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Abstract. Computation of an intersection of a left ideal with a subal-
gebra, which is not fully investigated until now, is important for different
areas of mathematics.

We present an algorithm for the computation of the preimage of a
left ideal under a morphism of non–commutative GR–algebras, and show
both its abilities and limitations.

The main computational tools are the elimination of variables by
means of Gröbner bases together with the constructive treatment of op-
posite algebras and the utilization of a special bimodule structure.
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1. Introduction

An intersection of a left or a two–sided ideal with the subalgebra of a given al-
gebra is one of the fundamental constructions in algebra and its applications
(e.g. in theoretical physics). The computation of the preimage of a two–
sided ideal reduces to the computation of the kernel of induced map both in
the commutative (e.g. [8]) and the non–commutative cases ([2, 7, 20]).

On the contrary, the algorithmic treatment of the problem of computing
the preimage of a left ideal, to the best of our knowledge, was only inves-
tigated in the non–commutative case for the situation of pure elimination
([2, 3, 7, 17, 20]). That is, one considered intersections only with subalge-
bras, generated by some subset of the set of variables.

In this article, we describe algorithms for computing the intersection of a
two–sided and a left ideal with the finitely generated subalgebra of a non–
commutative GR–algebra (see Def. 1) for various settings. We describe
one of the possible ways to treat the opposite algebra of a GR–algebra
constructively, and use this in further algorithms.

We start with subalgebras, generated by a subset of the set of variables of
the algebra, closely investigate the notion of elimination of variables in G–
algebras, and give explicit conditions for its computability. It is closely con-
nected to Gröbner bases, so we review different definitions of them relatively
toG–algebras. We are going to clarify the connection between Gröbner bases
and filtrations on corresponding modules (Remark 3).

Then, we proceed with the general situation of an arbitrary finitely gen-
erated non–commutative subalgebra, and show the conditions to be satisfied
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for a map of algebras in order to be a morphism. After that, we present
the method for computing the kernel of a morphism and hence, also the
preimage of a two–sided ideal.

The algorithm for the preimage of a left ideal under a morphism of GR–
algebras (Algorithm 1) is more complicated. We show that this algorithm
works well for many examples, but it also has some natural limitations,
which we discuss in detail. We comment the cases, which are important for
applications, when a source or a target algebra is commutative.
GR–algebras, Gröbner bases and Gröbner basics for modules over GR–

algebras are implemented as a subsystem Plural of the Computer Algebra
System Singular ([9]). Starting from the version 3-0-0 on, the Singular
distribution includes Plural as an integral part; it is available for download
at http://www.singular.uni-kl.de. All the examples in this article have
been computed with this system.

By K we denote a field. In addition, we use the following notations:
[a, b] = a · b− b · a, a Lie bracket for polynomials a, b
A〈S〉, a left A–module, generated by a set S,
A〈S〉B, a (A,B)–bimodule, generated by a set S,
K〈S | R〉 = K〈S〉/K〈S〉〈R〉K〈S〉, a presentation of a K–algebra via the set of
generators S and the set of relations R,
NF(F | G) = {NF(f | G) | f ∈ F}, a normal form of a finite set F with
respect to a Gröbner basis G,
x� y, x is bigger than any power of y.

2. GR–Algebras

Let K be a field, and T = Tn = K〈x1, . . . , xn〉 a free associative K–algebra,
generated by {x1, . . . , xn} over K.

Among the monomials xi1xi2 . . . xis , 1 ≤ i1, i2, . . . , is ≤ n, spanning T as
vector space over K, we distinguish the standard monomials xα1

i1
xα2
i2
. . . xαm

im
,

where 1 ≤ i1 < i2 < . . . < im ≤ n and αk ∈ N. Via the correspondence
xα := xα1

1 xα2
2 . . . xαn

n 7→ (α1, α2, . . . , αn) =: α the set of standard monomi-
als is in bijection with Nn.

Recall, that any finitely generated associative K–algebra is isomorphic
to Tn/I, for some n and some proper two–sided ideal I ⊂ Tn. If the set
of standard monomials forms a K–basis of an algebra A = T/I, we say
that A has a Poincaré–Birkhoff–Witt (shortly, PBW) basis in the variables
x1, . . . , xn.

As one can immediately see, the commutative polynomial ring K[x1, . . . , xn]
does have a PBW basis, while the free associative algebra K〈x1, . . . , xn〉
does not. The existence of a PBW basis is an important property for a non–
commutative algebra. However, we need more assumptions on the particular
basis and the relations of an algebra in order to guarantee nice properties.
In particular, the algebra K〈x, y〉/〈yx〉 has a PBW basis, but it also has zero
divisors.
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A total ordering ≺ on Nn is called a monomial ordering on the algebra A
with the PBW basis {xα | α ∈ Nn}, if ∀ α, β, γ ∈ Nn, α ≺ β ⇒ xα ≺ xβ ⇒
xα+γ ≺ xβ+γ . For f ∈ T , we denote by lm(f) the leading monomial of f
with respect to ≺.

Definition 1. Let K be a field, T = K〈x1, . . . , xn〉 and I be a two–sided
ideal of T , generated by the elements

xjxi − cij · xixj − dij , 1 ≤ i < j ≤ n,

where cij ∈ K \ {0} and every dij ∈ T is a polynomial, involving only
standard1 monomials of T . A K–algebra A = T/I is called a G–algebra, if
the following conditions hold

• Ordering condition:
there exists a monomial well–ordering ≺ on Nn such that ∀ 1 ≤

i < j ≤ n lm(dij) ≺ xixj.
• Non–degeneracy condition:

∀ 1 ≤ i < j < k ≤ n , to the sets {cij} and {dij} we associate a
polynomial NDCijk = cikcjk ·dijxk−xkdij + cjk ·xjdik− cij ·dikxj +
djkxi−cijcik ·xidjk. A condition is satisfied, if each NDCijk reduces
to zero with respect to the generators of I.

G–algebras, and Gröbner bases for them, were introduced by Apel in [1].
They are also known from [19], and appear as algebras of solvable type in
[10, 11, 17] and as PBW algebras in [3]. We have reported on the further
progress on G–algebras, on the Gröbner bases theory for modules over them,
and on implementation in [12, 14, 15].

It is important to mention, that any polynomial NDCijk is equal to the
so–called associator (xk ? xj) ? xi − xk ? (xj ? xi) for the multiplication ?,
defined as follows: xj ? xi = xjxi, if j ≤ i and xj ? xi = cijxixj + dij ,
if j > i. As it has been pointed by a referee, the associator is one of the
most important objects in the non–associative algebra. This motivates us to
study the connection between G-algebras and Akivis algebras ([21]), which
will be investigated in the future.

The PBW Theorem (from e.g. [14]) generalizes the classical Poincaré–
Birkhoff–Witt Theorem from the case of universal enveloping algebras of
finite dimensional Lie algebras to the case of general G–algebras. Hence, a
G–algebra in variables x1, . . . , xn has a canonical PBW basis
{xα1

1 xα2
2 . . . xαn

n | αk ∈ N}.

Theorem 1. Let A be a G–algebra in n variables. Then

1) A is left and right Noetherian,
2) A is an integral domain,
3) A is Auslander–regular and Cohen–Macaulay,
4) the Gel’fand–Kirillov dimension GKdim(A) = n,
5) the global homological dimension gl.dim(A) ≤ n,
6) the Krull dimension Kr.dim(A) ≤ n.

1we assume this for simplicity of presentation
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We refer to [18] for corresponding definitions, and to [6, 12] for definitions
and proofs. There are examples (e.g. in [12]), where the inequalities 5) and
6) are strict.

We regard a G–algebra in n variables as a generalization of a commuta-
tive polynomial ring in n variables, taking into account, among others, the
properties above. In particular, 1) and 2) imply that every G–algebra has a
left and a right quotient ring.

For G–algebras A and B, A ⊗K B is a G–algebra. In the sequel, we use
standard embeddings of A and B into A ⊗K B. We write a resp. b for the
elements of A ⊂ A ⊗K B resp. B ⊂ A ⊗K B, instead of a ⊗ 1 resp. 1 ⊗ b,
whenever no confusion is possible.

For a G–algebra B and a proper nonzero two–sided ideal I ⊂ B, we call
a factor algebra B/I a GR–algebra.

For the constructive treatment of factor algebras, we need, in particular,
two–sided Gröbner bases for two–sided ideals. One of the algorithmic ap-
proaches and its implementation were described in [15], whereas the authors
of [5] propose a novel effective method for Gröbner bases of bimodules.

3. Opposite Algebras

Let A be an associative algebra over K. Recall, that the opposite algebra
Aopp is defined by taking the same vector-space as of A, and introducing a
new ”opposite” multiplication on it, that is f ∗ g := g · f . Then, Aopp is
an associative K–algebra, and (Aopp)opp = A.

Lemma 1. Let B = A/I be a GR–algebra. Then Bopp is a GR–algebra,
and Bopp = Aopp/Iopp.

Opposite algebras are important, particularly due to the fact that for
right–sided computations with a right module like a Gröbner basis, a syzygy
module et cetera, it suffices to have a left–sided functionality implemented
together with procedures for an effective treatment of opposite algebras and
transfer of objects from an algebra into its opposite and back. The imple-
mentation in Singular:Plural is done along these lines.

For p ∈ A, we denote the opposed polynomial by p∗. As it was mentioned
above, ∀ 1 ≤ i < j < k ≤ n NDCijk = (xk · xj) · xi − xk · (xj · xi).

In the opposite algebra, each corresponding non–degeneracy condition is
of the form (x∗i ∗ x∗j ) ∗ x∗k − x∗i ∗ (x∗j ∗ x∗k) = 0. This inspires a particular
construction of the opposite algebra, which we call the reversed PBW basis
method.

Let Xn+1−i := x∗i . Denote the induced monoid automorphism by σ :
Nn → Nn, σ(α) = σ((α1, . . . , αn)) := (αn, . . . , α1). Since a K–basis of A is
the PBW basis
{xα | α ∈ Nn}, it is quite natural to define a monomial of Aopp to be
(xα)∗ := Xσ(α) = Xαn

n ∗ . . . ∗Xα1
1 . Hence, with this choice of monomial, the

non–degeneracy condition is satisfied automatically.
Then, on Aopp with the PBW basis {Xβ | β ∈ Nn} there are relations,

opposed to A, namely ∀ 1 ≤ i < j ≤ n, XiXj = CjiXjXi + Dji. Define
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Cji := cn+1−i,n+1−j andDji := d∗n+1−i,n+1−j , then the pair (Xi, Xj) together
with the relation is clearly opposite to the pair (xn+1−i, xn+1−j).

LetM ∈ GL(n,R) be the matrix, representing an admissible well–ordering
≺M on A. Define a matrix M∗ by reverting the order of columns from
M = (M1 | · · · | Mn) to M∗ = (Mn | · · · | M1). Note that ≺M∗ is a well–
ordering if and only if ≺M is. Moreover, for any α ∈ Nn, Mα = M∗σ(α).
Hence, we have the following: xα ≺M xβ ⇔ Mα ≺lex Mβ ⇔ M∗σ(α) ≺lex

M∗σ(β) ⇔ Xσ(α) ≺M∗ Xσ(β).
Then, from lm(dij) ≺M xixj it follows, that

lm(Dji) ≺M∗ XjXi, and the ordering condition is satisfied. Hence, Aopp is
a G–algebra in n variables by the Def. 1.

The implementation in Singular:Plural uses this method. We provide
the function opposite(ring R), which constructs the opposite algebra Ropp

from a given G–algebra R. The following convention is used: we change the
letters in corresponding names of variables (given by strings) into capitals
and vice versa. For example, the variables {y2, Dx} of A will become the
variables {Y 2, dX} of Aopp.

Moreover, the function oppose(P), applied to an object P (of the type
polynomial/vector/ideal/module/matrix) of R, creates the opposite object
P opp in the opposite algebraRopp. In the Singular:Plural documentation
and in [12], one finds more explanations and examples.
The following important conjecture is still open.

Conjecture 2. For a G–algebra A, there is an isomorphism of K–algebras

A ∼= Aopp.

4. Gröbner Bases and Elimination

Using the language, close to the one, used in the commutative case (e.g. [8]),
the definition of a Gröbner basis carries over to submodules of free modules
over G–algebras in its ”commutative form”, although the meaning of some
properties may be different.

4.1. Variants of Gröbner Bases.

Let A be a G–algebra in n variables. We say that a monomial of a free
module Ar (involving component i) is an element of the form xαei, where
α ∈ Nn and ei is the canonical i–th basis vector.

We say, that m1 = xαej divides m2 = xβek, and denote it by m1|m2,
if j = k and αi ≤ βi ∀i = 1 . . . n. Note, that it is rather a pseudo–division
on A, since if m1|m2, then there exist c ∈ K \ {0}, a monomial p ∈ A and
q ∈ Ar such that lm(q) ≺ m1 and m2 = c · p ·m1 + q, where q is in general
nonzero.

From the properties of G–algebras it follows, that any f ∈ Ar r {0} can
be written uniquely as f = cαx

αei + g, with cα ∈ K∗, and xβej ≺ xαei for
any nonzero term cβx

βej of g. Then we define
lm(f) = xαei, the leading monomial of f ,
lc(f) = cα, the leading coefficient of f ,
le(f) = (i, α), the leading exponent of f .
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Note, that ∀ α, β ∈ Nn, lm(xαxβ) = lm(xα+β) = lm(xβxα).

Definition 2. Let ≺ be a monomial ordering on the free module Ar, I ⊂ Ar

a left submodule, and G ⊂ I a finite subset. G is called a left Gröbner
basis of I if and only if for any f ∈ I r {0} there exists g ∈ G, satisfying
lm(g) | lm(f).

However, we need a more concrete description of Gröbner bases. We can
use e.g. the span of leading monomials.
Let us denote Nr := {1, . . . , r}.

Definition 3. Let S be any subset of Ar.
• We define L(S) ⊆ Nr × Nn to be a Nn–monoideal, generated by the

leading exponents of the elements of S, L(S) = Nn〈(i, α) | ∃s ∈
S, le(s) = (i, α)〉. We call L(S) a monoideal of leading expo-
nents.

• L(S), the span of leading monomials of S, is defined to be the
K–vector space, spanned by the set {xαei | (i, α) ∈ L(S)} ⊆ Ar.

Remark 3. By Dixon’s Lemma, L(S) is finitely generated, i.e. there exist
(i1, α1), . . ., (im, αm) ∈ Nr×Nn, such that L(S) = Nn〈(i1, α1), . . . , (im, αm)〉
as monoideal.

In general, for S ⊂ Ar, L(S) is just a K–vector subspace of A. Using
the filtration by the monomial ordering on Ar (see e.g. [3, 14] for details),
we see that indeed, L(S) can be considered as a K–subspace of the algebra
Gr≺(A). The set Λ = {(i, α) | ∃f ∈ S : lm(f) = xαei} ⊂ Nr × Nn is equal
to L(S). Hence,

Gr≺(S) =
⊕

(i,α)∈Λ

Kxαei = L(S).

It follows that L(S) is a Gr≺(A)–module.
Hence, if A ∼= Gr≺(A) as K–algebras, L(S) is an A–module. It means

that, for quasi–commutative algebras (G–algebras with dij = 0 ∀1 ≤ i <
j ≤ n, e.g. commutative algebras), we can define L(S) equivalently as
L′(S) = A〈{lm(f) | f ∈ S}〉 and call it a leading submodule of S (clearly,
L(S) = L′(S) as K-vector spaces). Then, a finite set S is a Gröbner basis of
A〈S〉 if and only if L′(S) = L′(A〈S〉).

The following folklore example shows, that the definition of Gröbner basis
via leading submodules cannot be transferred directly to the case of general
G–algebras.

Example 4. Consider the first Weyl algebra A = K〈x, ∂|∂x = x∂ + 1〉, the
set S = {x∂ + 1, x}, and the ideal I = A〈S〉. I is a proper left ideal equal
to A〈x〉, with {x} a reduced Gröbner basis of I.

Hence, the K–vector spaces L′(I) and A〈x〉 are equal, but

L′(S) = A〈{x∂, x}〉 = A · 1

In view of the remark, we can give an alternative description of the
Gröbner basis property.
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Definition 4. Let ≺ be a monomial ordering on the free module Ar, I ⊂ Ar

a left submodule, and G ⊂ I a finite subset. G is called a left Gröbner
basis of I if and only if the following equivalent conditions are satisfied:

• L(G) = L(I) as K–vector spaces,
• L(G) = L(I) as Nn–monoideals,
• Nn〈L(G)〉 = L

(
I
)

= L
(
A〈G〉

)
as Nn–monoideals.

4.2. Elimination.

The notion of elimination of variables can be transferred literally from
commutative polynomial rings, where it has its historical origins, to asso-
ciative algebras, having the following property:

every subset S of the set of variables X generates a subalgebra, not in-
volving other variables than that of S.
In the sequel, we call such a subalgebra essential. It is easy to see, that
many important algebras belong to the class of algebras, where all subalge-
bras, generated by any subset of the set of variables are essential. In addi-
tion to commutative polynomial rings, also free associative algebras, multi-
parameter quantum affine spaces (and more generally, quasi–commutative
algebras) et cetera are in this class. On the other hand, there are still many
algebras, which do not enjoy this property. In such algebras, we cannot
speak of elimination of variables in general, but only of intersection with
essential subalgebras. On the other side, ”elimination” is terminologically so
widespread and comfortable, that we may use it for all the cases, having in
mind, however, an intersection with essential subalgebras.

Definition 5. (Elimination ordering) Let A be a G–algebra, generated by
{x1, . . . , xn}, such that {xr+1, . . . , xn} generate an essential sub–G–algebra
B ⊂ A. A monomial ordering ≺ on A is an elimination ordering for
x1, . . . , xr, if for any f ∈ A, lm(f) ∈ B implies f ∈ B. If, moreover,
x1, . . . , xr generate an essential sub–G–algebra C, we say in addition, that
≺ is an elimination ordering for C. We call such an ordering admissible
elimination ordering ≺Ar , if the condition ∀i < j lm(dij) ≺Ar xixj is satis-
fied. We use the notation xm � xk, if xm ∈ B and xk 6∈ B.

A classical example of an elimination ordering for the definition above
is the block ordering, composed of monomial orderings ≺C and ≺B. The
lexicographical ordering lex, widely used for elimination purposes in both
commutative rings and free associative algebras, rarely satisfies the ordering
condition of the Definition 1. However, lex is admissible for such important
algebras like Weyl algebras, and a few other algebras.
A block ordering of the form (≺C ,≺B) is quite natural for use, but it is
often not efficient in computations. Numerous experiments with concrete
problems led us to the use of extra weight ordering (e.g. [8]) instead. Such
an ordering seems to be generically the fastest elimination ordering2.

2we must say, that the most complicated Gröbner bases computations that we dealt
with, were elimination problems
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Suppose, we are in the situation of the Definition 5. Let M ∈ GL(n,R) be
the matrix, representing an admissible well–ordering ≺M on A. We put the
row (w1, . . . , wr, 0, . . . , 0) on the top of M , and throw away, say, the last row
of M . The resulting matrix will be again in GL(n,R). The positive weights
wi are chosen in such a way, that the ordering condition of the Definition 1
is satisfied by A with respect to the new ordering.

The computation of a tuple of strictly positive weights (w1, . . . , wn) for
the given algebra A, such that A is a G–algebra with respect to the well–
ordering with weight vector (w1, . . . , wn) can be achieved with the help of
the method, described in e.g. [3]. This method is implemented as the
procedure Gweights in the Singular:Plural library nctools.lib ([16]).
We are going to generalize this method to more general monomial orderings,
including elimination orderings and implement it in Plural.

The following Lemma is the constructive formulation of the classical re-
sult of Gröbner bases theory, adopted for the G–algebras. In the proof we
demonstrate the usefulness of the approach, introduced in the Def. 3 and
Def. 4 (span of leading monomials).

Lemma 2. Let A be a G–algebra, generated by {x1, . . . , xn} and I ⊂ A be
an ideal. Suppose, that the following conditions are satisfied:

• {xr+1, . . . , xn} generate an essential subalgebra B,
• there exists an admissible elimination ord. ≺B for x1, . . . , xr on A.

Then, if S is a left Gröbner basis of I with respect to ≺B, we have S ∩B
is a left Gröbner basis of I ∩B.

Proof. Take any xα ∈ L(I), then there exists such f ∈ I, that lm(f) = xα.
Since ≺B is an elimination ordering for x1, . . . , xr, from lm(f) ∈ B it follows
that f ∈ B. Hence, L(I)∩B equals to ⊕{Kxα | ∃f ∈ I, lm(f) = xα}∩B =
⊕{Kxα | ∃f ∈ I ∩ B, lm(f) = xα}, and the latter is just L(I ∩ B). Then
L(S)∩B = L(I)∩B = L(I ∩B) = L(S ∩B), hence, S ∩B is a left Gröbner
basis of I ∩B by the Def. 4. � �

Note, that both conditions we impose are automatically satisfied in a
commutative polynomial ring and in a free non–commutative algebra. How-
ever, as the Lemma shows, one cannot transfer the method to arbitrary
finitely presented associative algebras in a direct way. The generalization of
the Elimination Lemma to a wider class of algebras is an interesting open
problem.

The built–in command eliminate in Singular:Plural works along the
lines of the Lemma 2. At first it checks whether B is essential and, if it
is the case, the check of the admissibility of an extra weight ordering with
weights (1, . . . , 1) is performed. We plan to include the third component
in this procedure, which will compute a vector of weights such that the
corresponding extra weight elimination ordering is admissible, or report that
no such weight vector exists.

In the next examples we are going to illustrate the crucial difference to the
commutative elimination. Indeed, there are concrete situations, appearing
in applications, where elimination requires extra computations. It may even
happen that no elimination is possible.
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Example 5. (Elimination, requiring extra weights)
Consider the algebra X = K〈a, b, x, d〉 subject to relations [b, a] = 3a,

[d, a] = 3x2, [x, b] = −x, [d, b] = d, [d, x] = 1.
We fix a PBW basis {apbqxrds}. A small computation ensures, that the

non–degeneracy condition on X is satisfied. An admissible well–ordering ≺
on X has to satisfy only one condition x2 ≺ ad, which may be achieved
by using a degree ordering. Since both {a, b} and {x, d} generate essential
subalgebras, any block ordering, giving priority to {a, b} and having degree
orderings in every block, is an admissible elimination ordering for {a, b}.

Any elimination ordering for {x, d} has to satisfy x2 ≺ da, while
x � a and d � a, which is impossible with standard block orderings with
weights (1, . . . , 1). The ordering condition on weights is satisfied, as soon as
2 degω(x) ≤ degω(a) + degω(d) = degω(d). For example, for the algebra X
with the PBW basis {xpdqarbs} the ordering with extra weights 1 resp. 3
for x resp. d is a possible solution.

Example 6. (No elimination is possible)
Let A = K〈p, q | qp = pq + d(p, q)〉 be a G–algebra for a fixed ordering ≺

(that is lm(d) ≺ pq). Then, if for some m ≥ 2, lm(d) = qm, the intersection
of any left ideal I ⊂ A with the subalgebra K[p] cannot be computed, because
of the following objection. The elimination ordering for such computation
requires q � p, which implies qm � pq, and hence lm(d) � pq, which
contradicts the ordering condition for A as a G–algebra.

An explanation to the above fact may be the following. In the free as-
sociative algebra T = K〈p, q〉 consider the two–sided ideal J , generated by
f = qp − pq − q2. If, for some ordering ≺ on T , we have lm(f) = qp
or lm(f) = pq, then {f} is a two–sided Gröbner basis of J . However, if
lm(f) = q2, the two–sided Gröbner basis of J is infinite, being equal to
{pqn + qpn − n · qpn−1q | n ≥ 1}. Hence, further computations with J are
ineffective.

5. Preimage under a Morphism

If we are going to find an intersection of an ideal with a subalgebra, being
the homomorphic image of other GR–algebra, the best way to do this is to
consider a map between two algebras, check whether this map is a morphism
of GR–algebras and, if it is the case, compute the preimage of an ideal.

5.1. Morphisms and Their Kernels.

Let A and B be G–algebras. Suppose, there are proper two–sided ideals
TA ⊂ A, TB ⊂ B, already given by their two–sided Gröbner bases, and there
are GR–algebras A = A/TA and B = B/TB.

We call a map Φ : A → B a morphism of GR–algebras, if Φ is a
homomorphism of K–algebras, that is ∀x, y ∈ A Φ(xy) = Φ(x) · Φ(y) and,
moreover, Φ(TA) ⊆ TB holds.

A map Φ : A → B is completely defined by its values on the generators
{xi} of A, that is Φ : xi 7→ pi, for pi ∈ B.
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The set of all morphisms Φ : A → B between the GR–algebras A,B is
denoted by Mor(A,B). Respectively, we denote by Mor(A,B) the set of
morphisms between the G–algebras φ : A→ B.

Lemma 3. Let φ : A→ B be the map between the G–algebras. Consider the
set X := {f−φ(f) | f ∈ A} ⊆ A⊗KB, naturally K–spanned by {xα−φ(xα) |
α ∈ Nn}, and another set S = {xi − φ(xi) | 1 ≤ i ≤ n} ⊂ A ⊗K B. Then,
there are the following inclusions of K–vector-spaces:

X ⊂ A〈S〉φ(A) ⊆ A〈S〉B.

Note, that X itself carries no A–module structure in this context.

Theorem 7. Let Eo := A ⊗K Bopp, T oE := TA + T opp
B a two–sided ideal

and Eo := A ⊗K Bopp = Eo/〈T oE〉 a GR–algebra. Define the set So :=
{xi − φ(xi)opp | 1 ≤ i ≤ n} ⊂ Eo. Then, the (A,B)–bimodule A〈S〉B can
be viewed as the left ideal Ioφ := A⊗KBopp〈So〉. Respectively, A〈S〉B can be
viewed as the left ideal IoΦ = A⊗KBopp〈So〉, that is generated by NF(Ioφ | T oE).
Then, the following holds:
(i) φ ∈ Mor(A,B) if and only if Ioφ ∩Bopp = 〈0〉,
(ii) for any φ ∈ Mor(A,B), kerφ = Ioφ ∩A,
(iii) Φ ∈ Mor(A,B) if and only if NF(Ioφ ∩Bopp | IoppB ) = 〈0〉,
(iv) for any Φ ∈ Mor(A,B),

ker Φ = IoΦ ∩ A = NF(TA + (T oppB + Ioφ) ∩A | TA).

Example 8. Let U(sl2) be given in its standard presentation, namely, as
K〈e, f, h | [f, e] = −h, [h, e] = 2e, [h, f ] = −2f〉. Moreover, let W1 be the
first Weyl algebra, already defined in Example 4. We consider the map

τ : U(sl2) →W1, τ(e) = x, τ(f) = −xd2, τ(h) = 2xd.

Using the reversed PBW basis method, we obtain W opp
1 = K〈D,X |

XD = DX + 1〉. Let E = U(sl2) ⊗K W opp
1 , and let Ioτ be generated by

{g1 = e − X, g2 = f + D2X, g3 = h − 2DX}. Computing Ioτ ∩ W opp
1

gives zero: applying the Generalized Product Criterion ([15]), we see that
spoly(g1, g3) → −2g1, spoly(g2, g3) → 2g2, and spoly(g1, g2) → g3, where
spoly(a, b) is a s–polynomial (see e.g. [3, 15, 17]) for the pair of polynomials
{a, b} and the reduction → is taken with respect to the set {g1, g2, g3}.

Hence, {g1, g2, g3} is a left Gröbner basis with respect to an elimination
ordering with {e, f, h} � {D,X} and, indeed, τ ∈ Mor(U(sl2),W1).
Let us compute the kernel of τ . We set an elimination ordering with
{D,X} � {e, f, h} and compute the Gröbner basis of Ioτ with respect to
it. We obtain {4ef + h2 − 2h,Dh+ 2f, 2De− h,X − e} ⊂ E and see, that
the polynomial 4ef + h2 − 2h generates the kernel. Note, that this element
is the generator of the center of U(sl2), hence, this element is the only gen-
erator of the two–sided Gröbner basis of ker τ . In particular, τ induces an
injective morphism of GR–algebras

0 −→ U(sl2)/U(sl2)〈4ef + h2 − 2h〉 τ−→W1.

Remark 9. With this technique we can compute preimages of two–sided
ideals from B by computing the kernel of an induced morphism of factor–
algebras. However, this does not allow us to compute the preimage of a left
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ideal from B, since we transfer only the trivial (A,A)–bimodule structure on
A to A⊗KB

opp. Namely, ∀a, a′ ∈ A, b ∈ Bopp, a′ ◦(a⊗b) = (a′a⊗1) ·(1⊗b),
and (a⊗ b) ◦ a′ = (1⊗ b) · (aa′ ⊗ 1).

For a right ideal L ⊂ B, generated by {g1, . . . , gs}, the left ideal Lo ⊂
A⊗KB

opp gets the left A–module structure and becomes the left A⊗KB
opp–

module, generated by {1⊗gopp
i }. But then, (Lo+Ioφ)∩A is a left ideal instead

of a right one, as the preimage must be.

5.2. Algorithm for Preimage.

For simplicity of the presentation, we formulate the following algorithm
for G–algebras instead of GR–algebras.

Algorithm 1. ncPreimage
Input 1: A = K〈x1, . . . , xn | {xjxi = cijxixj + dij}〉;
Input 2: B = K〈y1, . . . , ym | {yjyi = aijyiyj + bij}〉;
Input 3: J ⊂ B (left ideal);
Input 4: {fi = φ(xi)} ⊂ B;

Output: φ−1(J).
• ∀1 ≤ i ≤ m, ∀1 ≤ j ≤ n define qij := lc(yjfi) · (lc(fiyj))−1, qij ∈ K∗, and
rij := yjfi − qijfiyj ∈ B;
• search for an ordering, such that lm(rij) ≺ xiyj;
• if there exists no such ordering, report error;
• E := K〈y1, . . . , ym, x1, . . . , xn〉 subject to relations {xjxi = cijxixj + dij},
{yjyi = aijyiyj + bij}, {yjxi = qijxiyj + rij};
• Iφ := {xi − φ(xi) | 1 ≤ i ≤ n} ⊂ E;
• P := Iφ + J ⊂ E;
• P = Eliminate(P,B); (that is P := P ∩A)
• return P ;

It is clear, that the algorithm terminates. The rest of the section is
dedicated to the sketch of the proof of correctness.

Consider the additively closed set G = {g − φ(g) | g ∈ A} ⊂ A ⊗K B.
There is a natural left action of A on B, induced by φ, namely a ◦L b :=
φ(a)b. This action provides a well–defined left A–module structure on B, if
∀a1, a2 ∈ A, b ∈ B, we have a1 ◦L a2 ◦L b = (a1 · a2) ◦L b.
Indeed, a1 ◦L a2 ◦L b− (a1 · a2) ◦L b = (φ(a1)φ(a2)− φ(a1a2))b, that is this
action is well–defined if and only if φ is a morphism, which can be checked
algorithmically with the Theorem 7. The natural right action is defined
in an analogous way. Assume, that φ ∈ Mor(A,B). Then B is a (A,A)–
bimodule. Extending the action naturally to A by a1 ◦L a2 := a1 · a2, we
turn A⊗K B into a (A,A)–bimodule.

Lemma 4. G is a (A,A)–bimodule, generated by the set

{xi − φ(xi) | 1 ≤ i ≤ n}.

The construction of the elimination algebra E := A⊗φKB in the algorithm
is done for representing the described actions of A on A⊗K B. For this, we
introduce the additional non–commutative relations between elements of A
and B.
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The action, written in terms of relations, gives xiyj = fiyj , yjxi = yjfi.
Since B is a G–algebra, lm(fiyj) = lm(yjfi), and the corresponding relations
become {yjxi = qij · xiyj + rij}, where both qij and rij are already defined
in the algorithm.

It remains to incorporate the relations (xi − fi)yj = 0 = yj(xi − fi),
∀1 ≤ i ≤ n and ∀1 ≤ j ≤ m. Since in A ⊗φK B, yj(xi − fi) = (xi − fi)yj , it
suffices to consider a two–sided ideal Rφ ⊂ A⊗φKB, generated by {(xi−fi)yj |
∀1 ≤ i ≤ n,∀1 ≤ j ≤ m}. One possibility for treating the situation would
be to pass to the factor algebra A⊗φKB/Rφ. On the other hand, Rφ ⊆ G and
in the computations below we need the sum Iφ + J and not Iφ := G alone.
The computation of a Gröbner basis of an ideal J in the factor–algebra
modulo Rφ is done by computing a Gröbner basis of the ideal J + Rφ and
then, reducing the result with respect to Rφ. Hence, the Gröbner basis of
Iφ + J in the factor–algebra is the Gröbner basis of Iφ + J + Rφ = Iφ + J ,
since Rφ ⊆ G. Thus, Rφ can be skipped, since the action is already fully
represented.

If we are given GR–algebras A,B, we construct A⊗Φ
KB as a factor–algebra

of A⊗φK B by the two–sided ideal T = TA + TB.

Theorem 10. Let A,B be GR–algebras, and Φ ∈ Mor(A,B).
Let IΦ be the (A,A)–bimodule A〈{xi −Φ(xi) | 1 ≤ i ≤ n}〉A ⊂ A⊗K B, and
fi := Φ(xi). Suppose, there exists an elimination ordering for B on A⊗KB,
such that 1 ≤ i ≤ n, 1 ≤ j ≤ m, lm(lc(fiyj)yjfi− lc(yjfi)fiyj) ≺ xiyj. Then

1) A⊗φK B is a G–algebra (resp. A⊗Φ
K B is a GR–algebra).

2) Let J ⊂ B be a left ideal. Then

Φ−1(J) = (IΦ + J) ∩ A.

Proof. 1) Any elimination ordering for A is admissible on A⊗φKB, since any
such ordering has the property xi � yj , rij depends only on {yk}, and hence,
xiyj � lm(rij). However, this will not always be the case for an elimination
ordering for B with its property yj � xi, thus, the condition of the theorem
is essential.

The non–degeneracy condition is satisfied; we omit the corresponding very
technical computation.

2) By Lemma 4, ∀g ∈ A, g − Φ(g) ∈ IΦ. Since Φ is a morphism, and an
elimination ordering for A is admissible onA⊗Φ

KB, we have IΦ∩Bopp ⊆ T opp
B ,

and hence, IΦ ∩ J ⊆ IΦ ∩ Bopp = 0. Then (IΦ + J) ∩ B = J .
Since there exists an admissible elimination ordering for B, the intersec-

tion with A is computable for an ideal in A⊗φK B. For any q ∈ (IΦ + J)∩A
we see, that Φ(q) = (Φ(q) − q) + q ∈ (IΦ + J) ∩ B = J , and the inclusion
Φ−1(J) ⊃ (IΦ + J) ∩ A holds.

Conversely, let p ∈ Φ−1(J) ⊂ A. Then p = p− Φ(p) + Φ(p) ∈
∈ (IΦ + J) ∩ A. � �

The Algorithm 1 that we have presented works well for many interesting
examples.

Example 11. Let W1 be the first Weyl algebra K〈x, d | [d, x] = 1〉. For
t ∈ Z let St = K〈a, b | [b, a] = t · a〉 be the universal enveloping algebra of a
two–dimensional solvable Lie algebra.
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For a fixed t ≥ 2, we consider the map ψt : St −→W1,
ψt(a) = xt, ψt(b) = xd + t. For p ∈ N, let Ip = W1〈xp, xd + p〉 and Jp =
W1〈dp, xd−p+1〉 be left ideals. We are interested in preimages of left ideals
Ip, Jp under the map ψt.

Using the Theorem 7, we conclude that ∀t ∈ N, ψt is a morphism. More-
over, based on the computations for various concrete t, we conjecture that
∀t ∈ N, kerψt = 〈0〉.

Now, we apply the Algorithm 1. In the algebra E = St⊗ψt

K W1, there will
be the following new relations: {[x, b] = [x, xd + t] = −x, [d, a] = [d, xt] =
txt−1, [d, b] = [d, xd + t] = d}. Hence, the condition of the Theorem 10 is
satisfied, as soon as xt−1 ≺ ad and {x, d} � a hold at the same time.

Using the extra weight vector (0, 0, 1, t), based on any well–ordering on
variables (a, b, x, d), we come to admissible elimination ordering on St⊗ψt

K W1.
On theW1⊗ψt

K St, the extra weight vector (1, t, 0, 0) is applied to the variables
(x, d, a, b).

Let us compute some preimages for t = 7. Computing with Plural, we
obtain the following results:
ψ−1

7 (I3) = 〈a, b− 4〉,
ψ−1

7 (I8) = 〈a2, b+ 1〉,
ψ−1

7 (I33) = 〈a5, b+ 26〉.
From the experimental data, we conjecture that

∀t ∈ N, ψ−1
t (Ip) = 〈a[ p

t
]+1, b+ p− t〉.

If it holds, we conclude that for any p′ ∈ N we have

ψt(ψ−1
t (Ip)) = 〈xp+p′ , xd+ p〉 = 〈xp, xd+ p〉 = Ip.

The preimages of Jp look more simple:
ψ−1

7 (J3) = 〈b− 9〉,
ψ−1

7 (J8) = 〈b− 14〉,
ψ−1

7 (J33) = 〈b− 39〉.
We may conjecture, that ∀t ∈ N, ψ−1

t (Jp) = 〈b+ 1− (p+ t)〉.
If it holds, we conclude that ψt(ψ−1

t (Jp)) = 〈xd+ 1− p〉, which is strictly
contained in Jp.

In addition, let us compute the preimage of the ideal K = I3 ∩ J3. We
get the following results: K = 〈x4d− 2x3, x2d2 + 2xd− 6, xd4 + 6d3〉,
ψ−1

7 (K) = 〈ab − 9a, b2 − 13b + 36〉 = 〈a(b − 9), (b − 4)(b − 9)〉. As we can
check e. g. with Plural, ψ−1

7 (K) = ψ−1
7 (I3) ∩ ψ−1

7 (J3).

In the following example we show, that the limitations of the method
might also appear in applications in a natural way.

Example 12. Let us continue with the example 8. For the map
τ : U(sl2) → W1, τ(e) = x, τ(f) = −xd2, τ(h) = 2xd, we build the algebra
E = U(sl2)⊗τKW1, introducing new relations {[d, e] = 1, [x, f ] = 2xd, [d, f ] =
−d2, [x, h] = −2x, [d, h] = 2d}. As we see, only two relations impose real
restrictions: fx � xd and fd � d2, both being true if and only if f � d.
But this is incompatible with the elimination ordering condition for W1.
Hence, the condition of the theorem is not fulfilled, and there is no way
to compute preimages of left ideals under τ using this approach. However,
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we can use maps from different subalgebras of U(sl2) to W1 and succeed
with the Algorithm 1. In particular, we can use subalgebras Ae and Af of
U(sl2), generated by {e, h} and {f, h} respectively. Note, that Ae ∼= S2 and
Af ∼= S−2. Moreover, different morphisms St → A1 were already studied in
the Example 11.

5.3. Special Cases.

If the source algebra A is commutative, then a map Φ : A → B is a
morphism if and only if the values of the generators of A commute pairwise in
B. In this situation, there is an easier algorithm, than the Algorithm 1, which
is considered in detail in [13]. It is important to mention, that is this case
many interesting questions arise. In particular, with the preimage algorithm
we can determine the algebraic dependence of pairwise commuting elements,
decide whether an element of B belongs to a commutative subalgebra of
B, and compute the central character decomposition of modules over GR–
algebras. All of these applications are described in detail and illustrated by
numerous examples in [13]. Moreover, many algorithms of that article are
implemented in Singular:Plural.

Some of the elimination problems in this setting lead to tremendous com-
putations and may be used as benchmarks for high performance computer
algebra systems. For example, consider the universal enveloping algebra A
of a finite dimensional simple Lie algebra over a field K. Over any field,
the center Z(A), which is a subalgebra, is generated by pairwise commuting
polynomials. However, in the case char K > 0, it is known from the dimen-
sion calculation, that these elements are algebraically dependent. There are
several open questions on the dependency polynomials which we investigate
by using computer algebraic methods.

We were able to compute the dependency polynomials explicitly for many
prime p over the algebras U(sl2) (see [12]) and U(so3). Up to now, the
case of U(sl3) remains unsolved and constitutes an important challenge for
Singular:Plural.

If the target algebra B is commutative, and the source algebra A is non–
commutative, a typical map Φ : A → B is often not a morphism. However,
in this situation the algorithm for computing the one–dimensional represen-
tations of B in GL(1,K) = K arises, see [12].

6. Conclusions

In the case of elimination, there may appear two difficulties. The first one
lies in the fact, that in many algebras not every subset of the set of variables
generate an essential subalgebra, hence it is not possible to ”eliminate” cer-
tain group of variables. The second one arises in associative algebras, which
have some condition on the monomial ordering used, like G–algebras in the
Definition 1. More generally, this phenomenon may happen with a finitely
presented associative algebra, which generators constitute a finite Gröbner
basis with respect to some specific orderings and lead to infinite Gröbner
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basis for other orderings. In this case one has to look for an elimination or-
dering, satisfying the conditions (like finitness of Gröbner basis etc.) and, as
it was demonstrated in the Example 6, it can happen that no such ordering
exists. Summarizing, we see that it is not always possible to intersect ideals
with certain subalgebras, even with very natural ones.

The Algorithm 1 provides a very general tool for computing preimages of
left ideals ofGR–algebras, and it is as complex as the Buchberger’s algorithm
with respect to an elimination ordering.

It is important to investigate, whether the ideas behind the Algorithm 1
can be constructively generalized to the different partial Ore localizations of
G–algebras, like rational Weyl algebras
K(x1, . . . , xn)〈∂1, . . . , ∂n | [∂i, xi] = 1, [∂j , xk] = 0〉
or local polynomial Weyl algebras
K[x1, . . . , xn]〈x1,...,xn〉〈∂1, . . . , ∂n | [∂i, xi] = 1, [∂j , xk] = 0〉.

More generally, there is a need for such results in classes of Ore algebras
([4]) and even in very general PBW rings ([3, 11]). It is interesting to know,
up to which extent these ideas may be generalized to the case of a morphism
between two finitely presented associative algebras.
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Gröbner bases, applications and implementation. Doctoral Thesis, Universität
Kaiserslautern, 2005. Available from http://kluedo.uni-kl.de/volltexte/2005/1883/.

[13] Levandovskyy, V. On preimages of ideals in certain non–commutative algebras. In
Pfister G., Cojocaru S. and Ufnarovski, V., editor, Computational Commutative and
Non-Commutative Algebraic Geometry. IOS Press, 2005.

[14] Levandovskyy, V. PBW Bases, Non–Degeneracy Conditions and Applications. In
Buchweitz, R.-O. and Lenzing, H., editor, Representation of algebras and related
topics. Proceedings of the ICRA X conference, volume 45, pages 229–246. AMS. Fields
Institute Communications, 2005.

[15] Levandovskyy, V. and Schönemann, H. Plural — a computer algebra system for
noncommutative polynomial algebras. In Proc. of the International Symposium on
Symbolic and Algebraic Computation (ISSAC’03). ACM Press, 2003.

[16] Levandovskyy, V., Lobillo, F.J. and Rabelo, C. A Singular 3.0 library, providing
general tools for noncommutative algebras nctools.lib. 2004.
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