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Abstract. We present a parallel, MPI (Message Passing Interface) thasdver for the 3d in-
compressible Navier-Stokes equations. The techniquetiitiat compressibility, the explicit time
integration method and the finite difference discretizatiospace are employed to obtain stationary
solutions in which we are primarily interested in this papéfsing a mapping from the unit cube
to the computational domain, we generate a structured masklze corresponding finite difference
discretization. Domain decomposition in connection witsiraple load-balancing technique is used
to distribute the data over the several machines in the Aarsterid. We analyses the performance of
our Navier-Stokes code at different computing nodes of tis¢rian Grid. We also give some outlook
for our next implicit time integration scheme equipped Wakt parallel multigrid solvers at each
time step.

Keywords. Incompressible Navier-Stokes equations, finite diffezepndomain decomposition, MPI,
grid computing, Austrian grid

1. Introduction

Usually, the grid infrastructure is composed of 3 layerfaistructure layer which contains the grid re-
sources, middleware layer and the application layer comgithe simulation code. Large scale CFD
(Computational Fluid Dynamics) applications, in partanthe so-called Direct Numerical Simula-
tion (DNS), need huge computer resources. Grid computiilitias certainly open new perspectives
for accessing huge computer resources. Fast parallelrsdimethe incompressible Navier-Stokes
equations play an important role in both scientific compyitamd industrial applications. The car
industry, the aircraft industry and meteorology are onlgw ireas of industrial CFD applications.
Much work aiming at developing efficient parallel solverdiuése problems has been done by many
people (see, e.g., [19] and the references therein).
Our explicit parallel solver for the 3d Navier-Stokes eduiag can be presented in the following steps:
1. generate the mesh from a given geometry at the local mactsimg transfinite interpolation
(algebraic grid generation),
2. transfer data into nodes using gsiftp,

3. decompose the domain into sub-domains with overlappanig pand each processor reads data
into its local memory,

4. solve equations on each processor, and do communicateach time step,
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5. get final stationary solutions, write data to files, andiaize the solution.
This code allows us to solve problems with more than half Bobilof unknowns. However, very
small time steps are required for the explicit time inteigrascheme due to the stability condition.
Therefore, we also discuss the use of implicit time integreschemes with coupled AMG (Algebraic
MultiGrid) solvers for the arising Oseen problem [22, 23].24

2. 3D Incompressible Navier-Stokes Equations

For a bounded subdomat c R with a sufficiently smooth boundary, the Navier-Stokes ¢igua
governing the motion of an incompressible viscous fluidda$? read as follows:

U —VAU+ (u-Ou+Op=f inQx (0,T), (1)
O-u=0 inQ x (0,T), 2)

BUu=( onl x (0, T), (3)

u= Up inQ att =0, (4)

wheres denotes some boundary operators representing the boucamladitions imposed ohf, u is
the unknown velocity fieldp is the unknown pressure fieldl,is a body forceT is the final time, and

v denotes the given viscosity that is inversely proportidadhe Reynolds numb&e The equations
(1) and (2) represent conservation of momentum and maggagely. They contain the nonlinear
advection termgu- [1)u and the dissipation termg\u. The turbulence arises for small viscosity term
v. To determing uniquely, in case only Dirichlet boundary condition is inspd o™ = I'p, we have

to require the additional conditiofy, pdx= 0.

3. MPI Library and Globus Toolkit

In the distributed memory system, the parallel computezssats of processors with their own local
memory. The processors can send data to each other throwgtvark. In programs, the communi-
cation can be implemented by calls to functions from a speommunication library MPI (message
passing interface) [5], which is a library specification foessage-passing, proposed as a standard
by a broadly based committee of vendors, implementors, aacsuThe new grid-supporting version
MPICH-G2 which is a grid-enabled implementation of the MPIivStandard, will be released soon.
Using services from the Globus Toolkit [4], we can couple tipié machines with potentially differ-
ent architectures and implement the communication formméehine and intramachine messaging.
Globus toolkit [4], provides a way the job can be submitteshfrour local machine to the grid nodes
and runs there. In order to run our MPI parallel program ongttié nodes, we need to set job type
to MPI. This can be done by sort of RSL file, a type of the glomsource specification language.
It provides a common interchange language to describe mesguand a interface for the users to
manage the resources at the grid nodes from theirs localinezch

Before submitting jobs to run, we need to make a file in ourlldo&ctory that characterizes our job
type using the globus resource specification language R&l_esample in Figure 1. In that naive
example, we specify resource allocation type, executabéetory, job type, number of processors
and hosts, and path for standard output. Relying on such RBIgs, the globus resource allocation
manager (GRAM) performs its management and coordinates gtbbus software.
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(& (resourceManagerContact="altix1.jku.austriangrid.at/jobmanager—pbs")

executable—/home/local/agrld/agloo35/Pro 05/globus_NS/3d_Nav/NS_Sol)
directory = /home/local/agrid/ag10035/Pro_05/globus_NS/3d_Nav)
maxtime = 5000)

count = 64)

label = naV|er —stokes equations 0")

hostcount = 4

jobtype= mpl)

Estdout = https://agrid—01.numa.uni-linz.ac.at:45000/dev/stdout)
stderr = https://agrid-01.numa.uni-linz.ac.at:45000/dev/stderr)
)

Figure 1. An example using the Globus Resource Specificatidranguage RSL.

4. Numerical Scheme
4.1. Explicit Scheme

If we solve equation (1) by means of the simplest time integgheme, namely by the explicit Euler
method [11], then we will obtain

unJrl —un
- —vAu" + (u"-O)u"+0p" = £, (5)

wheret is the time step and superscriptienotes the time level. Equation (5) can be trivially solved
by spatial discretization. However, a fundamental prob&ises using this method. The new ve-
locity u™* does not, in general, fulfill the divergence free equation K2oreover, there is no direct
computation ofp™*,
A possible remedy is to introduce a pressurg®t! in equation (5), which leaves two unknowns,
u"t! andp™*?! to solve in equations

U O™t =t U — (W O)u" 4 TvAU", (6)

O.u™l=o0. 7)

Eliminatingu™?! by taking the divergence of (6) to obtain a Poisson equatiothie pressure,
1
Aptl = ;D-(Tf”-i—u”—r(u”-D)u”-i—thu”). (8)

However, we do not know the boundary conditions 8 naturally. It is too expensive to solve
it this way either. Instead of solving them directly, we uddral of artificial compressibilityp; [6],
and add a penalty tereAp [17], wheree < 1, by relaxing the incompressibility constraint in the
appropriate way:

pt +eAp+0-u=0. (9)

The new system can be approximated by explicit time intagethod, for instance, by the first order
explicit Euler scheme
unJrl —un

—vAu" + (u"-O)u"+0p" = f, (10)

pn—i—l _ pn
— +eAp"+0-u"=0, (11)



that we can solve equations like a IVP (initial value problem

du
—=r(U 12
i ="V (12)
with given initial conditions,
pp=0 w=0,

where U = ; ande < v. Equation (9) will not describe the flow correctly in time,tkas the

solution converges to steady state, the time dependens raanishes and the continuity equation
(2) is satisfied with additional assumption that we take cigffitly small correcting termsAp in
equation (9). Error estimates for this method are given &j.[1

4.2. Mesh Generation

In this simple case, a mesh generation class in two dimesg@aiven by the algebraic grid generation
formula. A mapping is defined from the unit square to the ptaisiomain :(r,s) — (x(r,s),y(r,s)),
with

X(r,s) = (1—r)x(0,s) +rx(1,s) + (1 —s)x(r,0) +sxr,1)
—(1-r)(1—9x(0,0) —r(1—s)x(1,0) — (1 —r)sx0,1) —rsx(1,1),

y(r,s) = (1—r)y(0,s) +ry(1,s) + (1 —s)y(r,0) +sy(r,1)
—(1-r)(1—-9y(0,0) —r(1—s)y(1,0) — (1 —r)sy(0,1) —rsy(1,1),

see more detail in [1], where they implement it by so calledl@ngth parameterization for the given
curve boundaries. Then the interior points are implemebyadterpolation first between sides= 0
andr = 1, seconts = 0 ands = 1, and last subtraction by four corner terms. We parameteriz
andy as function ofp € [0,1]. The arc length is calculated &s= f;’ VX (p)2+y(p)2)dp. In
order to determinéx(p),y(p)), we have to know the parameteby solving the arc length equation:
s= %f; V(X (p)2+y(p)2)dp, wherel should be equal to the number of equivalent distance points
in the boundary. An efficient algorithm to solve this equati® Newton- Raphson methogi ; =

Pk — ff,((%k)), wheref (py) = [X\/(X(p)2+y(p)2)dp—sL Then by creating such two dimensional
objects, we develop three dimensional mesh grids on theigalydomain by extending mesh object
in two dimensions along the third direction, see Figure 2fabt, we do not solve our PDE on such
domain directly, instead, on the unit cube as in Figure 3,thad transform the solutions back.
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Figure 2. Mesh on physical domain. Figure 3. Mesh grids on unit cubic.



4.3. Mapping from Physical Domain to Unit Cube

An alternative method to solve partial differential eqaas is to transform the physical domain into
the unit cube by grid mapping, and approximate equationgthAssume given the grid mapping
x(q,r1,8), y(g,rs) andz(q,r,s) from the physical domain to the unit culée,r,s) € [0,1]3, by chain
rule, the explicit form of the metric coefficients matrix da@ calculated by hand

Ox I'x Sx 1 WZs—ZtYs YsZq—ZsYq Yq& — ZgVr
Oy Ty S| =7 | 2% XZ ZXq—XZy Zg& —XqZ |, (13)

0 Iz & XYs—YrXs XsYq—VYsXq Xg¥Yr — YgXr
where
Xg Yg 4
J=% Y z|.
Xs Ys Zs

Thus, a partial differential differential equation,
Ut +F (U)x+ G(u)y+H(u)z =0, (14)

equipped with the metric coefficient matrix, can be appr@ated on a unit cube instead by

b = —%((J(qu(u) +6yG(U) + 0H () )q
+ (I(rxF (U) +ryG(u) +r,H (u)))r (1)
+ (J(s¢F (u) +5/G(u) +sH (u)))s).

A single first derivatival, can be expressed in the unit cube, i.e., by

1
Ux = J ((Yrzs— zYs)Ug + (YsZg — ZsYq)Ur + (YaZr — ZgYr)Us)- (16)

The second derivativey is attained by applying the mapping once more, yielding

Uxx = %—((yrzs —ZYs) (Ux)q + (YsZq — ZsYq) (Ux)r + (YoZ — Zgyr ) (Ux)s)- (17)

4.4. Finite Difference Stencil

Non-staggered grid stencil is employed, which means vglacand pressure are located at the
same grid point. The previous steps have prepared for thencahapproximation on the unit cube.
Index (i, j, k) corresponds to directiofy,r,s). The second order of accuracy in space is obtained by
using values at middle points+ 1. j,k), (i, j = 3,k) and(i, j, k£ 3). See stencil Figure 4 below, i.e.,
(Ugijk = ”'*1%;'*1”‘ More technical details can be found in [3].

In order to get the second derivative for velocitywith respective tax at point (i, j,k), the first
derivatives(Ug);.1 o (Ur)ijle (Us)jret at its neighboring middle points in three directions
(g,r,s) respectively are necessary to be known. While for such gafttehese middle points, for
example(uq)if%’jk, we would then use values at the standard pofnts1, j,k), (i—1,j £+ 1k)

and (i —1,j,k+1), etc. We may call it ten-point stencil as in Figure 5 below. eTd¢entral fi-

. . . . . Ui jk—Uim1jk —(un)icg k(Ui
nite difference in space is employed, i@lg);_1 ;= = gg— (U)i_1 k=72, and
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(i, j, k+1) (i-1,j, k+1) (i, j, k+1)

e (@i, j*+1, k)

(i, k+1/2)
i, j+1/2, k)

(-1,j, k) (-1/2,},k)

@5, k) (+1/2,), k) (i+1,], k)

(0, =112, k) D i, j, k-1/2)

(i,i=1, k)

(i.j-1. k) r (i-1,j-1, k)
(i, k-1) (i-1,j, k-1) (i, j, k-1)

Figure 4. Standard point (i, j, k). Figure 5. Middle point (i—1/2,j,k).

_ (Ug)iajkH(us)ijk

(uS)if%,j,k =2

The time step involves one or more evaluations of the diffeeescheme. We write the semi-discrete
problem aso'léil’t'*k =r(...,Uijk-..), wherer(U), the residual contains all spatial derivatives of the
PDE. For steady state problems we want to salit¢) = 0, numerically,||r(U)|| < Tolerance

The residual is computed by successive function call. A &dvEuler method is applied here:

n+1__ gy n n
k= Yijkt Tk

4.5. Boundary and Initial Conditions

We set boundary and initial conditions for the test domaimdsgure 6. Face 0 is inflow boundary,
P=1u=0,v=0,w=0; face 1, the outflow boundarl,= 0,uy = 0,v = 0,w = 0. All the other
faces are walls, Dirichlet boundary conditions are appfadvelocity fields,u=v=w =0, and
Neumann boundary condition for preSSL%%,: 0.

The initial value for velocity islp = vo = wp = 0, and the pressumg = 1— (x+3)/6,x € [—3, 3], see
figure 7. The pressure only linearly depends on the varigdich fulfills the boundary conditions,

1 at the inflow, O at the outflow, an% = 0 on the other boundary faces. Because such particular
pressure distribution only dependents on xhxalirection, the velocity filed along the—direction
would be homogeneous.

Figure 6. Boundaries on the domain. Figure 7. Initial pressure.



4.6. Implicit Scheme

If we linearize the Navier-Stokes equations (1)-(2), wetbetso-calleddseen equationsCarl Wi-
helm Oseen, 1879-1944)

U —VAU+ (w-O)ju+0Op=f, (18)
O-u=0, (19

wherew is the previous velocity approximatian' of the velocityu. Applying the implicit Euler
scheme to the linearized system (18)-(19), we arrive at

un+1 —un
o VAun+l + (un . D)un+1 4 Dpn+1 _ f, (20)

O.u™l=o. (21)

T

At each time step, the following linear system must be salved

| —tvA+T(u"-0) 10 T AR & ATy 22)
0 0 p™tl ) T 0 '
Using the spatial discretization FDM (Finite Difference tied) or FEM (Finite Element Method),
we can get the resulting linear saddle point syskegm= b as the following general form

n T n+1 n
() (55)-("5)

v~

K M b

Some non-multigrid iterative solvers are applicable tosohis saddle point problem such as the
general minimal residual metho@MRES) introduced in [14]. Another popular methodSsmi-
Implicit Method for Pressure-Linked Equatio(8IMPLE) developed by Patankar and Spalding [13].
Inexact Uzawa Method can also be applied to solve this sysieatails to it can be found e.g. in
[12, 27]. For each time level, we employ a parallel multignéthod (Algorithm 1), see for more
details in [7]. We develop our implicit solver (Algorithm @ich includes the multigrid solver based

Algorithm 1 PMGM (Aq, Kq, Yq, b, 0)

if g== 1:= CoarsestLevdhen
Coarsest grid solver : Ky - yq = bq
else

Presmoothing : yq = Spre(Yq)

Defect calculation (new r.h.s) : dq = bg—Kq- Yq

Restriction of defect : dq 1 =15 "-dq

Coarse grid initial guess : mg_l =0

Solve defect system : myg_; = PMGM (Ag-1, Kg-1, mgfl, dg-1,9-1)
Interpolation of correction : mg = '371 “Mg-1

Addition of correction :  yq = Yyq+ My

Postsmoothing : yq = Spost(Yq)
end if

on Warbro’s previous work [23].



Algorithm 2 IMP_NS_Sol(y°, q)

Give the initial value at time 0y" = y°
while | y* [[> o || y°|| do
Define the initial guess for level ayg = yq,0
Yq =PMGM (Aq, Kq, Yq, bg, 0)
end while
Update the new solution at this time steff = y",y" =y,
end while

4.7. Explicit VSImplicit Scheme

Comparing these two methods with each other, we can find sdrantages and disadvantages for
both of them. For the explicit methods, no storage for largdrixi is needed and they are easier
to implement. However, we can only get correct solution fatisnary state, and also, for stability

reasons, we have strict limitation for time step size. Ferithplicit methods, we can get reasonable
solutions at each time step and it has no strict restricbhaimte step size. However, it has memory
requirement for large scale matrix storage and much worlottmdmatrix decomposition.

5. Parallel Implementation

Here, a simple domain decomposition method is given by |l@dahzing. In this way, each processor
will hold nearly the same number of grid points, which medreythave the same amount of work to
do, including both communication and computation (see rdetails from [2]). Here we develop the
algorithm for the three dimensional case.

5.1. A Simple Domain Decomposition

We decompose the domaihinto overlapping sub-domair®; such thatQ = Uir'lei, wherenp de-
notes the number of processors. The decompoditiddS PS) is dependent on the number of global
grid sizeGS= (mg ng, bg) in three directions, and the processor nunm®8e= (py, pz, p3) as welk.
The number of processors in each direction can be calcubgtetnimizing the communication cost
function:

C(p1, P2, P3) = (P1 — 1)ngbg+ (p2 — 1)mgbg+- (p3 — 1)mgng (24)

subject top1 p2p3 = np. Then we would like to haveng/ p; = ng/p2 = bg/ ps. This is of course not
always possible to fulfill with integers, and we then try nuicaly instead to determinpy, p2, and
ps3 such that modified cost expression

C(p1, p2, p3) = |mg/p1 — ng/ p2/® + [ng/ p2 — bg/ ps|? (25)

is minimized under the restrictigqn p2 ps = npagain. Taking the number of processqras a number
with many factors, would greatly improve decompositionogdince. Using fixed number of grid size
3213, we did the experiments with varying number of processoysmBiimizing the communication
cost function numerically, we have less communication workio for a specified case. Work is

1We assume here that a homogeneous parallel computing sigstesimg used in which each processor has the same
performance characteristic



measured in number of grid points, see Table 1. In this spease,mg= ng= bg= 321, the cost
function is then reduced to

3
C(p1, P2, P3) = MGF(pr+ P2+ ps—3) = mgz(_z1 pi—3), (26)

which linearly dependents on the functionszl pi. We can check this fact easily from Table 1.

np || p1x p2x ps | Cpypo, ps) | SReP2P) | 53
1 Ix1x1 0 0 3

2| Ix1x2 | 103041 | 0.0031 | 4

4 Ix2x2 | 206082 | 0.0062 | 5

8 | 2x2x2 | 300123 | 0.0093 | 6
12| 2x2x3 | 412164 | 00125 | 7
16| 2x2x4 | 515205 | 00156 | 8
32| 2x4x4 | 721287 | 0.0218 | 10
48| 3x4x4 | 824328 | 0.0249 | 11
64| 4x4x4 | 927369 | 0.0280 | 12

Table 1. Cpu distribution computed by minimizing communication costs. Mesh size i821° = 33076161

Thus, for this simple case, the grid points are distributest the processors as evenly as possible in
one dimension and then it can be applied to three dimensmmeasily. Assume the processors are
enumerated from 1 tp ands, points in processdt. Let the local indexy in processok vary from 1

to sc. The width of overlapping region in our caseais- 2. The global index, varies betweehand

n. We choose

N+ (p—1)a
s= (NE(P=Da, @27)
Y
where[x] denotes the integer part ®fN = n—I| + 1. Define the remainder,
r=(N+(p—1)a) modp,
and we distributed these remaining points evenly into tis¢ firocessors:
s+1 ifk<r
S = o (28)
s if k>r.
The index transformatioty, an integer such that+tx =1, is
ty=1—1+(k—21)(s—a)+min(k—1,r). (29)

The processor 10cy, Cp, c3) in the processor cube is required for the communication®birerlap-
ping part. The processor coordinates can be determined/bytimg the mapping:

pr=cy—1+pi(ca—1)+ pip2(cz—1). (30)

Here 1< ¢ < pi, 0< pr < np—1, andpr is the identity in the one dimensional processor enumeratio
given by the function MPIComm.rank from the MPI communication library.



5.2. Communication Model

The blocking point-to-point MPI routines MHRecv and MPISend are employed in program. We
also developed so calldied Blackalgorithm for 3D case as in figure 8. Suppose each processor ha
a color (red or black) in each direction such that no neigblhave the same color. Neighbors have
their own color coordinate. The color can be implementechieyRtB function:
RB— {red !f ¢ mod 2== 0, i—123 (31)
black if ¢g mod2==1,

Processors need to communicate the information for evesylapping part. Thus, in our example,
each processor has to call MPI communication subroutinek $8Ad and MPRecv six times in
order to send/receive necessary data information at teeface to/from its neighbors suppose each
cpu has six neighbors.

‘(R,B,B) ‘ ‘(B,B,B) ‘ ‘(R,B,B) ‘ ‘(B,Eﬂl
‘(R,R,B) ‘ ‘(B,R,B) ‘ ‘(R,R,B) ‘ ‘ (BR.B) P
“"
.
T T T e o
(R.R.B) (BR.B) (R.RB) (BR.B) P BRR]
> > > X 4
L 4 4 4 (B.BR) -t (8.5.8)
" N " 4
(RRR) (BR.R) RRR BRR) // (BR.B) //
O N . > “.'
A A A é (B,B,B)"““‘ (B,B,R)’
(R.R.B) (BR.B) (R,R,B)E (B,R,B)E // BRR //
> > > ““'
y y y y BBR) . o
(RRR) (BR.R) RRR) BRR) //
> >

Figure 8. An illustration of Red_Black algorithm in three sweeps, West> East, Down—Top, and Forth— Back.

Applying theRedBlack algorithm, the communication time can be reduced since swrtteem can
send/receive data to/from their neighbors simultaneoustywever, because blocking communica-
tion functions are applied here, which means that the progreecution will be suspended until the
message buffer is safe to use. The MPI standards specifya thlaicking SEND or RECV does not
return until the send buffer is safe to reuse (for MBEND), or the receive buffer is ready to use (for
MPI_RECYV). Besides the three sweeps shown in Figure 8, everepsoc still exits the other three
sweepsEast— West Top— Down, andBack— Forth. In order to avoid the deadlock, neighbors
cannot call MPISEND/MPLRECYV at the same turn. Every send in a processor should rdspan
receive in its neighbor and on the other hand it cannot reaaa safely only until its neighbor sends
data. We give an communication exampl&\Viest— Eastsweep. See algorithm 3.

5.3. Performance Model

The time to send a message withytes between two processors is often modelet@s = a + np,
whereaq is the start-up time to initialize the communication ghds the time to send one byte of

10



Algorithm 3 Red_Black Algorithm in West < East Sweep
West—East :
(R,*,*) send to east (B,*,*) (B,**) receive from west (R*),
(B,*,*) send to east (R,*,*) (R,*,*) receive from west (B,
East-West :
(R,*,*) send to west (B,*,*) (B,**) receive from east (R,
(B,*,*) send to west (R,*,*) (R,*,*) receive from east (B*),

data. In practiceq > [3, so that the starting time is the dominating term. It is a \g&enyplified model

of reality. However, we would like to give another performmanmodel for the total execution time,
communication time plus computin@{N, np). Here,N is the problem size andlp is the number of
processors as before. The behavior for IaMgs often used to test the performance. Now the speed-up
is defined as the ration of time to run the problem on one pemret that of omp processors:

_ T(N,1)
Perfect speed-up is obtained whH&iN, np) = np.

5.4. Numerical Examplesfor Explicit Scheme

At this moment, we show some results from explicit schemendJsiiddle-ware globus, we submit
and run our jobs on different Austrian grid nodes and try tahgosimulation there.

5.4.1. Tests on Nodes Altix1.jku.austriangrid.at

There are Altixt4 at Linz University. It is an SGI Altix 3500 system, congigfiof 4 nodes. Each
of them contains 16 microprocessors (Intel Itanium 2, 90@ES/MB L3 Cache each), 64Ghyte
RAM and 64-bit PCI-X buses. First we give the test resultsabl& 2 of two small size problems
which are tested only on one node consisting of 16 cpus at Agproximately, for really large prob-

#unknowns|| 213 x4 = 37,044 | 513 x4 = 530,604
Residual 4.48e— 14 1.4326&— 14
#steps 100,000 100,000
Time 80s 610s
#CPU 16 16
Step size 0.0012 0.0005
Test node altix1 at jku altix1 at jku

Table 2. Two test results.

lem, for instance, 32« 4 = 132 304, 644, time~ 285,720s ~ 80h. We really need more powerful
resources (more grid nodes) in order to reduce the cost. &kieerample is to try to run our prob-
lem on different nodes Altix4 at JKU. We can use number of cpus from 1 up to 64. We run our
program ten time steps and compared the const with differemiber of grid points from Zlup to
5013. Obviously, as we see from Table 3, for large problem, fotanee, with number of unknowns
5013 « 4 = 503 006,004, we can benefit a lot from using grid resources. Howe\emrabise of ex-

tra communication time needed among nodes, the speedumdbesirely linearly depend on the
number of cpus, see Figure 9.

11



time measured with different grid size

np 213 \ 413 \ 813 \ 1613 \ 3283 \ 5013

2 || 0.0327 | 0.2702| 3.0309 | 29.6238| 362.9065| 1757.745
4 | 0.0191 | 0.1169| 1.5258 | 13.4702| 142.2860| 662.1513
8 || 0.0129 | 0.0672| 0.7601 | 6.4801 | 65.4366 | 288.4072
12| 0.0116 | 0.0522| 0.4933 | 4.2527 | 42.9452 | 186.5697
16 | 0.0110 | 0.0434| 0.3576 | 3.2602 | 32.4913| 131.8930
32| 9.2776 | 0.0445| 0.17296| 1.8554 | 25.7761 | 109.9527
48 || 10.1021| 0.0605| 0.1765| 1.3465| 19.3027 | 84.9540
64 | 7.6453 | 0.0804| 0.1728 | 1.3435| 18.0354| 75.792

Table 3. Time consumption for different size of problems wih varying number of processors.

22— 41*41*41
—8— 321*321*321

—&— 501*501*501

Speedup
Measured time

9
&
7
6
1 a : : 1 S 5p
4
3
2
1
0

30 40 50 60 2 4 6 8 10 12 14 16
Number of processors Number of processors

10 20

Figure 9. Speedup at local nodes. Figure 10. Measured time at remote node.

5.4.2. Test on Remote Nodes Altix1.uibk.ac.at

Here is another example which is tested on a remote nodelAliixk.ac.at. The number of unknowns
is 108 %4 = 4,121,204, and run it with 11 time steps. Then we get the followimgetimeasured in
second as shown in Figure 10.

5.4.3. Stationary Fields of Velocity and Pressure

Velocity fields are shown in Figure 11 and Figure 12. The pnesslistribution at the steady state
would be comparable to the initial value except numerical-aocuracy at the corners coming from
numerical boundary conditions for pressure. The residerahs, which tells us if the solutions have
forwarded to the final stationary state is recorded in Fig4reWe pick up the maximal residual value
r=U(...,,Ujk...) for the equations from all grid points.

6. Summary and Future Work

This type of numerical methods for the modified Navier-Sso&guations with artificial compressibil-
ity can work by using such a naive numerical approximatiothme on parallel machines at Austrian
grid nodes. However, such explicit time stepping method exeetbped here is not suitable very well
for grid computing via connecting different nodes disttémliin several universities. Lots of com-
munications are needed through networking at each time dtegould be interesting to improve
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Figure 11. Visualization of the velocity fields using cone pitting and stream lines.

Convergence history

© ores:v
o res:w

5
Time steps ©10°

Figure 13. Pressure distribution. Figure 14. Convergence history.
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this solver by using more sophisticated numerical techgiekin order to get the convergence more
quickly, for example, via implicit time stepping methodsthviast solvers at each time step [22].
Unfortunately, at this moment, we do not have grid-suppgriviPI library installed on our machine
which can run a single job at the same time on machines froferdift geographical nodes. We are
not quite sure if this would improve the performance quitdl wiece extra time would be spent on
the communication among nodes with long distance.
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