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Abstract. High order finite elements are usually defined by means of certain orthogonal
polynomials. The performance of iterative solution methods depends on the condition
number of the system matrix, which itself depends on the chosen basis functions. The
goal is now to design basis functions minimizing the condition number, and which can be
computed efficiently. In this paper we demonstrate the application of recently developed
computer algebra algorithms for hypergeometric summation to derive cheap recurrence
relations allowing a simple implementation for fast basis function evaluation.

1. Introduction

The finite element method (FEM) [14, 5, 6] is the most popular tool for the computer
simulation of partial differential equations as arising from problems in science, engineering
and economy.

The simplest method is to approximate the unknown functions by a continuous and
piecewise linear function on a triangular mesh. To compute the function, one has to solve
a usually large system of equations. For many problem classes, the approximation with
piecewise high order polynomials requires essentially less parameters [13, 15], and is thus
attractive. On the other hand, the implementation of high order methods is much more
involved, and every simplification of algorithms is highly appreciated.

In particular for three dimensional problems, the dimension of the equation system gets
large, and iterative equation solvers such as the preconditioned conjugate gradient method
must be used. Our goal is to apply cheap block-Jacobi preconditioners, where each block
consists of the unknowns connected with one vertex, edge, face, or cell of the mesh. To
make this preconditioner efficient, the basis functions must be designed such that the blocks
are nearly orthogonal among each other. The construction of such basis functions as well
as the numerical analysis is given in [7]. Here, we concentrate on providing recursion
formulas allowing a simple implementation for fast basis function evaluation. The main
objective of this note is to show that recently developed computer algebra algorithms for
special functions play a key role in this task. In Section 3 we present two examples which

1991 Mathematics Subject Classification. 65N30.
Key words and phrases. High order finite elements, Sobolev Spaces, Hypergeometric Summation.
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illustrate typical applications. Before entering this main part of the paper, in Section 2 we
give a brief account of the computer algebra methods we apply.

2. Hypergeometric summation methods

All our summation methods applied in this article solve one of the following two prob-
lems.

•The telescoping problem: Given f(k); find g(k) such that

f(k) = g(k + 1) − g(k)

holds within a certain range of k. Then, given such a g(k), one derives by telescoping that
n
∑

k=1

f(k) = g(n + 1) − g(1).

•The creative telescoping problem: Given f(n, k) and a positive integer d; find c0(n), . . . ,
cd(n), free of k and not all zero, and g(n, k) such that

(1) c0(n) f(n, k) + · · · + cd(n) f(n + d, k) = g(n, k + 1) − g(n, k)

holds within a certain range of n and k. Suppose one succeeds in computing such ci(n)
and g(n, k) for given f(n, k) and d. Then summing equation (1) over k from 1 to n gives

(2) c0(n)

n
∑

k=1

f(n, k) + · · · + cd(n)

n
∑

k=1

f(n + d, k) = g(n, n + 1) − g(n, 1).

Then under some mild extra conditions, one can express the sums
∑n

k=1 f(n+i, k) in (2) in
terms of S(n + i) where S(n) =

∑n
k=1 f(n, k). This implies a not necessarily homogeneous

recurrence

(3) c0(n)S(n) + · · ·+ cd(n)S(n + d) = h(n)

for the definite sum S(n).

For hypergeometric terms1 f(k) in k (resp. hypergeometric terms f(n, k) in n and k)
well-known algorithms exist, see e.g. [10]. More generally, new algorithms [12, 2] are on
the market that can handle sequences where f(k) (resp. f(n, k)) is defined by certain types
of linear recurrence relations of higher order with respect to k.

For a broad variety of such algorithms, see

http://www.risc.uni-linz.ac.at/research/combinat/software/

However, for this article we restrict to our Mathematica package [12].

In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider c© RISC-Linz

Besides these summation methods we will have to deal also with the following problem.

1f(k) is hypergeometric in k iff f(k + 1)/f(k) = g(k) for some fixed rational function g(k).
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•Manipulation of linear recurrences: Given two linear recurrence relations, one as in (3)
and one of the form

b0(n)R(n) + · · · + br(n)R(n + r) = g(n),

both with polynomial coefficients bi(n) and ci(n); find a recurrence relation of the same
type which is satisfied by the sum sequence R(n) + S(n).

Also here there exist various algorithms that can solve this problem, see [11, 8]. In this
article we use our Mathematica package [8].

In[2]:= << GeneratingFunctions.m

GeneratingFunctions Package by Christian Mallinger – c© RISC Linz

3. Two examples from high order finite elements

In this section we present two examples arising from the design of high order finite
elements.

3.1. Edge-based basis functions. One part of the high-order basis functions are func-
tions associated with edges. When restricted to an edge, they have to form a basis for
P p

0 (I), where P p(I) denotes the space of polynomials up to order p on the unit interval
I = (−1, 1) and the subscript 0 restricts to those polynomials vanishing on the boundary
{−1, 1}. The most commonly used basis functions are the so called integrated Legendre
polynomials Li defined by Li(x) =

∫ x

−1
Pi−1(s)ds, where the Pi are the Legendre polyno-

mials; see e.g. [1]. Since
∫ 1

−1
Pi(s)ds = 0 for i ≥ 1, the Li satisfy zero boundary conditions

for i ≥ 2. The integrated Legendre polynomials satisfy the three-term recurrence

L0(x) = −1,

L1(x) = x,

Li(x) = aixLi−1(x) + biLi−2(x) for i ≥ 2

with

ai =
2i − 3

i
and bi =

3 − i

i
.

We note that only the Li with 2 ≤ i ≤ p form the basis for P p
0 (I). The functions on the

open/closed interval I are extended onto the unit triangle T with vertices (−1, 0), (1, 0),
(0, 1). For this extension, let P p

0 (T ) be the space of polynomials in x and y with maximal
total order p and which vanish on the boundary ∂T of T . Note that the boundary ∂T
consists of the edges E1 = ((−1, 0), (1, 0)), E2 = ((−1, 0), (0, 1)), and E3 = ((1, 0), (0, 1))
in R

2. The classical extension procedure [3], similar to [9], is the following:

(x,y)

(−1,0) (1,0)

(0,1)

x−y x+y
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ϕ
(1)
i (x, y) :=

1

2y

∫ x+y

x−y

Li(s) ds for y > 0.

Note that this is an extension of the edge function, in the sense,

ϕ
(1)
i (x, y) −−→

y→0
Li(x).

This extension is bounded as an operator from H1/2(I) → H1(T ). But, although the
polynomials Li vanish at the boundary of E1, the extension does not vanish at the two
upper edges E2 and E3 of the triangle. This can be fixed e.g. by linear interpolation
between E1 and E2, respectively E1 and E3:

(x,y)

(−1,0) (1,0)

(0,1)

x−y

((1+x−y)/2, (1−x+y)/2)

Accordingly we define

ϕi(x, y) := ϕ
(2)
i (x, y) −

2y

1 + x + y
ϕ

(2)
i

(

x + y − 1

2
,
1 + x + y

2

)

(4)

where

ϕ
(2)
i (x, y) := ϕ

(1)
i (x, y) −

2y

1 − x + y
ϕ

(1)
i

(

1 + x − y

2
,
1 − x + y

2

)

.(5)

The resulting extension operator preserves the polynomial order and is bounded in the
sense that

‖ϕ‖H1(T ) ≤ c‖ϕ‖
H

1/2
00 (E)

.

Moreover, it satisfies zero boundary conditions at the upper two edges E2 and E3. Thus,
the functions ϕi can be chosen as edge-based shape functions on triangles. Note that the ϕi

are considered as shape functions associated to the edge E1, but shape functions associated
to the edge E2 or E3 can be immediately obtained from the ϕi by permuting the vertices.

By means of symbolic summation methods we have derived the following relation allow-
ing an efficient computation of the functions ϕi.

Theorem 1. The functions ϕi as defined in (4) for i ≥ 6 satisfy the recurrence relation

(6) ϕi = aixϕi−1 + (bi + ci(x
2 − y2))ϕi−2 + dixϕi−3 + eiϕi−4

with the coefficients

ai =
2(2i− 3)

(i + 1)
, bi = −

(2i − 5)(3 − 10i + 2i2)

i(i + 1)(2i − 7)
, ci = −

(2i − 5)(21 − 20i + 4i2)

i(i + 1)(2i− 7)
,

di =
2(i − 5)(2i − 3)

i(i + 1)
, ei = −

(i − 6)(i − 5)(2i − 3)

i(i + 1)(2i − 7)
.
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The recurrence is started with

ϕ2(x, y) = 1/2(1 + x − y)(1 − x − y),

ϕ3(x, y) = 1/2(1 + x − y)(1 − x − y)x,

ϕ4(x, y) = 1/8(1 + x − y)(1 − x − y)(−1 + 5x2 − 2y + 3y2),

ϕ5(x, y) = 1/24(1 + x − y)(1 − x − y)x(−9 + 21x2 − 14y + 35y2).

Remark. The coefficients ai to ei are computed once and for all and are stored in tables.
The evaluation of p basis functions ϕi takes just 11p + O(1) floating point operations.

3.2. Discovering and proving Theorem 1. Using the Sigma package one can find and
prove the recurrence (6) as follows. First we transform integrals into sums by starting with
the sum representation

(7) Pi(x) = (2x)i (
1
2
)i

i!

i
∑

k=0

(− i
2
)k(

1−i
2

)k

(−i + 1
2
)kk!

(1

x

)2k

(e.g. [1, (6.4.12)]); here we use the standard Pochhammer symbol (a)k = a(a + 1) · . . . ·
(a + k − 1) for k > 0, (a)0 = 1, and (a)−1 = 1

a−1
. The representation (7) allows simple

term-wise integration and one finds that ϕ
(1)
i can be written in the form

ϕ
(1)
i (x, y) = S(x + y) − S(x − y)

where

S(Z) = −

i
∑

k=0

2−2k+i−1Z−2k+i+1
(

−1
2

)

i
(−i)2k−1

yk!i!
(

3
2
− i
)

k

.

Thus, together with (5) and (4), we can write ϕi for i ≥ 2 as

(8) ϕi = −
2i−1y((−1)i(x+y−1)(x+y+3)(−x+y+1)2+(x−y−3)(x−y+1)(x+y+1)2)(− 1

2)i

(x+y+1)2(x−y−1)2i!
Ai

+ (x−3y−1)(x−y)(x+y−1)
2(x−y−1)2y

Bi(x − y) − (x−y+1)(x+y)(x+3y+1)
2y(x+y+1)2

Bi(x + y)

where the sums Ai, Bi(x − y) and Bi(x + y) are defined by

Ai =

i
∑

k=0

2−2k(−i)2k−1

k!
(

3
2
− i
)

k

and Bi(Z) =

i
∑

k=0

2i−2kZ i−2k
(

−1
2

)

i
(−i)2k−1

i!k!
(

3
2
− i
)

k

.

Given this representation, we are ready to apply Sigma.

• We insert the sum Ai in the computer algebra system Mathematica

In[3]:= A =
i
∑

k=0

2−2k(−i)2k−1

k!
(

3

2
− i
)

k

;

and call Sigma to simplify it:

In[4]:= SigmaReduce[A]
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Out[4]= 0

Hence our indefinite summation algorithm yields, for i ≥ 3,

(9) Ai = 0.

The proof, resp. proof certificate, of this fact is also delivered automatically by Sigma.

Proof of (9). Let f(i, k) := 2−2k(−i)2k−1

k!(3
2
−i)

k

. The correctness follows from

(10) g(i, k + 1) − g(i, k) = f(i, k)

and the proof certificate given by g(i, k) =
4k(i2−3i+4k−2)
(i−2)(i−1)i(i+1)

f(i, k). Namely, one can conclude

that (10) holds for all i ≥ 3 and all 0 ≤ k ≤ i as follows: Represent g(i, k + 1) in terms
of rat(i, k)f(i, k) where rat(i, k) is a rational function in i and k by using the relation

f(i, k + 1) = 2(i−2k)(i−2k+1)
(k+1)(−2i+2k+1)

f(i, k). Then verify (10) by simple polynomial arithmetic.

Finally, summing (10) over k gives Ai =
4−i(i2+i+2)(−i)2i−1

(i2−i−2)i!(3
2
−i)

i

= 0 because of (−i)2i−1 = 0. �

But it should be noted explicitly that for i = 0, 1, 2, the sum Ai is not 0. Summarizing,
we can neglect the sum expression Ai in ϕi from i ≥ 3 on.

• Next, we consider the sum Bi(Z). This time we compute a recurrence relation for Bi(Z).
We type in

In[5]:= B =

i
∑

k=0

2i−2kZi−2k
(

−1

2

)

i
(−i)2k−1

i!k!
(

3

2
− i
)

k

;

and run

In[6]:= recB=GenerateRecurrence[B][[1]]

Out[6]= {(i − 2)SUM[i] − (2i + 1)Z SUM[i + 1] + (i + 3)SUM[i + 2] == 0}

This means Bi(Z) = SUM[i] satisfies the recurrence relation in the output Out[6]. Again
Sigma delivers automatically a certificate for its correctness.

Proof of Out[6]. Let f(i, k) :=
2i−2kZi−2k(− 1

2)i
(−i)2k−1

i!k!(3
2
−i)

k

. The correctness follows by

(11) c0(i)f(i, k) + c1(i)f(i + 1, k) + c2(i)f(i + 2, k) = g(i, k + 1) − g(i, k)

and by the proof certificate c0(i) = (i−2), c1(i) = −(2i+1)Z, c2(i) = (i+3) and g(i, k) =

−2(i−2)(2i−2k−1)kZ2

(i−2k+2)(i−2k+3)
f(i, k). Then by using the relation f(i, k + 1) = (−i+2k−1)(2k−i)

2(k+1)(−2i+2k+3)Z2 f(i, k),

we can check by polynomial arithmetic that (11) holds for all i ≥ 0 and 0 ≤ k ≤ i. Finally,
summing (11) over k and compensating missing terms leads to the recurrence relation
in Out[6]. �

Summarizing, Bi(x − y) satisfies for i ≥ 0 the recurrence

In[7]:= recB1 = (i − 2)SUM[i] − (2i + 1)(x − y) SUM[i + 1] + (i + 3)SUM[i + 2] == 0

and Bi(x + y) satisfies for i ≥ 0 the recurrence

In[8]:= recB2 = (i − 2)SUM[i] − (2i + 1)(x + y) SUM[i + 1] + (i + 3)SUM[i + 2] == 0
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To complete the proof of Theorem 1 we use the package GeneratingFunctions to compute a
recurrence that is satisfied by both, Bi(x + y) and Bi(x − y).

In[9]:= RecurrencePlus[recB1, recB2, SUM[i]]

Out[9]= (i − 2)(i − 1)(2i + 5)SUM[i] − 2(i − 1)(2i + 1)(2i + 5)xSUM[i + 1]

+ (2i + 3)
(

4x2i2 − 4y2i2 + 2i2 + 12x2i − 12y2i + 6i + 5x2 − 5y2 − 5
)

SUM[i + 2]

− 2(i + 4)(2i + 1)(2i + 5)xSUM[i + 3] + (i + 4)(i + 5)(2i + 1)SUM[i + 4] == 0

Obviously also ϕi is a solution of Out[9] for i ≥ 3 by (8) and (9). Considering the initial
cases i = 0, 1, 2, it turns out that only for i = 0, our derived recurrence does not hold.
The fact that the recurrence from Out[9] is nothing else than (6) completes our proof of
Theorem 1.

3.3. Low energy vertex functions. The p-dependence of the condition number can be
reduced by the use of low energy vertex shape functions. The proposal in [4] is to use vertex
shape functions being constant along the level-sets of the standard hat-basis-functions, and
minimizing the H1 norm among this class of functions. This leads to the one-dimensional
constrained minimization problem

(12) min
v∈Pp(I)

v(−1)=0,v(1)=1

∫ 1

−1

(s − 1)d−1(v′(s))2 ds,

where d is the space dimension, which is d = 2 or d = 3. This is a strictly convex
minimization problem on a finite dimensional space. Thus there exists a unique minimizing
polynomial which we call ud

p(x). To find it we expand v in terms of the Jacobi polynomials

P
(d−2,−1)
i of order i = 1, . . . , p; see e.g. [1] for their basic properties. Note that Jacobi

polynomials P (α,β) are defined for parameters α, β > −1, but, the properties we need are
also valid for β = −1. Jacobi-polynomials can be described recursively by

P
(α,β)
0 (x) = 1,

P
(α,β)
1 (x) = 1/2[2(α + 1) + (α + β + 2)(x − 1)],

P
(α,β)
i (x) = aiP

(α,β)
i−1 (x) + biP

(α,β)
i−2 (x), for i ≥ 2,

with the coefficients

ai =
(2i + β + α − 1)(α2 − β2 + (2i + α + β − 2)(2i + α + β)x)

2i(α + β + i)(2i + α + β − 2)

and

bi = −
(i + α − 1)(i + β − 1)(2i + α + β)

i(i + α + β)(2i + α + β − 2)
.

By means of the p × p matrix A defined by

Ai,j =

∫ 1

−1

(s − 1)d−1(P
(d−2,−1)
i )′(s)(P

(d−2,−1)
j )′(s) ds,
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and the vectors b0 = (b0
1, . . . , b

0
p) and b1 = (b1

1, . . . , b
1
p) defined by

b0
i = P

(d−2,−1)
i (−1) and b1

i = P
(d−2,−1)
i (1),

the constrained minimization problem is an algebraic minimization problem, namely

min
v∈Rp

b0·v=0,b1·v=1

vTAv.

Now, we compute the matrix and vector entries. For the matrix entries Ai,j we first use

the fact (e.g. [1, (6.4.22)]) that the derivative of a Jacobi polynomial P
(α,β)
i is given by

d

dx
P

(α,β)
i (x) = 1/2(i + α + β + 1)P

(α+1,β+1)
i−1 (x), i ≥ 1,

and second that the P
(α,β)
i are orthogonal w.r.t. the weight function wα,β(x) = (1−x)α(1+

x)β , i.e.,
∫ 1

−1

(1 − x)α(1 + x)βP
(α,β)
i (x)P

(α,β)
j (x) dx =

2α+β+1

2i + α + β + 1

Γ(i + α + 1)Γ(i + β + 1)

i!Γ(i + α + β + 1)
δi,j .

From this and from our specific choice of parameters α = d − 2, β = −1 we obtain that
the matrix A is a diagonal matrix with Ai,i = i/2 in the two dimensional case, and with
Ai,i = 2(i + 1)2/(2i + 1) for d = 3.

For the computation of the vectors b0 and b1 we observe that P
(d−2,−1)
0 (−1) = 1 and

P
(d−2,−1)
i (−1) = 0 for d = 2, 3 and i ≥ 1. So the first constraint v(−1) = 0 is always

satisfied. Next we use the identity P
(α,β)
i (1) =

(

i+α
i

)

; see [1]. Therefore the vector b1 =
(b1

1, . . . , b
1
p) is given by b1

i = 1 in the two dimensional and b1
i = i+1 in the three dimensional

case. Now solving the minimization problem for v = (v1, . . . , vp) with the specific values
for A and b1 as given above, results in the functions

(13) u2
p(x) =

(

p
∑

k=1

1

k

)

−1 p
∑

k=1

1

k
P

(0,−1)
k (x)

in the two dimensional case d = 2, and

(14) u3
p(x) =

1

p(p + 2)

p
∑

k=1

2k + 1

k + 1
P

(1,−1)
k (x)

for the three-dimensional case d = 3. For a fast computation it is sufficient to have a good
recursive description for

v2
p(x) :=

(

p
∑

k=1

1

k

)

u2
p(x) and v3

p(x) := p(p + 2)u3
p(x),

which is stated in the theorem below.



HYPERGEOMETRIC SUMMATION ALGORITHMS FOR HIGH ORDER FINITE ELEMENTS 9

Theorem 2. The functions v2
p and v3

p satisfy the recurrence relations

v2
1(x) =

x + 1

2
,

v2
2(x) =

3

8
(x + 1)2,

v2
3(x) =

1

24
(x + 1)

(

10x2 + 5x + 7
)

,

v2
p(x) =

(2p − 1)(−1 + 3x + p2(1 + 2x) − p(1 + 5x))

p2(2p − 3)
v2

p−1(x)

−
(1 + x − 3p(1 + x) + p2(1 + 2x))

p2
v2

p−2(x) +
(p − 2)2(2p − 1)

p2(2p − 3)
v2

p−3(x),

and

v3
1(x) =

3(1 + x)

2
,

v3
2(x) =

1

2
(1 + x)(3 + 5x),

v3
p(x) =

(x(4p2 − 1) − 1)

(p + 1)(2p − 1)
v3

p−1(x) −
(p − 1)(2p + 1)

(p + 1)(2p − 1)
v3

p−2(x) +
(2p + 1)(1 + x)

(p + 1)
,

respectively.

3.4. Discovering and proving Theorem 2. We start with the sum v3
p(x) by typing in

In[10]:= v3 =

p
∑

k=1

2k + 1

k + 1
P1[k];

Moreover, we insert the defining recurrence relation for P1[k] := P
(1,−1)
k (x),

In[11]:= recP1 = k(k + 2)P1[k] − (k + 1)(2k + 3)xP1[k + 1] + (k + 1)(k + 2)P1[k + 2] == 0;

see [1]. The first values are

In[12]:= P1[1] = x + 1; P1[2] =
3

2
x(x + 1);

Next, we apply our indefinite summation algorithm and obtain a closed form for v3
p(x):

In[13]:= SigmaReduce[v3, recP1, P1[k]]

Out[13]= −
x + 1

x − 1
−

p P1[p]

(p + 1)(x − 1)
+

P1[p + 1]

x − 1

Proof. Let f(p, k) := 2k+1
k+1

P1[k]. The correctness follows from

(15) g(p, k + 1) − g(p, k) = f(p, k)

and the proof certificate given by g(p, k) = (−2xk+k−x+1)P1[k]+(k+1)P1[k+1]
(k+1)(x−1)

. Namely, one can

conclude that (15) holds for all 1 ≤ k ≤ p and all p ≥ 0 as follows: Express g(p, k + 1) in
terms of P1[p] and P1[p + 1] by using the recurrence given in In[11]. Then verify (15) by
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polynomial arithmetic. Finally, summing (15) over k from 0 to p gives Out[13]; here we
used the initial values from Out[12]. �

Summarizing, we have discovered and proven that

(16) v3
p(x) =

p
∑

k=1

2k + 1

k + 1
P

(1,−1)
k (x) = −

x + 1

x − 1
−

pP
(1,−1)
p (x)

(p + 1)(x − 1)
+

P
(1,−1)
p+1 (x)

x − 1

for all p ≥ 1. Note that with this result we can easily obtain a recurrence for v3
p(x)

by first inserting recurrence relations for − p P1[p]
(p+1)(x−1)

, P1[p+1]
x−1

and −x+1
x−1

and then adding

the recurrence relations like in In[9]. But, since the resulting recurrence is rather big (a
recurrence of order 4), we follow another strategy.

We insert into the sum v3 the factor (e−k+p)!
(−k+p)!

where e is some additional slack parameter.

Note that this factor reduces to 1, if we send e to 0.

In[14]:= v3e =

p
∑

k=1

(e − k + p)!

(−k + p)!

(2k + 1)

(k + 1)
P1[k]

Then we apply our definite summation algorithm and obtain a recurrence relation for
v3e = SUM[p].

In[15]:= GenerateRecurrence[v3e, p, {recP1, P1[k]}]

Out[15]= (−e − p − 1)(e + 2p + 6)SUM[p]

+
(

2xe2 + (6xp + p + 15x + 3)e + 2
(

(2x + 1)p2 + (9x + 5)p + 9x + 5
))

SUM[p + 1]

+
(

−e2 − (7x + p(2x + 3) + 8)e − 2
(

(2x + 1)p2 + (11x + 5)p + 14x + 5
))

SUM[p + 2]

+ (p + 4)(e + 2p + 4)SUM[p + 3]

==
(e + p)(e + p + 1)

(

3e2 + 6(p + 2)e + 4p2 + 18p + 20
)

(x + 1)(e + p − 1)!

p (p2 + 3p + 2) (p − 1)!

Proof of Out[15]. Let f(p, e, k) := (e−k+p)!
(−k+p)!)

(2k+1)
(k+1)

P1[k]. The correctness follows by

(17) c0(e, p)f(e, p, k) + · · · + c3(e, p)f(e, p + 3, k) = g(e, p, k + 1) − g(e, p, k)

and the proof certificate given by

c0(e, p) = −(e + p + 1)(e + 2p + 6),

c1(e, p) = 2xe2 + (6xp + p + 15x + 3)e + 2((2x + 1)p2 + (9x + 5)p + 9x + 5),

c2(e, p) = −e2 − (7x + p(2x + 3) + 8)e − 2((2x + 1)p2 + (11x + 5)p + 14x + 5),

c3(e, p) = (p + 4)(e + 2p + 4)

and

g(p, k) =
(e − k + p + 1)(e − k + p)!

[

g0(p, k)P1[k] + g1(p, k)P1[k + 1]
]

(p − k)!(k + 1)(k − p − 3)(k − p − 2)(k − p − 1)
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where

g0(p, k) = (2k2 + 3k + 1)e3 + (2k + 1)((2x − 1)k2

+ (p(3 − 2x) − 3x + 5)k − 3p(x − 1) − 9x + 6)e2 + 2(2(p + 2)(2x − 1)k3

− ((4x − 2)p2 + 3(4x − 1)p + 8x + 3)k2 − (p + 2)(21x + p(8x − 5) − 10)k − 3p2(x − 1)

− 15p(x − 1) − 18x + 19)e − 2(2p + 5)(k2 − (2p + 5)k + p2 + 5p + 6)(x + k(2x − 1) − 1)

and

g1(p, k) = (k + 1)(p − k + 3)((2k + 3)e2 + 2(2k + 3)(p + 2)e − 2(k − p − 2)(2p + 5)).

The correctness of (17) can be verified for all 0 ≤ k ≤ p and for all p ≥ 0 in the same
way as for (15). Hence summing (17) and taking into account the initial values In[12]
produces Out[15]. �

Setting e = 0 in our computed recurrence gives a recurrence relation for our desired v3
p(x) =

SUM[p]:

In[16]:= rec = rec/.e → 0

Out[16]= −(p + 1)(p + 3)SUM[p] + ((2x + 1)p2 + (9x + 5)p + 9x + 5)SUM[p + 1]

+ (−2xp2 − p2 − 11xp− 5p − 14x − 5)SUM[p + 2] + (p + 2)(p + 4)SUM[p + 3] == (2p + 5)(x + 1)

Remarkably, we can simplify this recurrence further by another application of Sigma. To
this end, we insert the first initial values v3

p(x) for p = 1, 2, 3

In[17]:= eval = {
3

2
(x + 1),

1

2
(x + 1)(5x + 3),

5

8
(x + 1)

(

7x2 + 4x + 1
)

};

Then the following procedure call produces a simpler recurrence, i.e.,

In[18]:= ReduceRecurrence[rec, SUM[p], 1, eval]

Out[18]= (−p − 1)(2p + 5)SUM[p] +
((

4p2 + 16p + 15
)

x − 1
)

SUM[p + 1]

− (p + 3)(2p + 3)SUM[p + 2] == (−2p− 3)(2p + 5)(x + 1)

Proof of Out[18]. The correctness follows by

(18) g(p + 1) − g(p) = 0

with the proof certificate

g(p) := (4p2
−17)(x+1)−(p+1)(2p+5)SUM[p]+(4xp2+16xp+15x−1)SUM[p+1]−(p+3)(2p+3)SUM[p+2]

(p+2)(x+1)
.

From this one can conclude that (18) holds for all sequences SUM[p] that satisfy the
recurrence from Out[16]: Express g(p+1) in terms of SUM[p], SUM[p+1] and SUM[p+2]
by using the recurrence given in Out[16]. Afterwards verify (18) by polynomial arithmetic.
Owing to (18), it follows that g(p) does not depend anymore on p. Plugging the initial
values In[17] into g gives g = −16. This is nothing else than Out[18]. �

Alternative correctness proof. Replace SUM[p + i] in Out[18] with
∑p

k=1
2k+1
k+1

P1[k] +
∑i

k=1
2(p+k)+1
(p+k)+1

P1[k] for i = 0, 1, 2; here we consider
∑p

k=1
2k+1
k+1

P1[k] symbolically, i.e., do
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not apply any simplification. Then by polynomial arithmetic we arrive at

(19)

p
∑

k=1

(2k + 1)P1[k]

k + 1
=

−(2xp − p + 3x − 2)P1[p + 1] − (p + 2)(x − P1[p + 2] + 1)

(p + 2)(x − 1)
.

Note that Out[18] is correct if (19) is correct. Representing P1[p+2] in terms of P1[p] and
P1[p + 1] by using In[11] gives (16); but (16) has been proven. �

Finally, we apply exactly the same summation tools to the sum v2
p(x) where P2[k] =

P
(0,−1)
k (x) fulfills the following recurrence relation; see [1].

In[19]:= recP2 = k(2k+3)P2[k]+
(

1 −
(

4k2 + 8k + 3
)

x
)

P2[k+1]+(k+2)(2k+1)P2[k+2] == 0;

Note that this time we fail to find a closed form evaluation of the type (16). Therefore
we apply our definite summation tools. First, we insert the sum

In[20]:= v2e =

p
∑

k=1

(e − k + p)!

k(p − k)!
P2[k]

which is v2
p(x) after sending e to 0. Using Sigma we get the recurrence relation

In[21]:= rec = GenerateRecurrence[v2e, p, {recP2, P2[k]}]/.e → 0

Out[21]= (p + 3)(p + 1)2SUM[p] + (−2(x + 1)p3 − (13x + 12)p2 − (27x + 22)p − 18x − 13)SUM[p + 1]

+ (2p + 5)((2x + 1)p2 + 5(2x + 1)p + 12x + 5)SUM[p + 2]

+(−2(x+1)p3− (17x+18)p2− (47x+52)p−42x−47)SUM[p+3]+(p+2)(p+4)2SUM[p+4] == 0

for SUM[p] = v2
p(x). Finally, we can simplify the recurrence relation by using the first

initial values of v2
p(x) with p = 1, 2, 3, 4

In[22]:= eval = {
x + 1

2
,
3

8
(x + 1)2,

1

24
(x + 1)

(

10x2 + 5x + 7
)

,
5

192
(x + 1)2

(

21x2 − 14x + 13
)

}

and by calling the procedure

In[23]:= ReduceRecurrence[rec, SUM[p], eval]

Out[23]= (2p + 5)(p + 1)2SUM[p] − (2p + 3)((2x + 1)p2 + (9x + 3)p + 10x + 1)SUM[p + 1]

+ (2p + 5)((2x + 1)p2 + (7x + 5)p + 6x + 5)SUM[p + 2] − (p + 3)2(2p + 3)SUM[p + 3] == 0

Proof of Out[21]. Replace SUM[p + i] in Out[21] with
∑p

k=1
1
k
P2[k] +

∑i
k=1

1
p+k

P2[k] for

i = 0, 1, 2, 3. By simple polynomial arithmetic the correctness follows. �
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