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Abstract

To assess the quality of solutions in stochastic inverse problems, a
proper measure for the distance of random variables is essential.

The aim of this note is the comparison of the metrics of Ky Fan and
Prokhorov with other concepts such as expected values, probability
estimates and almost sure convergence.

In ill-posed problems one aims to find an appropriate solution x† to an equa-
tion of the form

F (x) = y,

when the operator F is not continuously invertible. Therefore, the prob-
lems of interest are unstable; when only noisy data yδ are available, special
techniques (so called regularization methods) must be applied to obtain reg-
ularized solutions xδ

α that are reasonable approximations to x†. To assess the
quality of different regularization methods, in the theory of ill-posed problems
convergence rate results, i. e., results of the form∥∥x† − xδ

α

∥∥ = O
(
f(
∥∥y − yδ

∥∥))
are an accepted quality criterion (see [12] for an introduction into this topic).
So in a nutshell, in the deterministic theory of inverse problems the aim is
to bound the distance between desired and regularized solution, in terms of
the distance between exact and noisy data.
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When the deterministic theory of inverse problems is to be extended to a
stochastic setup, a question of utmost importance is how to measure distances
of random variables, since now x†, xδ

α, y, . . . are replaced by their stochastic
counterparts x†(ω), xδ

α(ω), y(ω), . . . . In [18] an approach was presented that
performs this extension using the metrics of Ky Fan and Prokhorov. In the
following we collect some general results from [18] about these metrics.

The first section of this note introduces the metrics of Ky Fan and
Prokhorov and describes general relations and differences between these met-
rics. In a second section we briefly compare the Ky Fan metric with other
qualitative and quantitative concepts for measuring convergence. The final
section gives a detailed quantitative comparison of convergence in expecta-
tion and in the Ky Fan metric.

1 The Metrics of Prokhorov and Ky Fan

Let us first introduce the metrics of Prokhorov and Ky Fan. As we will
see later, these two are closely related, but while the latter works with ran-
dom variables, the Prokhorov metric is concerned only with the underlying
distributions.

1.1 The Prokhorov Metric

This metric does not directly work on the space of random variables, but
on the underlying induced distributions. Suppose we are given two random
variables x(ω) and x̃(ω) ∈ X for ω ∈ Ω and probability space (Ω,A, µ). Via
the measure µ on Ω we can define two corresponding measures µx and µx̃ (the
so-called distributions of x and x̃) on the space X: For a Borel set B ⊂ X
we define

µx(B) := µ(x−1(B)) := µ{ω ∈ Ω | x(ω) ∈ B} ,

and

µx̃(B) := µ(x̃−1(B)) := µ{ω ∈ Ω | x̃(ω) ∈ B} .

Instead of measuring the pointwise distance of x(ω) and x̃(ω) directly, we can
use this lifting onto spaces of probability measures and compute the distance
of the respective measures there, using an appropriate metric.

Distances between probability measures can be defined in numerous ways,
see e. g. [17] for an overview. In [18] the aim was to develop a theory for
stochastic inverse problems, that contains the deterministic one as a special
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case. For this sake a concept is needed that is applicable to point-measures,
because such point-measures correspond to “constant random variables”,
which are essentially deterministic quantities. As the following remarks show,
it is therefore important that the chosen metric metrizes the weak-star topol-
ogy.

Remark 1.1. Consider an interval I ⊂ R and suppose that a sequence
(xk)

∞
k=1, xk ∈ I converges to some x ∈ I. For which topology do the corre-

sponding point-measures δxk
converge?

Every probability measure µ defines a continuous linear functional on the
space of continuous functions C(I) via

µ(f) :=

∫
I

f(x) dµ(x) ,

therefore every measure is an element of the dual space C(I)∗ of C(I). Since
C(I) is not reflexive (cf. [28, 30]) there are at least 3 different possibilities
for defining convergence of measures in C(I)∗: norm-, weak-, and weak-
star-convergence. Let in the following δxk

and δx denote point-measures,
associated with the points in the sequence (xk) ⊂ I \ {x} and their limit x.

• Norm topology: A norm on C(I)∗ can be defined via elements of the
pre-dual space C(I) as

‖µ1 − µ2‖ = sup
f∈C(I)

|
∫

f(x) d(µ1 − µ2)|
‖f‖C(I)

.

For given k we can always find a continuous function fk(·), ‖fk‖ ≤ 1,
with fk(x) = 1 and fk(xk) = 0 (e. g. a piecewise linear interpolant).
Since

∫
fk(x) d(δx−δxk

) = fk(x)−fk(xk), the distance between δxk
and

δx in the norm remains constant and equal to 1; the point-measures δxk

do not converge to δx in the norm topology.

• Weak topology:1To investigate weak convergence we consider conver-
gence of φ(δxk

) to φ(δx) where φ ∈ C(I)∗∗, i. e., φ is an element of the
dual of C(I)∗. One particular functional on C(I)∗ is defined by the
point evaluation

φx : C(I)∗ → R
µ 7→ φx(µ) := µ({x}) .

1Note that the common notion of weak topology for probability distributions typically
means the weak-star topology discussed below; we use the functional analytic terminology.
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This functional is linear and has norm 1, as can be seen via the Riesz
representation theorem ([28, 30]). With this choice we obtain for all
k ∈ N that φx(δxk

) = 0, while at the same time φx(δx) = 1, thus δxk

does not converge weakly to δx.

• Weak-star topology: Here we measure convergence of δxk
to δx by ap-

plying these measures to continuous functions f . For any f ∈ C(I) (
C(I)∗∗ we have

|δxk
(f)− δx(f)| := |

∫
f(x) d(δxk

− δx)| = |f(xk)− f(x)| .

Since f is continuous we obtain that δxk
→ δx, whenever xk → x, so

the point-measures δxk
do converge to δx in the weak-star topology.

Thus, the weak-star topology is weak enough such that δxk
→ δx whenever

xk → x.

A complementary question is considered in the following remark.

Remark 1.2. Given a probability space (Ω,A, µ), we denote the space of
probability measures µx, which are actually distributions of random variables
x, x : Ω → X, by M(Ω,A,µ)(X)). This space is not necessarily equal to the
space of all probability measures on X (denoted by M(X)), since not every
probability measure needs to be the distribution of a random variable on
(Ω,A, µ).

But what can be said about a probability measure that is, in some sense,
the limit of distributions of random variables, will it also be the distribution
of a random variable? I.e., if a sequence µxn converges to some µ̃ ∈ M(X),
does there exist a random variable x̃, x̃ : Ω → X, such that µ̃ = µx̃? For
the case of convergence in the weak-star topology, this question is answered
affirmatively in [14].

Thus, the weak-star topology is strong enough such that M(Ω,A,µ)(X) is
a sequentially closed subset of M(X).

Although many different distances on probability spaces are available,
only few of them metrize the weak-star topology. Among them are the Prokh-
orov metric and the Wasserstein or bounded Lipschitz metric. The result of
Strassen (see Theorem 1.6) gives connections between the distance of the
measures on the probability space measured in the Prokhorov metric, and
the distance of corresponding random variables measured in the Ky Fan
metric, and is the reason why we finally pick this metric.
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Definition 1.3 (Prokhorov metric). The distance of two measures µ1, µ2 in
the Prokhorov metric is defined as (see, e. g., [5, 9, 19, 22])

ρp(µ1, µ2) := inf{ε > 0 | µ1(B) ≤ µ2(B
ε) + ε, ∀Borel setsB ⊂ Ω} . (1)

Here Bε = {x | d(x, B) < ε}, where d(x, B) is the distance of x to B, i. e.,
d(x, B) = infz∈B ‖x− z‖.

The use of Bε in the definition above is essential: The Prokhorov distance
of two measures µ1 and µ2 is small, when the probability of similar events
(Bε) is similar up to a small quantity (“+ε”). In contrast, the total variation
distance (cf. [17]) measures if the probability of the same event (B) is similar
(“+ε”). Consequently, when xk, xk 6= x, converges to x the corresponding
point-measures δxk

converge to δx in the Prokhorov metric, but they do not
in the total variation distance.

Having defined a metric on the space of probability measures, an inter-
esting question is the following: Consider an operator F : X → Y , and a
sequence of random variables (xk), with xk → x, where convergence is mea-
sured in the Prokhorov metric. Under which continuity assumptions on F
does the random variable F (xk) converge to F (x) (again in the Prokhorov
metric), and can this convergence be quantified? This question is answered
in [15, 29]. As demonstrated in [13, 15] the answer to this question is also
relevant for regularization theory of stochastic inverse problems, because it
can be used to derive convergence rate results.

1.2 The Ky Fan Metric

While the Prokhorov metric works with distributions, the Ky Fan metric
uses random variables to define distances. This metric is defined as follows.

Definition 1.4 (Ky Fan metric). The distance of two random variables ξ1,
ξ2 in the Ky Fan metric is defined as ([16], also [9])

ρk(ξ1, ξ2) := inf {ε > 0 | µ{ω ∈ Ω | d(ξ1(ω), ξ2(ω)) > ε} < ε} . (2)

Convergence in the Ky Fan metric is a quantitative version of convergence
in probability (see below).

Let us first give a short interpretation of the Ky Fan distance. If ξ1 and
ξ2 have distance ρk(ξ1, ξ2) ≤ ε, this implies that

• with high probability (namely 1 − ε) the realizations of the random
variables have distance d(ξ1(ω), ξ2(ω)) ≤ ε,
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• with low probability (at most ε), the distance between ξ1(ω) and ξ2(ω)
may be larger than ε.

In particular, the second point is of interest: The Ky Fan distance be-
tween ξ1 and ξ2 may be small, although on a set of positive probability the
distance of ξ1(ω) and ξ2(ω) might be arbitrarily large.

In contrast, the expected value is influenced by all events that have posi-
tive probability. In particular for non-normally distributed random variables
this can make a significant difference. For instance in section 3 we construct
an example for which ρk(ξ1, ξ2) → 0 while E (‖ξ1 − ξ2‖2) remains constant or
even tends to infinity. This is also relevant for convergence rates for stochastic
inverse problems, as a numerical example in [18, Ch. 5] shows:

The quality of the solutions there is measured by some parame-
ter s, where s = 0 corresponds to a deterministic problem with
well-behaved solution; with growing s the probability of “bad”
solutions increases. While now the Ky Fan metric gives

ρk(x
δ
k∗(δ), x†)H1(I) = O

(
δ

2ν
2ν+1+s

)
,

i. e., a convergence rate that slows down gradually for increasing
s, the rate in expectation is given as

E
(∥∥x† − xδ

k∗

∥∥ 2
H1(I)

)1/2

≤

{
O(δ

2ν
2ν+1 ) 0 < s < ν + 1

2

∞ ν + 1
2
≤ s .

i. e., it remains constant for a while, and switches to non-conver-
gence suddenly.2

So on the one hand measuring convergence in expectation, one is re-
stricted to a smaller class of random variables. On the other hand, the
expected value does not give information about particular realizations, while
the Ky Fan distance gives a good bound with probability 1− ε.

1.3 Relations between Prokhorov and Ky Fan Metric

Let us in the following consider some connections and differences between
the Ky Fan metric and the Prokhorov metric.

In case we are interested in the distance of a random variable to a point,
or respectively, the distance of a distribution to a point-measure, it turns out
that the Ky Fan distance and the Prokhorov distance are equal.

2Of course the involved coefficients in the O(·)-notation do not remain constant. But
since these constants are in practice unavailable, the focus in inverse-problems theory is
on the appearing exponents in the convergence rate (see [12]).
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Proposition 1.5. Let ξ1, ξ2 be two random variables with distributions µ1,
µ2. Let one of the random variables be constant. Then

ρk(ξ1, ξ2) = ρp(µ1, µ2) .

Proof. It suffices to show that ρk(ξ1, ξ2) ≤ ρp(µ1, µ2) (see Proposition 1.7
below for the converse estimate).

Suppose that ξ1 is constant, i. e., ξ1(ω) = x1 for almost all ω ∈ Ω. Accord-
ing to Definition 1.3 we have for arbitrary Borel-sets B and ε > ρp(µ1, µ2)

µ1(B) < µ2(B
ε) + ε .

in particular this also holds for the set B = {x1}. For this choice we obtain

1− ε < µ2(B
ε)

= µ{ω ∈ Ω | ξ2(ω) ∈ Bε}
= µ{ω ∈ Ω | d(ξ2(ω), x1) ≤ ε}

Via Definition 1.4 this implies ρk(ξ1, ξ2) ≤ ε. Taking the infimum with
respect to ε > ρp(µ1, µ2) concludes the proof.

If we are interested in the distance of two genuine random variables, more
effort is necessary to connect the Prokhorov metric and the Ky Fan metric.
The following theorem, originally obtained by Strassen [27] and extended by
Dudley [8], is an important tool for this task. (The proof of the following
result can also be found in [9, ch. 11.6].)

Theorem 1.6 (Strassen). Let (X , d) be a separable metric space and M(X )
be the set of Borel probability measures on X , µ1, µ2 be elements of this space.
Let α ≥ 0 and β ≥ 0. Then the following statements are equivalent

(i). µ1(B) ≤ µ2(B
α]) + β for all Borel sets B

(ii). For any ε > 0 there exists µ1/2 ∈ M(X × X ) with µ1 = µ1/2 ◦ π−1
1 ,

µ2 = µ1/2 ◦ π−1
2 and µ1/2(d(x1, x2) > α + ε) ≤ β + ε. Here π1, π2

are the natural projections from X × X onto X , i. e., π1(x1, x2) = x1,
π2(x1, x2) = x2.

Here Bα] denotes the closure of Bα. If furthermore X is complete, this equiv-
alence also holds for the case ε = 0.

This theorem immediately gives the following relation between the Prokh-
orov metric and the Ky Fan metric [9, 25, 27].
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Proposition 1.7. Let the assumptions of Theorem 1.6 be satisfied, and X
be complete. Then with the notation of Theorem 1.6 the following statements
are equivalent

(i). The Prokhorov distance of two measures µ1, µ2, satisfies ρp(µ1, µ2) ≤ ε.

(ii). There exists random variables ξ1 and ξ2 such that µ1 and µ2 are the
distributions of ξ1 and ξ2, respectively, and ρk(ξ1, ξ2) ≤ ε.

Thus, we always have ρp(µ1, µ2) ≤ ρk(ξ1, ξ2); for given µ1, µ2 we can find
ξ1, ξ2 and a joint distribution µ1/2 ∈M(X × X ) such that equality holds.

Proof. Let ρp(µ1, µ2) = ε. Then by Definition 1.3 (note that the set on the
right is closed)

µ1(B) ≤ µ2(B
ε]) + ε .

The theorem of Strassen now guarantees existence of µ1/2 ∈M(X ×X ) with
the property

µ1/2(d(x1, x2) > ε) ≤ ε

so ρk(π1, π2) ≤ ρp(µ1, µ2), where the projections π1 and π2 are seen as random
variables from X × X to X . The distributions of π1 and π2 are µ1 and µ2,
respectively.

For the converse implication, suppose ρk(ξ1, ξ2) = ε, and choose δ > 0.
Via Strassen’s theorem this implies

µ1(B) ≤ µ2(B
ε+δ]) + ε + δ .

To obtain an open set on the right hand side, we can estimate

µ1(B) ≤ µ2(B
ε+2δ) + ε + 2δ .

This holds for all Borel-sets B, and therefore ρp(µ1, µ2) ≤ ρk(ξ1, ξ2) + 2δ.
The estimate follows by building the infimum with respect to δ > 0.

Since the Prokhorov distance of two measures µ1 and µ2 is so closely
related to the Ky Fan distance of corresponding random variables ξ1 and
ξ2, the appearance of many convergence results remains unchanged when
the Prokhorov metric is replaced by the Ky Fan metric. For instance the
structure of the lifting result presented in [13, Thm. 2.1] remains unchanged
when ρp(·, ·) is replaced by ρk(·, ·) (see [18, Thm. 1.15]).

Let us now turn to differences between the Prokhorov metric and the Ky
Fan metric.
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As already noted, the Ky Fan distance gives information about concrete
realizations of random variables, while the Prokhorov distance only works
with the underlying distributions. To underline this difference, consider toss-
ing a fair coin, where we denote the outcome “heads” by +1 and “tails” by
−1. Now suppose that (maybe due to an assembly error) our measurement
device always observes the opposite outcome, i. e., it measures “heads” when
there is “tails” and vice versa. What is the measurement error for this ex-
periment?

• For the Ky Fan metric the error clearly is equal to 1: In 100% of the
cases we measure +1 instead of−1 and vice versa. So with probability 1
the measurement error is larger than 1 (cf. Definition 1.4).

• In contrast, for the Prokhorov metric the error is 0, i. e., the observation
seems to be noise free(!): In 50% of the cases we observe the outcome
+1, in 50% of the cases we observe the outcome −1. Although each
single measurement is wrong, in total we find that the experiment de-
scribes a binomial distribution with parameter 1

2
, which is the correct

observation.

This example indicates that results in the Ky Fan metric will typically be
suitable when the focus is on random variables. In particular, an estimate
in the Ky Fan metric gives a confidence interval for concrete realizations; if
ρk(ξ1, ξ2) ≤ ε, with probability 1 − ε the realizations ξ1(ω) and ξ2(ω) have
distance less than ε.

In contrast, convergence results in the Prokhorov metric are of interest,
when the observed data are a distribution. Consider a biological system
where the growth behavior of cells is to be analyzed (cf. [1]). While it is
possible to determine, e. g., the distribution of the cell sizes within the system
(maybe even in a time-dependent way), there may be no means to track the
behavior of only a single cell. Clearly, it is not possible to use this input
data to determine parameters of individual cells; so one cannot ask for more
than convergence of the reconstructed distribution to the correct value. The
Prokhorov metric is the right tool to measure convergence in such a situation.

1.4 Further Properties of the Prokhorov metric

In this section we mention some additional properties of the Prokhorov met-
ric. Suppose in the following that X is a vector space equipped with a metric,
and M(X ) is the set of probability measures on this space. Some strong rela-
tions hold between the space X , andM(X ) equipped with the metric ρp(·, ·);
these results were obtained by Prokhorov in [23] (cf. [22]).
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• M(X ) can be metrized as a separable metric space if and only if X is
itself a separable metric space.

• M(X ) is a Polish space (i. e., separable, metric and complete) if and
only if X is Polish.

• M(X ) is a compact metric space if and only if X is compact metric.

The last fact was used in [1] to show that a certain approximation scheme
leads to convergence in the Prokhorov metric: In the considered case an
ODE in a biological system is influenced by some real valued random vari-
able C(ω), each individual carrying a different realization of C. The goal
in [1] was now to recover the distribution of C(ω) via a time-dependent mea-
surement of the evolution of the system. Since in [1], C(ω) was confined
to some closed interval, we obtain from the above statement that also the
corresponding distributions come from a compact space, and thus, have con-
vergent subsequences in the Prokhorov metric. If the desired quantity was
no real or (finite dimensional) vector-valued random variable C, but a ran-
dom function this approach would fail, since closed bounded sets in infinite
dimensional spaces need not be compact.

2 Comparison with Other Concepts

In the following we consider various other approaches that are common when
describing convergence of random variables. This comparison is split into
qualitative and quantitative concepts. As qualitative ones we choose the two
common concepts convergence almost surely and convergence in probability ;
as quantitative ones we choose such concepts that have been used in the
theory of stochastic inverse problems (see e. g., [6, 26]).

2.1 Qualitative Concepts

Convergence almost surely: A sequence xk converges to x almost surely
(a. s.), when for almost all ω

‖xk(ω)− x(ω)‖ → 0 , (3)

i. e., except on a null set, xk(ω) converges point-wise to x(ω). Almost
sure convergence implies convergence in the Ky Fan metric; the con-
verse is true for subsequences (Propositions 2.1 and 2.2 below).
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Convergence in Probability: A sequence xk converges to x in probability,
when for all ε > 0

µ{ω ∈ Ω | ‖xk(ω)− x(ω)‖ > ε} → 0 .

Comparing this definition with (2), it can be seen easily, that this type
of convergence is equivalent to convergence in the Ky Fan metric (see
also [16]).

Relations between almost sure convergence and convergence in probability
are well-known (see e. g., [2, 3, 7, 9, 11]). Because convergence in the Ky
Fan metric is a quantitative version of convergence in probability analogous
results hold for the Ky Fan metric as well. In the following we discuss these
relations between almost sure convergence and convergence in the Ky Fan
metric. The first theorem follows immediately from the analogous result for
convergence in probability.

Proposition 2.1. Let xk → x almost surely. Then ρk(xk, x) → 0.

The converse result is not true. Nevertheless, it is well-known that conver-
gence in probability implies almost sure convergence at least of subsequences
(see e. g., [9, 11]). The next proposition gives a quantitative version of this
statement for the Ky Fan metric3.

Proposition 2.2. Let xk converge to x in the Ky Fan metric. Then for any
η > 0 and ε > 0 there exist Ωε, µ(Ωε) ≥ 1− ε, and a subsequence xkj

with∥∥xkj
(ω)− x(ω)

∥∥ ≤ (1 + η)ρk(xkj
, x) for all ω ∈ Ωε.

Furthermore there exists a subsequence that converges to x almost surely.

Proof. Set δk := (1+η)ρk(xk, x). By Definition 1.4, for given δk, there exists
a set Ωδk

with

µ (Ωδk
) ≥ 1− δk, and ω ∈ Ωδk

=⇒ ‖x(ω)− xk(ω)‖ ≤ δk .

In general we cannot deduce convergence of xk(ω) to x(ω) for ω ∈ Ωδk
and

δk → 0, since the sets Ωδk
may have empty intersection for δk → 0. Thus we

need the following construction. For arbitrary ε > 0 and δk → 0 we pick a
subsequence (δkj) with

∑∞
j=1 δkj ≤ ε, and introduce the set

Ωε :=
∞⋂

j=1

Ωδ
kj

,

3Presumably, the following result has not been explicitly derived before, since only little
attention was paid to the Ky Fan metric in the past.
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which is a subset of every Ωδ
kj

. This set has measure µ(Ωε) ≥ 1− ε since

µ

(
∞⋂

j=1

Ωδ
kj

)
= µ

(
Ω \

∞⋃
j=1

(
Ω \ Ωδ

kj

))
= 1− µ

(
∞⋃

j=1

(
Ω \ Ωδ

kj

))

≥ 1−
∞∑

j=1

µ
(
Ω \ Ωδ

kj

)
≥ 1− ε

Since Ωε is a subset of every Ωδ
kj

we have

∀ω ∈ Ωε ⊆ Ωδ
kj

:
∥∥x(ω)− xkj

(ω)
∥∥ ≤ δkj ,

which proves the first statement.
For the second statement, consider the set N on which xkj

does not
converge to x. This set is given as

N =
{
ω | ∃ε̃ > 0∀j0 ∈ N ∃j ≥ j0 :

∥∥xkj
(ω)− x(ω)

∥∥ ≥ ε̃
}

= 1−
{
ω | ∀ε̃ > 0∃j0 ∈ N ∀j ≥ j0 :

∥∥xkj
(ω)− x(ω)

∥∥ < ε̃
}

.

Similarly to Ωε above, we define the set Ωj0 as

Ωj0 :=
⋂
j≥j0

Ωδ
kj

=
{
ω | ∀j ≥ j0 :

∥∥xkj
(ω)− x(ω)

∥∥ < δkj

}
⊆
{
ω | ∀ε̃ > 0∃j0 ∈ N ∀j ≥ j0 :

∥∥xkj
(ω)− x(ω)

∥∥ < ε̃
}
.

Since the sequence xkj
is uniformly convergent to x on the set Ωj0 , we can

estimate

µ (N) = 1− µ
({

ω | ∀ε̃ > 0∃j0 ∈ N ∀j ≥ j0 :
∥∥xkj

(ω)− x(ω)
∥∥ < ε̃

})
≤ 1− µ

({
ω | ∀j ≥ j0 :

∥∥xkj
(ω)− x(ω)

∥∥ < δkj

})
= 1− µ

(⋂
j≥j0

Ωδ
kj

)

= µ

(⋃
j≥j0

Ω \ Ωδ
kj

)
≤
∑
j≥j0

δkj .

Since
∑

δkj ≤ ε, and this sum is absolutely convergent, we obtain∑
j≥j0

δkj → 0 as j0 →∞ .

Hence N is a null set; xkj
converges to x almost surely.
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2.2 Quantitative Concepts

Now we turn to quantitative concepts to measure convergence of random
variables. Two common concepts are expected values, and probability esti-
mates.

Convergence in Expectation: Here we look for bounds on the expected
value of the distance, defined as

E
(
‖xk − x‖ 2

)
:=

∫
Ω

‖xk(ω)− x(ω)‖ 2 dµ(ω) . (4)

For the case X = L2(I), we find that E (‖ · ‖2) is a (weighted) norm on
the product space L2(Ω× I).

Probability Estimates: Similarly as for the Ky Fan metric, the space Ω is
split into parts with high and low probability, the resulting estimates
have the form4

P (‖xk − x‖ ≤ ε1(p)) > 1− ε2(p) . (5)

Here ε1(p) and ε2(p) are functions of one or more parameters p. Typi-
cally, these functions are continuous.

The concept of expectation can be a too restrictive notion of convergence.
A first indication is the fact that almost sure convergence as in (3) does not
guarantee that also E (‖xk − x‖2) tends to 0; even worse, we could have that
E (‖xk − x‖2) = ∞ and remains unbounded, no matter how large k is chosen
(cf. the examples in section 3).

Therefore the second error measure can be considered more natural. As-
suming that xk converges to x almost surely, we have for any fixed ε1 that
P (‖xk − x‖ ≤ ε1) tends to 1. Vice versa, for fixed ε2 and arbitrary small
ε1 > 0 we can find k ∈ N with P (‖xk − x‖ ≤ ε1) > 1 − ε2. A drawback of
this concept is that two parameters are necessary to describe the distance;
estimates of the form (5) do not form a metric.

But fortunately, via Definition 1.4 these can be translated into estimates
in the Ky Fan metric, and via Proposition 1.7 also into the Prokhorov metric.
To do this, one has to solve the equation

ε1(p) = ε2(p)

4Depending on the context we will sometimes use the notion of probabilities instead
of measures, but of course these are only two different words for the same meaning and
P (B) ≡ µ(B).
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for p. The resulting solution gives some ε(p) = ε1(p) = ε2(p) with ρk(xk, x) ≤
ε(p). The task of solving this equation is often non-trivial, but as its outcome
we obtain a distance between xk and x in terms of a metric, which allows us
to investigate the speed of convergence.

Thus, concluding we will find that the Ky Fan metric gives

• a concept that is better suited for treating stochastic problems than
the expected value, especially when the distributions of the appearing
variables may have ‘fat tails’, i. e., when there is a higher probability for
large values to occur than for a normally distributed random variable.
In particular, the Ky Fan distance is always finite, whereas the expected
value (4) can be unbounded; pointwise convergence implies convergence
in the Ky Fan metric (cf. e. g. the constructions in the next section).

• a framework that translates estimates as in (5) to an interpretable
setup. This allows comparison of new stochastic results with the clas-
sical deterministic ones.

• a setting that contains the deterministic results as a special case.

Let us in the following make a more detailed comparison between the Ky
Fan metric and the expected value.

3 Expectation vs. Ky Fan metric

3.1 Non-Convergence of Expectation

In the following we construct a sequence xk that converges to 0 in the Ky
Fan metric, but does not converge in expectation. For this construction we
define the random variable x(ω) as

x(ω) =
C(α)

ωα
, (6)

where ω is uniformly distributed on Ω = [0, 1]. Observe that x(ω) is un-
bounded on the interval [0, 1] for α > 0; nevertheless, clearly for C(α) → 0
also x(ω) tends to 0 on (0, 1] point-wise.

We now compute the expected value of the distance of x(ω) to 0. In the
first case we look for the expectation of the absolute value of the error and
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obtain

E (|x− 0|) =

∫
Ω

C(α)

ωα
dω = C(α)

∫
Ω

ω−α dω

=

{
C(α)
1−α

α < 1

∞ α ≥ 1 .

For the second case we investigate the square of the absolute value

E
(
|x− 0|2

)
=

∫
Ω

C(α)2

ω2α
dω = C(α)2

∫
Ω

ω−2α dω

=

{
C(α)2

1−2α
α < 1

2

∞ α ≥ 1
2
.

Observe that, for α sufficiently large, in both cases the expected value may
be infinite, although x(ω) tends to 0 pointwise.

Now we compute the Ky Fan distance, therefore we have to find the
smallest t such that

P (|x(ω)− 0| > t) < t.

Inserting (6) we have for the term on the left

P
(

C(α)

ωα
> t

)
= P

(
1

ω
>

(
t

C(α)

)1/α
)

=

(
C(α)

t

)1/α

,

which further leads to the relation(
C(α)

t

)1/α

= t .

Solving this equation for t we obtain for the Ky Fan distance the expression

ρk(x, 0) = C(α)
1

1+α .

Now define a sequence of random variables xk(ω) = C(αk)
ωαk

with some αk ↗ 1
and C(αk) := 1−αk. Then we obtain that in the Ky Fan metric this sequence
tends to 0, indeed

ρk(xk, 0) = (1− αk)
1

1+αk ≤ (1− αk)
1
2 → 0 . (7)

So the random variable xk converges to 0 in the Ky Fan metric, nevertheless
the expectation does not tend to 0, it even remains constant

E (|xk − 0|) =
C(αk)

1− αk

= 1 6→ 0 . (8)
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The choice αk ↗ 1
2

and C(αk) := 1 − 2αk yields the analogous result for
E (|xk − 0|2). Observe that for the latter choice E (|xk − 0|2) remains con-
stant while E (|xk − 0|) tends to 0. Furthermore observe that C(αk) :=
(1 − αk)

1/2 even leads to divergence in (8), while maintaining convergence
in (7).

Clearly, the presented results arise from the unboundedness of the in-
volved random variables. If the distance of the random variables ξ1 and ξ2 is
bounded a-priori, we obtain from (2) (with arbitrary ε > ρk(ξ1, ξ2))

E
(
‖ξ1 − ξ2‖ 2

)
:=

∫
Ω

‖ξ1(ω)− ξ2(ω)‖ 2 dµ(ω)

≤ (1− ε)ε2 + ε sup
ω∈Ω

‖ξ1(ω)− ξ2(ω)‖ 2 ≤ Cε .

So for bounded random variables, convergence in the Ky Fan metric implies
convergence of the expected value.

3.2 Convergence via Markov’s Inequality

We have seen that a sequence may converge in the Ky Fan metric, with-
out the need to converge in expectation. On the other hand, comparing the
representation (4) with (2) it seems clear that whenever we observe conver-
gence in expectation, also the Ky Fan distance will tend to 0. But can this
statement be quantified?

For “constant” random variables, i. e., the deterministic case, it turns
out that the convergence rate in the Ky Fan metric is the same as the rate
observed for the expected value. Furthermore, for the examples in this note
we find that the convergence rate in the Ky Fan metric is always slower, than
the rate observed for the expected value (if the expected value converges).5

A tool to quantify these statements is Markov’s inequality ([21], cf. [10]).

Theorem 3.1 (Markov). For any non-negative random variable X and c > 0
we have the estimate

P (X ≥ c) ≤ E (X)

c
. (9)

From this theorem we obtain, by setting X = ‖x‖s with s > 0

P (‖x‖ ≥ c) = P (‖x‖ s ≥ cs) ≤ E (‖x‖s)

cs
. (10)

Using this inequality, we can determine bounds on the Ky Fan distance in
terms of the expected value as follows.

5see also the results in [18, Ch. 5.6]
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Theorem 3.2. Let µ1 and µ2 be the distributions of two random variables
ξ1 and ξ2. The Ky Fan and the Prokhorov distance of the distributions can
be bounded via the expected value of the distance of the random variables as
follows

ρp(µ1, µ2) ≤ ρk(ξ1, ξ2) ≤
√

E (‖ξ1 − ξ2‖) .

In particular, for arbitrary s > 0 (with possibly infinite right hand side)

ρp(µ1, µ2) ≤ ρk(ξ1, ξ2) ≤ E (‖ξ1 − ξ2‖ s)1/(s+1) . (11)

Proof. Due to (10) we have

P (‖ξ1 − ξ2‖ ≥ c) ≤ E (‖ξ1 − ξ2‖s)

cs
.

Solving the equation c = E (‖ξ1 − ξ2‖s)/cs concludes the proof.

Remark 3.3. The bound in (11) leads to the following expectations:

• If ξ1, ξ2 are deterministic quantities, the right hand side of (11) con-
verges to ‖ξ1 − ξ2‖ for s → ∞, and we obtain that ρp(µ1, µ2) and
ρk(ξ1, ξ2) converge at least as fast as the expected value (As can be
seen from (1) and (2) here even ρp(µ1, µ2) = ρk(ξ1, ξ2) = ‖ξ1 − ξ2‖.).

• If the probability for large values of ξ1, ξ2 decays exponentially fast (as
it is for instance the case for Gaussian random variables), all moments
are finite, but they will grow with s. The relation from ρp(µ1, µ2) and
ρk(ξ1, ξ2) to E (‖ξ1 − ξ2‖) becomes logarithmic (cf. [18, Ch. 6.2]).

• Finally, if not infinitely many moments are finite, but only moments up
to some s0 < ∞, the speeds in the two concepts can show significant
differences (cf. the previous section and [18, Ch. 5]). This is for instance
the case when ξ1, ξ2 are decaying polynomially, or come from a Lévy-
distribution ([4, 24]).

In this work, we investigated properties of the Prokhorov and the Ky
Fan metric, and pointed out connections and differences to other measures of
convergence. For the Prokhorov metric, convergence (with rates) of Tikhonov
regularized solutions of stochastic linear ill-posed problems was investigated
in [13]. In [18] as well as in some forthcoming papers, these results of [13]
have been extended to nonlinear problems, to more general regularization
methods, and to the Ky Fan metric.

Finally, it should be mentioned that these concepts will also allow to ob-
tain quantitative convergence results for estimators obtained by the Bayesian
approach of inverse problems (see [20]).
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