3 with δ = 0.002, τ = 1.1 and
iterates obtained by the preconditioned Landweber iteration. The vertical line denotes the actual
stopping index n∗ determined by the Lepskij rule.

ancy principle stoppes only after 469 iterations, cf. (34) and Remark 7. The Lepskij principle (42),
with C = 0.25 yields N = 96. The corresponding errors en = ‖xδ

n − x†‖ are e230 = 0.26, e469 = 0.30,
and e96 = 0.27.

In order to illustrate the effect of preconditioning, we list the iteration numbers and errors for
several values of δ obtained for Landweber iteration and the ν-methods by Brakhage [2, 8] with and
without preconditioning in Table 1. Note that the numerical effort for on iteration step is about the
same for all methods and consists of application of T and T ∗. The preconditioned iteration requires
further application of a differential operator, which is cheap in comparison to application of the integral
operator T .

The corresponding convergence rates are en := ‖xδ
n−x†‖ = O(δ0.18) for all iterations. The iteration

numbers behave like n
(lw)
∗ ∼ δ−1.7, n

(nu)
∗ ∼ δ−0.87 for the standard Landweber iteration and the ν-

method. In both cases the stopping indices can be reduced to the square root by preconditioning, i.e.,
n

(hslw)
∗ ∼ δ−0.90 and n

(hsnu)
∗ ∼ δ−0.48.

The following two examples shall serve as models for inverse problems governed by partial differ-
ential equations. Note that in 2-D, or 3-D, an assembly of the full operator is usually impossible for
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δ n
(lw)
∗ e

(lw)
n n

(hslw)
∗ e

(hslw)
n n

(nu)
∗ e

(nu)
n n

(hsnu)
∗ e

(hsnu)
n

0.02 46 0.4299 20 0.4244 13 0.4099 9 0.4078
0.01 177 0.3920 38 0.3655 21 0.3655 12 0.3634
0.005 819 0.3307 81 0.3312 43 0.3333 18 0.3300
0.002 3488 0.2690 166 0.2704 112 0.2587 29 0.2589

Table 1: Iteration numbers and relative errors for Landweber iteration (lw), the ν-Method with ν = 2
and the preconditioned versions, Example 3.

reasonable discretization levels, and even the application of the operator T , which involves the solu-
tion of the governing equation may be rather expensive. Thus such problems will usually be solved by
some iterative method, and the number of iterations should be kept as small as possible. As we will
illustrate, this can effectively be achieved by preconditioning in Y-scales:

Example 4 (Source reconstruction) Let Ω ⊂ Rn, n = 2, 3 be a bounded convex domain and let
T : L2(Ω) → L2(Ω) be defined by Tf = u where u satisfies

−q∆u + cu = f, u
∣∣
∂Ω

= 0,

and c, q ∈ L2(Ω) is a known function bounded from below by some constants c ≥ 0, q > 0. We consider
the Y-scale induced by

L2 : D(L2) ⊂ L2(Ω) → L2(Ω) with L2u = −∆u,

and domain D(L2) = H2(Ω) ∩ H1
0 (Ω) =: Y2. It follows from standard regularity results for elliptic

equations that the solution u satisfies u ∈ Y2, i.e., R(T ) ⊂ Y2. Moreover, if q is additionally bounded
from above, than also the opposite inclusion holds, i.e., Assumption 1 is valid with a = 2.

For a numerical test, we consider Ω = (0, 1)2, q = 2 + sign(1 − 2x), c = 1. Let the true solution
be defined by f† = sign(1− 2y) and choose s = −a/2 = −1. In view of Theorem 2, we can apply the
standard discrepancy principle for this example. The results of the numerical tests are listed in Table
2.

δ n
(lw)
∗ e

(lw)
n n

(hslw)
∗ e

(hslw)
n n

(nu)
∗ e

(nu)
n n

(hsnu)
∗ e

(hsnu)
n

0.02 424 0.451 34 0.587 55 0.456 14 0.538
0.01 1639 0.374 52 0.445 116 0.375 18 0.425
0.005 4723 0.307 91 0.359 192 0.310 26 0.355
0.0025 12794 0.251 161 0.282 321 0.253 33 0.275

Table 2: Iteration numbers and relative errors for Landweber iteration (lw), the ν-Method with ν = 2
and the preconditioned versions, Example 4.

Example 5 (Exponentially ill-posed problems) As a final example we consider the backwards
heat equation as a model problem for exponentially ill-posed problems: Let T : L2(0, 1) → L2(0, 1)
defined by (Tg)(x) = y(x) := u(x, t) with some t > 0 and

−ut + quxx = 0 , u(0, t) = u(1, t) = 0 , u(x, 0) = g .

The solution of this equation has the Fourier expansion

u(x, t; g) =
∞∑

n=1

exp(−qtπ2n2)〈 g, yn 〉yn ,

with the basis functions yn as in Example 3. Let Ls be defined by (45). Then we have

‖Tg‖r ≤ c(r)‖g‖ for all r ∈ R,
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thus Assumption 3 can be satisfied for arbitrary a (up to scaling by a constant).
For a numerical test, we let q = 0.01, set s = −2 for preconditioning, and try to reconstruct the

initial condition
g† = 2x− sign(2x− 1))− 1

from measurements of u at time t = 1.

δ n
(lw)
∗ e

(lw)
n n

(hslw)
∗ e

(hslw)
n n

(nu)
∗ e

(nu)
n n

(hsnu)
∗ e

(hsnu)
n

0.02 13 0.501 9 0.498 6 0.492 5 0.486
0.01 21 0.488 12 0.486 9 0.482 7 0.476
0.005 37 0.482 15 0.482 15 0.473 8 0.474
0.0025 402 0.435 58 0.433 76 0.434 21 0.432

Table 3: Iteration numbers and relative errors for Landweber iteration (lw), the ν-Method with ν = 2
and the preconditioned versions, Example 5.

Since the problem under consideration is exponentially ill-posed, only logarithmic convergence rates
can be expected, cf. [10]. The solution of all considered methods look almost identical. Note that for
this problem, our theory does actually not imply smaller stopping indices of the discrepancy for the
preconditioned methods. However, as can be seen from Table 1, the number of iterations is reduced
significantly for finite noise levels δ > 0, cf. also [4] for a discussion of this phenomenon.
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