
A Parallel Solver for the 3D Incompressible
Navier-Stokes Equations on the Austrian Grid

Ulrich Langer∗ and Huidong Yang†

Abstract. We present a parallel, MPI (Message Passing Interface) based solver for the 3d in-
compressible Navier-Stokes equations. The technique of artificial compressibility, the explicit time
integration method and the finite difference discretization in space are employed to obtain stationary
solutions in which we are primarily interested in this paper. Using a mapping from the unit cube
to the computational domain, we generate a structured mesh and the corresponding finite difference
discretization. Domain decomposition in connection with asimple load-balancing technique is used
to distribute the data over the several machines in the Austrian Grid. We analyses the performance of
our Navier-Stokes code at different computing nodes of the Austrian Grid. We also give some outlook
for our next implicit time integration scheme equipped withfast parallel multigrid solvers at each
time step.
Key words. Incompressible Navier-Stokes equations, finite differences, domain decomposition, MPI,
grid computing, Austrian grid

1. Introduction

Usually, the grid infrastructure is composed of 3 layers: infrastructure layer which contains the grid re-
sources, middleware layer and the application layer containing the simulation code. Large scale CFD
(Computational Fluid Dynamics) applications, in particular, the so-called Direct Numerical Simula-
tion (DNS), need huge computer resources. Grid computing facilities certainly open new perspectives
for accessing huge computer resources. Fast parallel solvers for the incompressible Navier-Stokes
equations play an important role in both scientific computing and industrial applications. The car
industry, the aircraft industry and meteorology are only a few areas of industrial CFD applications.
Much work aiming at developing efficient parallel solvers ofthese problems has been done by many
people (see, e.g., [19] and the references therein).
Our explicit parallel solver for the 3d Navier-Stokes equations can be presented in the following steps:

1. generate the mesh from a given geometry at the local machine using transfinite interpolation
(algebraic grid generation),

2. transfer data into nodes using gsiftp,
3. decompose the domain into sub-domains with overlapping parts, and each processor reads data

into its local memory,
4. solve equations on each processor, and do communication in each time step,
∗Institute of Computational Mathematics, Johannes Kepler University Linz, Austria, email: ulanger@numa.uni-

linz.ac.at, Special Research Program SFB F013 “Numerical and Symbolic Scientific Computing”.
†Institute of Computational Mathematics, Johannes Kepler University Linz, Austria, email: huidong@numa.uni-

linz.ac.at, supported by the Austrian Grid Project.

5. get final stationary solutions, write data to files, and visualize the solution.
This code allows us to solve problems with more than half a billion of unknowns. However, very
small time steps are required for the explicit time integration scheme due to the stability condition.
Therefore, we also discuss the use of implicit time integration schemes with coupled AMG (Algebraic
MultiGrid) solvers for the arising Oseen problem [22, 23, 24].

2. 3D Incompressible Navier-Stokes Equations

For a bounded subdomainΩ ⊂ R
3 with a sufficiently smooth boundary, the Navier-Stokes equations

governing the motion of an incompressible viscous fluid insideΩ read as follows:

ut −ν∆u+(u ·∇)u+∇p = f in Ω× (0,T), (1)

∇ ·u = 0 in Ω× (0,T), (2)

B u = g on Γ× (0,T), (3)

u = u0 in Ω at t = 0, (4)

whereB denotes some boundary operators representing the boundaryconditions imposed onΓ, u is
the unknown velocity field,p is the unknown pressure field,f is a body force,T is the final time, and
ν denotes the given viscosity that is inversely proportionalto the Reynolds numberRe. The equations
(1) and (2) represent conservation of momentum and mass, respectively. They contain the nonlinear
advection terms(u·∇)u and the dissipation termsν∆u. The turbulence arises for small viscosity term
ν. To determinep uniquely, in case only Dirichlet boundary condition is imposed onΓ = ΓD, we have
to require the additional condition

R

Ω pdx= 0.

3. MPI Library and Globus Toolkit

In the distributed memory system, the parallel computers are sets of processors with their own local
memory. The processors can send data to each other through a network. In programs, the communi-
cation can be implemented by calls to functions from a special communication library MPI (message
passing interface) [5], which is a library specification formessage-passing, proposed as a standard
by a broadly based committee of vendors, implementors, and users. The new grid-supporting version
MPICH-G2 which is a grid-enabled implementation of the MPIv1.1 Standard, will be released soon.
Using services from the Globus Toolkit [4], we can couple multiple machines with potentially differ-
ent architectures and implement the communication for intermachine and intramachine messaging.
Globus toolkit [4], provides a way the job can be submitted from our local machine to the grid nodes
and runs there. In order to run our MPI parallel program on thegrid nodes, we need to set job type
to MPI. This can be done by sort of RSL file, a type of the globus resource specification language.
It provides a common interchange language to describe resources, and a interface for the users to
manage the resources at the grid nodes from theirs local machines.
Before submitting jobs to run, we need to make a file in our local directory that characterizes our job
type using the globus resource specification language RSL, see example in Figure 1. In that naive
example, we specify resource allocation type, executable directory, job type, number of processors
and hosts, and path for standard output. Relying on such RSL strings, the globus resource allocation
manager (GRAM) performs its management and coordinates other globus software.

2

)

+
(& (resourceManagerContact="altix1.jku.austriangrid.at/jobmanager−pbs")

(executable = /home/local/agrid/ag10035/Pro_05/globus_NS/3d_Nav/NS_Sol)
(directory = /home/local/agrid/ag10035/Pro_05/globus_NS/3d_Nav)
(maxtime = 5000)
(count = 64)
(label = "navier−stokes equations 0")
(hostcount = 4)
(jobtype=mpi)

(stdout = https://agrid−01.numa.uni−linz.ac.at:45000/dev/stdout)
(stderr = https://agrid−01.numa.uni−linz.ac.at:45000/dev/stderr)

Figure 1. An example using the Globus Resource SpecificationLanguage RSL.

4. Numerical Scheme

4.1. Explicit Scheme

If we solve equation (1) by means of the simplest time integral scheme, namely by the explicit Euler
method [11], then we will obtain

un+1−un

τ
−ν∆un +(un ·∇)un+∇pn = f n, (5)

whereτ is the time step and superscriptn denotes the time level. Equation (5) can be trivially solved
by spatial discretization. However, a fundamental problemarises using this method. The new ve-
locity un+1 does not, in general, fulfill the divergence free equation (2). Moreover, there is no direct
computation ofpn+1.
A possible remedy is to introduce a pressure atpn+1 in equation (5), which leaves two unknowns,
un+1 andpn+1 to solve in equations

un+1 + τ∇pn+1 = τ f n+un− τ(un ·∇)un+ τν∆un, (6)

∇ ·un+1 = 0. (7)

Eliminatingun+1 by taking the divergence of (6) to obtain a Poisson equation for the pressure,

∆pn+1 =
1
τ

∇ · (τ f n+un− τ(un ·∇)un+ τν∆un). (8)

However, we do not know the boundary conditions forpn+1 naturally. It is too expensive to solve
it this way either. Instead of solving them directly, we use akind of artificial compressibilitypt [6],
and add a penalty termε∆p [17], whereε ≪ 1, by relaxing the incompressibility constraint in the
appropriate way:

pt + ε∆p+∇ ·u = 0. (9)

The new system can be approximated by explicit time integralmethod, for instance, by the first order
explicit Euler scheme

un+1−un

τ
−ν∆un+(un ·∇)un+∇pn = f , (10)

pn+1− pn

τ
+ ε∆pn+∇ ·un = 0, (11)

3

that we can solve equations like a IVP (initial value problem):

dU
dt

= r(U), (12)

with given initial conditions,
pt = 0, ut = 0,

where U =

(
u
p

)

andε ≪ ν. Equation (9) will not describe the flow correctly in time, but as the

solution converges to steady state, the time dependent terms pt vanishes and the continuity equation
(2) is satisfied with additional assumption that we take sufficiently small correcting termsε∆p in
equation (9). Error estimates for this method are given in [15].

4.2. Mesh Generation

In this simple case, a mesh generation class in two dimensions is given by the algebraic grid generation
formula. A mapping is defined from the unit square to the physical domain :(r,s) → (x(r,s),y(r,s)),
with

x(r,s) = (1− r)x(0,s)+ rx(1,s)+(1−s)x(r,0)+sx(r,1)

− (1− r)(1−s)x(0,0)− r(1−s)x(1,0)− (1− r)sx(0,1)− rsx(1,1),

y(r,s) = (1− r)y(0,s)+ ry(1,s)+(1−s)y(r,0)+sy(r,1)

− (1− r)(1−s)y(0,0)− r(1−s)y(1,0)− (1− r)sy(0,1)− rsy(1,1),

see more detail in [1], where they implement it by so called arc length parameterization for the given
curve boundaries. Then the interior points are implementedby interpolation first between sidesr = 0
and r = 1, seconds = 0 ands = 1, and last subtraction by four corner terms. We parameterize x
and y as function ofp ∈ [0,1]. The arc length is calculated asL =

R b
a

√

(x′(p)2+y′(p)2)dp. In
order to determine(x(p),y(p)), we have to know the parameterp by solving the arc length equation:
s= 1

L

R t
a

√

(x′(p)2+y′(p)2)dp, where1
s should be equal to the number of equivalent distance points

in the boundary. An efficient algorithm to solve this equation is Newton- Raphson method:pk+1 =

pk−
f (pk)
f ′(pk)

, where f (pk) =
R pk

a

√

(x′(p)2+y′(p)2)dp− sL. Then by creating such two dimensional
objects, we develop three dimensional mesh grids on the physical domain by extending mesh object
in two dimensions along the third direction, see Figure 2. Infact, we do not solve our PDE on such
domain directly, instead, on the unit cube as in Figure 3, andthen transform the solutions back.

−3
−2

−1
0

1
2

3

0

1

2

3

4
0

0.5

1

1.5

2

X
Y

Z

Figure 2. Mesh on physical domain.

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

XY

Z

Figure 3. Mesh grids on unit cubic.

4

4.3. Mapping from Physical Domain to Unit Cube

An alternative method to solve partial differential equations is to transform the physical domain into
the unit cube by grid mapping, and approximate equations there. Assume given the grid mapping
x(q, r,s), y(q, rs) andz(q, r,s) from the physical domain to the unit cube(q, r,s) ∈ [0,1]3, by chain
rule, the explicit form of the metric coefficients matrix canbe calculated by hand

qx rx sx

qy ry sy

qz rz sz

 =
1
J

yrzs−zrys yszq−zsyq yqzr −zqyr

zrxs−xrzs zsxq−xszq zqxr −xqzr

xrys−yrxs xsyq−ysxq xqyr −yqxr

 , (13)

where

J =

∣
∣
∣
∣
∣
∣

xq yq zq

xr yr zr

xs ys zs

∣
∣
∣
∣
∣
∣

.

Thus, a partial differential differential equation,

ut +F(u)x +G(u)y+H(u)z = 0, (14)

equipped with the metric coefficient matrix, can be approximated on a unit cube instead by

ut = −
1
J
((J(qxF(u)+qyG(u)+qzH(u)))q

+(J(rxF(u)+ ryG(u)+ rzH(u)))r

+(J(sxF(u)+syG(u)+szH(u)))s).

(15)

A single first derivativeux can be expressed in the unit cube, i.e., by

ux =
1
J
((yrzs−zrys)uq+(yszq−zsyq)ur +(yqzr −zqyr)us). (16)

The second derivativeuxx is attained by applying the mapping once more, yielding

uxx =
1
J
((yrzs−zrys)(ux)q+(yszq−zsyq)(ux)r +(yqzr −zqyr)(ux)s). (17)

4.4. Finite Difference Stencil

Non-staggered grid stencil is employed, which means velocity u and pressurep are located at the
same grid point. The previous steps have prepared for the numerical approximation on the unit cube.
Index(i, j,k) corresponds to direction(q, r,s). The second order of accuracy in space is obtained by
using values at middle points(i± 1

2, j,k), (i, j ± 1
2,k) and(i, j,k± 1

2). See stencil Figure 4 below, i.e.,

(uq)i, j ,k =
ui+1, j,k−ui−1, j,k

2∆q . More technical details can be found in [3].
In order to get the second derivative for velocityu with respective tox at point (i, j,k), the first
derivatives(uq)i± 1

2 , j ,k, (ur)i, j± 1
2 ,k, (us)i, j ,k± 1

2
at its neighboring middle points in three directions

(q, r,s) respectively are necessary to be known. While for such values at these middle points, for
example,(uq)i− 1

2 , j ,k, we would then use values at the standard points(i − 1, j,k), (i − 1, j ± 1,k)

and (i − 1, j,k± 1), etc. We may call it ten-point stencil as in Figure 5 below. The central fi-

nite difference in space is employed, i.e.,(uq)i− 1
2 , j ,k =

ui, j,k−ui−1, j,k
∆q , (ur)i− 1

2 , j ,k =
(ur)i−1, j,k+(ur)i, j,k

2 , and

5

��
��
��

��
��
��

(i, j+1, k)

(i, j, k+1)

(i, j, k−1)

(i, j−1, k)

(i, j−1/2, k)

(i, j, k)

(i, j+1/2, k)

(i, j, k−1/2)

(i, j, k+1/2)

(i−1, j, k) (i−1/2, j, k) (i+1/2, j, k) (i+1, j, k)

Figure 4. Standard point (i, j,k).

��
��
��

��
��
��

(i, j, k+1)

(i, j, k−1)

(i−1, j, k)

(i−1/2, j, k)

(i, j−1, k)

(i−1, j, k+1)

(i−1, j, k−1)

(i−1, j+1, k)

(i, j, k)

(i, j+1, k)

(i−1, j−1, k)

Figure 5. Middle point (i −1/2, j,k).

(us)i− 1
2 , j ,k =

(us)i−1, j,k+(us)i, j,k
2 .

The time step involves one or more evaluations of the difference scheme. We write the semi-discrete
problem as

dUi, j,k
dt = r(...,Ui, j ,k, ...), wherer(U), the residual contains all spatial derivatives of the

PDE. For steady state problems we want to solver(U) = 0, numerically,||r(U)|| < Tolerance.
The residual is computed by successive function call. A forward Euler method is applied here:
Un+1

i, j ,k = Un
i, j ,k+ τrn

i, j ,k.

4.5. Boundary and Initial Conditions

We set boundary and initial conditions for the test domain asin Figure 6. Face 0 is inflow boundary,
P = 1,ux = 0,v = 0,w = 0; face 1, the outflow boundary,P = 0,ux = 0,v = 0,w = 0. All the other
faces are walls, Dirichlet boundary conditions are appliedfor velocity fields,u = v = w = 0, and
Neumann boundary condition for pressure,∂P

∂n = 0.
The initial value for velocity isu0 = v0 = w0 = 0, and the pressurep0 = 1−(x+3)/6,x∈ [−3,3], see
figure 7. The pressure only linearly depends on the variablex, which fulfills the boundary conditions,
1 at the inflow, 0 at the outflow, and∂P

∂n = 0 on the other boundary faces. Because such particular
pressure distribution only dependents on thex−direction, the velocity filed along thez−direction
would be homogeneous.

−3

−2

−1

0

1

2

3

0

1

2

3

4

0

1

2

xy

z

face 3

face 2

face 1

face 0

face 4

face 5

Figure 6. Boundaries on the domain.

−3
−2

−1
0

1
2

3

0

1

2

3

4

0

0.5

1

xy

pr
es

su
re

Figure 7. Initial pressure.

6

4.6. Implicit Scheme

If we linearize the Navier-Stokes equations (1)-(2), we getthe so-calledOseen equations(Carl Wi-
helm Oseen, 1879-1944)

ut −ν∆u+(w·∇)u+∇p = f , (18)

∇ ·u = 0, (19)

wherew is the previous velocity approximationun of the velocityu. Applying the implicit Euler
scheme to the linearized system (18)-(19), we arrive at

un+1−un

τ
−ν∆un+1+(un ·∇)un+1+∇pn+1 = f , (20)

∇ ·un+1 = 0. (21)

At each time step, the following linear system must be solved:
(

I − τν∆+ τ(un ·∇) τ∇
τ∇· 0

)(
un+1

pn+1

)

=

(
τ f +un

0

)

. (22)

Using the spatial discretization FDM (Finite Difference Method) or FEM (Finite Element Method),
we can get the resulting linear saddle point systemKy = b as the following general form

(
A(un) BT

B 0

)

︸ ︷︷ ︸

K

(
un+1

pn+1

)

︸ ︷︷ ︸

y

=

(
τ f +un

0

)

︸ ︷︷ ︸

b

. (23)

Some non-multigrid iterative solvers are applicable to solve this saddle point problem such as thethe
general minimal residual method(GMRES) introduced in [14]. Another popular method isSemi-
Implicit Method for Pressure-Linked Equations(SIMPLE) developed by Patankar and Spalding [13].
Inexact Uzawa Method can also be applied to solve this system. Details to it can be found e.g. in
[12, 27]. For each time level, we employ a parallel multigridmethod (Algorithm 1), see for more
details in [7]. We develop our implicit solver (Algorithm 2)which includes the multigrid solver based

Algorithm 1 PMGM(Aq, Kq, yq, bq, q)
if q == 1 := CoarsestLevelthen

Coarsest grid solver : Kq ·yq = bq

else
Presmoothing : yq = Spre(yq)
Defect calculation (new r.h.s) : dq = bq−Kq ·yq

Restriction of defect : dq−1 = Iq−1
q ·dq

Coarse grid initial guess : m0
q−1 = 0

Solve defect system : mq−1 = PMGM(Aq−1, Kq−1, m0
q−1, dq−1, q−1)

Interpolation of correction : mq = Iq
q−1 ·mq−1

Addition of correction : yq = yq +mq

Postsmoothing : yq = Spost(yq)
end if

on Warbro’s previous work [23].

7

Algorithm 2 IMP NS Sol(y0, q)

Give the initial value at time 0 :yn = y0

while ‖ yn ‖> α ‖ y0 ‖ do
Define the initial guess for level q :yq = yq,0

while ‖ bq−Kqyq ‖> ε ‖ bq−Kqyq,0 ‖ do
yq = PMGM(Aq, Kq, yq, bq, q)

end while
Update the new solution at this time step :y0 = yn,yn = yq

end while

4.7. Explicit VS Implicit Scheme

Comparing these two methods with each other, we can find some advantages and disadvantages for
both of them. For the explicit methods, no storage for large matrix is needed and they are easier
to implement. However, we can only get correct solution for stationary state, and also, for stability
reasons, we have strict limitation for time step size. For the implicit methods, we can get reasonable
solutions at each time step and it has no strict restriction to time step size. However, it has memory
requirement for large scale matrix storage and much work to do for matrix decomposition.

5. Parallel Implementation

Here, a simple domain decomposition method is given by load balancing. In this way, each processor
will hold nearly the same number of grid points, which means they have the same amount of work to
do, including both communication and computation (see moredetails from [2]). Here we develop the
algorithm for the three dimensional case.

5.1. A Simple Domain Decomposition

We decompose the domainΩ into overlapping sub-domainsΩi such thatΩ =
Snp

i=1Ωi, wherenp de-
notes the number of processors. The decompositionΠ(GS,PS) is dependent on the number of global
grid sizeGS= (mg,ng,bg) in three directions, and the processor numberPS= (p1, p2, p3) as well1.
The number of processors in each direction can be calculatedby minimizing the communication cost
function:

C(p1, p2, p3) = (p1−1)ngbg+(p2−1)mgbg+(p3−1)mgng (24)

subject top1p2p3 = np. Then we would like to havemg/p1 = ng/p2 = bg/p3. This is of course not
always possible to fulfill with integers, and we then try numerically instead to determinep1, p2, and
p3 such that modified cost expression

Ĉ(p1, p2, p3) = |mg/p1−ng/p2|
2+ |ng/p2−bg/p3|

2 (25)

is minimized under the restrictionp1p2p3 = npagain. Taking the number of processornpas a number
with many factors, would greatly improve decomposition efficience. Using fixed number of grid size
3213, we did the experiments with varying number of processors. By minimizing the communication
cost function numerically, we have less communication workto do for a specified case. Work is

1We assume here that a homogeneous parallel computing systemis being used in which each processor has the same
performance characteristic

8

measured in number of grid points, see Table 1. In this special case,mg= ng= bg= 321, the cost
function is then reduced to

C(p1, p2, p3) = mg2(p1+ p2 + p3−3) = mg2(
3

∑
i=1

pi −3), (26)

which linearly dependents on the function of∑3
i=1 pi . We can check this fact easily from Table 1.

np p1× p2× p3 C(p1, p2, p3)
C(p1,p2,p3)

mgngbg ∑3
i=1 pi

1 1×1×1 0 0 3
2 1×1×2 103041 0.0031 4
4 1×2×2 206082 0.0062 5
8 2×2×2 309123 0.0093 6
12 2×2×3 412164 0.0125 7
16 2×2×4 515205 0.0156 8
32 2×4×4 721287 0.0218 10
48 3×4×4 824328 0.0249 11
64 4×4×4 927369 0.0280 12

Table 1. Cpu distribution computed by minimizing communication costs. Mesh size is3213 = 33076161.

Thus, for this simple case, the grid points are distributed over the processors as evenly as possible in
one dimension and then it can be applied to three dimension case easily. Assume the processors are
enumerated from 1 top andsk points in processork. Let the local indexik in processork vary from 1
to sk. The width of overlapping region in our case isa = 2. The global indexi, varies betweenl and
n. We choose

s= [
N+(p−1)a

p
], (27)

where[x] denotes the integer part ofx, N = n− l +1. Define the remainder,

r = (N+(p−1)a) modp,

and we distributed these remaining points evenly into the first processors:

sk =

{

s+1 if k≤ r

s if k > r.
(28)

The index transformationtk, an integer such thatik + tk = i, is

tk = l −1+(k−1)(s−a)+min(k−1, r). (29)

The processor ID(c1,c2,c3) in the processor cube is required for the communication of the overlap-
ping part. The processor coordinates can be determined by inverting the mapping:

pr = c1−1+ p1(c2−1)+ p1p2(c3−1). (30)

Here 1≤ ci ≤ pi , 0≤ pr ≤ np−1, andpr is the identity in the one dimensional processor enumeration
given by the function MPICommrank from the MPI communication library.

9

5.2. Communication Model

The blocking point-to-point MPI routines MPIRecv and MPISend are employed in program. We
also developed so calledRedBlackalgorithm for 3D case as in figure 8. Suppose each processor has
a color (red or black) in each direction such that no neighbors have the same color. Neighbors have
their own color coordinate. The color can be implemented by theR B function:

R B =

{

red if ci mod 2== 0,

black if ci mod 2== 1,
i = 1,2,3. (31)

Processors need to communicate the information for every overlapping part. Thus, in our example,
each processor has to call MPI communication subroutines MPI Send and MPIRecv six times in
order to send/receive necessary data information at the interface to/from its neighbors suppose each
cpu has six neighbors.

(R,R,R) (B,R,R) (R,R,R) (B,R,R)

(R,R,B) (B,R,B) (R,R,B) (B,R,B)

(R,R,R) (B,R,R) (R,R,R;) (B,R,R)

(R,R,B) (B,R,B) (R,R,B) (B,R,B)

(R,B,B) (B,B,B) (R,B,B) (B,B,B)

(R,R,B) (B,R,B) (R,R,B) (B,R,B)

(R,B,B) (B,B,B) (R,B,B) (B,B,B)

(B,B,R)

(B,B,B)

(B,B,R)

(B,R,B)

(B,R,R)

(B,R,R)

(B,B,R)

(B,B,B)

(B,B,R)

Figure 8. An illustration of Red Black algorithm in three sweeps, West→ East, Down→Top, and Forth→ Back.

Applying theRedBlackalgorithm, the communication time can be reduced since someof them can
send/receive data to/from their neighbors simultaneously. However, because blocking communica-
tion functions are applied here, which means that the program execution will be suspended until the
message buffer is safe to use. The MPI standards specify thata blocking SEND or RECV does not
return until the send buffer is safe to reuse (for MPISEND), or the receive buffer is ready to use (for
MPI RECV). Besides the three sweeps shown in Figure 8, every processor still exits the other three
sweeps,East→West, Top→ Down, andBack→ Forth. In order to avoid the deadlock, neighbors
cannot call MPISEND/MPI RECV at the same turn. Every send in a processor should respond to a
receive in its neighbor and on the other hand it cannot receive data safely only until its neighbor sends
data. We give an communication example inWest↔ Eastsweep. See algorithm 3.

5.3. Performance Model

The time to send a message withn bytes between two processors is often modeled asTc(n) = α+nβ,
whereα is the start-up time to initialize the communication andβ is the time to send one byte of

10

Algorithm 3 Red Black Algorithm in West ↔ East Sweep
West→East :
(R,*,*) send to east (B,*,*) (B,*,*) receive from west (R,*,*)
(B,*,*) send to east (R,*,*) (R,*,*) receive from west (B,*,*)
East→West :
(R,*,*) send to west (B,*,*) (B,*,*) receive from east (R,*,*)
(B,*,*) send to west (R,*,*) (R,*,*) receive from east (B,*,*)

data. In practice,α ≫ β, so that the starting time is the dominating term. It is a verysimplified model
of reality. However, we would like to give another performance model for the total execution time,
communication time plus computing,T(N,np). Here,N is the problem size andnp is the number of
processors as before. The behavior for largeN is often used to test the performance. Now the speed-up
is defined as the ration of time to run the problem on one processor, to that of onnp processors:

S(N,np) =
T(N,1)

T(N,np)
. (32)

Perfect speed-up is obtained whenS(N,np) = np.

5.4. Numerical Examples for Explicit Scheme

At this moment, we show some results from explicit scheme. Using middle-ware globus, we submit
and run our jobs on different Austrian grid nodes and try to dothe simulation there.

5.4.1. Tests on Nodes Altix1.jku.austriangrid.at

There are Altix1∼4 at Linz University. It is an SGI Altix 3500 system, consisting of 4 nodes. Each
of them contains 16 microprocessors (Intel Itanium 2, 900MHz/1.5/MB L3 Cache each), 64Gbyte
RAM and 64-bit PCI-X buses. First we give the test results in Table 2 of two small size problems
which are tested only on one node consisting of 16 cpus at JKU.Approximately, for really large prob-

#unknowns 213∗4 = 37,044 513∗4 = 530,604
Residual 4.48e−14 1.43268e−14
#steps 100,000 100,000
Time 80s 610s
#CPU 16 16

Step size 0.0012 0.0005
Test node altix1 at jku altix1 at jku

Table 2. Two test results.

lem, for instance, 3213 ∗4 = 132,304,644,time≈ 285,720s≈ 80h. We really need more powerful
resources (more grid nodes) in order to reduce the cost. The next example is to try to run our prob-
lem on different nodes Altix1∼4 at JKU. We can use number of cpus from 1 up to 64. We run our
program ten time steps and compared the const with differentnumber of grid points from 213 up to
5013. Obviously, as we see from Table 3, for large problem, for instance, with number of unknowns
5013 ∗ 4 = 503,006,004, we can benefit a lot from using grid resources. However, because of ex-
tra communication time needed among nodes, the speedup doesnot purely linearly depend on the
number of cpus, see Figure 9.

11

time measured with different grid size
np 213 413 813 1613 3213 5013

2 0.0327 0.2702 3.0309 29.6238 362.9065 1757.745
4 0.0191 0.1169 1.5258 13.4702 142.2860 662.1513
8 0.0129 0.0672 0.7601 6.4801 65.4366 288.4072
12 0.0116 0.0522 0.4933 4.2527 42.9452 186.5697
16 0.0110 0.0434 0.3576 3.2602 32.4913 131.8930
32 9.2776 0.0445 0.17296 1.8554 25.7761 109.9527
48 10.1021 0.0605 0.1765 1.3465 19.3027 84.9540
64 7.6453 0.0804 0.1728 1.3435 18.0354 75.792

Table 3. Time consumption for different size of problems with varying number of processors.

10 20 30 40 50 60

2

4

6

8

10

12

14

16

18

20

22

24

Number of processors

S
pe

ed
up

41*41*41

321*321*321

501*501*501

Figure 9. Speedup at local nodes.

2 4 6 8 10 12 14 16
0

1

2

3

4

5

6

7

8

9

Number of processors

M
ea

su
re

d
tim

e

Figure 10. Measured time at remote node.

5.4.2. Test on Remote Nodes Altix1.uibk.ac.at

Here is another example which is tested on a remote node Altix1.uibk.ac.at. The number of unknowns
is 1013∗4 = 4,121,204, and run it with 11 time steps. Then we get the following time measured in
second as shown in Figure 10.

5.4.3. Stationary Fields of Velocity and Pressure

Velocity fields are shown in Figure 11 and Figure 12. The pressure distribution at the steady state
would be comparable to the initial value except numerical non-accuracy at the corners coming from
numerical boundary conditions for pressure. The residual terms, which tells us if the solutions have
forwarded to the final stationary state is recorded in Figure14. We pick up the maximal residual value
r = U(...,Ui, j ,k,...) for the equations from all grid points.

6. Summary and Future Work

This type of numerical methods for the modified Navier-Stokes equations with artificial compressibil-
ity can work by using such a naive numerical approximation method on parallel machines at Austrian
grid nodes. However, such explicit time stepping method we developed here is not suitable very well
for grid computing via connecting different nodes distributed in several universities. Lots of com-
munications are needed through networking at each time step. It would be interesting to improve

12

Figure 11. Visualization of the velocity fields using cone plotting and stream lines.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 12. Velocity field in aX−Y cutting plane.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 13. Pressure distribution.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time steps

C
on

ve
rg

en
ce

 h
is

to
ry

res : p
res : u
res : v
res : w

Figure 14. Convergence history.

13

this solver by using more sophisticated numerical technologies in order to get the convergence more
quickly, for example, via implicit time stepping methods with fast solvers at each time step [22].
Unfortunately, at this moment, we do not have grid-supporting MPI library installed on our machine
which can run a single job at the same time on machines from different geographical nodes. We are
not quite sure if this would improve the performance quite well since extra time would be spent on
the communication among nodes with long distance.

Acknowledgements

The authors would like to thank Dr. Joachim Schöberl and Prof. Walter Zulehner for their useful dis-
cussion about Navier-Stokes equations, and Peter Praxmarer, Markus Baumgartner, and Rene Kober
for their technical support about Austrian grid. Last but not least, the financial support of the Aus-
trian Grid Project and the FWF (Austrian Science Fund) Special Research Program SFB F013 are
gratefully acknowledged.

References

[1] Internet. Algebraic grid generation.
http://www.nada.kth.se/kurser/kth/2D1263/l3.pdf, 17-19.

[2] Internet. Distributions of an array on a parallel computer.
http://www.nada.kth.se/kurser/kth/2D1263/lecturenotes5.pdf/, 93-96.

[3] Internet. Finite difference approximation.
http://www.nada.kth.se/kurser/kth/2D1263/l6.pdf, 44-55.

[4] Internet. Globus Toolkit package. http://www.globus.org/toolkit/.

[5] Internet. MPI package. http://www-unix.mcs.anl.gov/mpi/.

[6] A.J.Chorin, Numerical solution of the Navier-Stokes equations,Math. Comp.,22 (1968), 745-
762.

[7] C.C.Douglas, G.Hasse, U.Langer, A Tutorial on EllipticPDE Solvers and Their Parallelization,
SIAM, 2003, Philadelphia.

[8] W.Hackbusch, Multi-Grid Methods and Applications, Springer-Verlag, Berlin-Heidelberg,
1985.

[9] D.S.Henningson, M.Berggren, Computational Fluid Dynamics, lecture notes in Computational
Fluid Dynamics, March, 2005, Royal Institute of Technology, Sweden.

[10] W.Kress, High Order Finite Difference Methods in Spaceand Time, 2003, Acta Universitatis
Upsaliensis, Sweden.

[11] H.P.Langtangen, K.-A.Mardal, R.Winther, Numerical Methods for Incompressible Viscous
Flow, Advances in Water Resources,Vol 25(8-12) (2002), 1125-1146.

[12] U.Langer, W.Queck, On the convergence factor of Uzawa’s algorithm,J.Comput.Appl.Math.,15
(1986), 191-202.

14

[13] S.Patankar, D.Spalding, A calculation procedure for heat, mass and momentum transfer in three-
dimensional parabolic flows,Int.J.Heat Mass Transfer,15 (1972), 1787-1806.

[14] Y.Sadd, M.H.Schultz. GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear system.SIAM J.Sci.Stat.Comput.,7 (1986), 856-869.

[15] J.Shen, Pseudo-compressibility methods for the unsteady incompressible Navier-stokes equa-
tions, 11th AIAA Computational Fluid Dynamic Conference, 6-9 July, 1993, AIAA paper 93-
3361, Orlando, FL, USA.

[16] John C.Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth,
Brooks, 1989.

[17] R.Teaman, On error estimates of the penality method forthe unsteady Navier-Stokes equations,
SIAM J. Numer.Anal.,32-2(1995).

[18] S.Tsuge, The Kolmogorov turbulence theory in the lightof six-dimensional Navier-Stokes’
equation,eprint arXiv:nlin/0303013,Vol 2 (2003).

[19] S.Turek, Efficient Solvers for Incompressible Flow Problems, Lecture Notes in Computational
Science and Engineering, Springer-Verlag, Berlin-Heidelberg, 1999.

[20] S.Turek, Multigrid techniques for a divergence-free finite element discretization,East-West J.
Numer. Math.,Vol.2, No.3 (1994), 229-255.

[21] S.Turek, Multigrid techniques for a simple discretelydivergence-free finite element space, in
Hemker / Wesseling, Multigrid Methods IV, 1994, 321-332.

[22] M.Wabro, AMGe-Coarsening Strategies and Applicationto the Oseen-Equations,SIAM
J.Sci.Comput.,accepted for publication.

[23] M.Warbro, Algebraic Multigrid Methods for the Numerical Solution of the Incompressible
Navier-Stokes Equations, PhD thesis, Johannes Kepler University Linz, 2003.

[24] M.Wabro, Coupled Algebraic Multigrid Methods for the Oseen Problem,Computing and Visu-
alization in Science,7, No 3-4 (2004), 141-151.

[25] J.Xu, Iterative methods by space decomposition and subspace correction,SIAM Review, 34
(1992), 581-613.

[26] W.Zulehner, A class of smoothers for saddle point problems.Computing, 65(3) (2000), 227-246.

[27] W.Zulehner, Analysis of iterative methods for saddle point problems: a unified approach,Math-
ematics of computation,71 (2002), 479-505.

15

