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Abstract

In this paper we deal with the problem of deciding whether the local shape of
a rational algebraic plane curve, around a non-isolated point, is preserved when
applying an offsetting process. We provide sufficient conditions for checking the
invariance of the local shape when offsetting. Moreover, we give algorithms for
testing it. Also, we characterize the situations where the local shape, around
every non-isolated point on the rational curve, is preserved in the offset for every
distance in a real interval of the type (0, α) or (γ,∞). Moreover, we derive
algorithms for deciding the existence of these intervals and for determining them
when they exist.

1 Introduction

Informally speaking, an offset to an irreducible algebraic plane curve C is a curve
“parallel” to C at a fixed distance d (see e.g. (2) for a formal definition). In fact,
Leibnitz already dealt with this type of geometric object calling them parallel curves
(see (9)). Offsets to curves and surfaces play an important role in many practical
applications, as for instance in the frame of C.A.G.D. (see e.g. (8)). However, the
main difficulty when dealing with offsets is that the computations involved are usually
very hard, even when working with quite simple curves. In particular, the equation of

∗Both authors supported by the Spanish “ Ministerio de Educación y Ciencia” under the Project
MTM2005-08690-C02-01 and by the “Dirección General de Universidades de la Consejeŕıa de Edu-
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1



an offset is generally much more complicated than the original one; for instance, the
defining polynomial of the offset to the Folium of Descartes x3 + y3 − 3xy = 0 has
degree 14 and 74 terms. So, even in case that one is able to obtain this equation, very
often, it is almost impossible to work with it. For this reason, a great deal of work
has been done to derive aspects of the offset just from the original curve, i.e. without
making use of the offset equation. Thus, problems like the determination of the genus
of the offset (see (3)), parametrizing offsets (see (2),(10),(11),(12),(17)), or computing
the degree of an offset (see (14)), etc. have already been addressed.

In this paper, we are interested in deriving some topological aspects of the offset
just from the starting curve. More precisely, though the informal description of an
offset as a parallel curve may lead to think that offsetting processes always yield curves
with the topology of the original curve, it is well-known (see e.g. (5), (6)) that this
is not necessarily true, since offsetting process may introduce significant topological
modifications. The simplest example that one may provide for this behavior is the
parabola y−x2 = 0 (see Figure 1). Here, one may see that for d ≤ 1/2 the topology of
the offsets is good (in the sense that one is able to distinguish two connected components
each one homeomorphic to the initial curve). However, for d > 1/2 this good behavior
does not happen anymore.

Figure 1: Topology Types of the Offsets to the parabola y = x2

In general, if the implicit equation of the family of offset curves is known, the
different topology types present in the offset family can be computed by applying the
results in (1); the above example on the parabola has been derived using the results
in (1). However, these results not only require to previously compute the equation of
the offset family, but also to make resultant computations with it. As a consequence,
in practice, the computations are heavy.

Thus, here we will focus not on global aspects of the topology of offsets, but on local
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questions. In this sense, one may observe (see e.g. (5)) that the “bad” behavior ap-
pearing in the offset to the parabola for d > 1/2 is in fact based on a local phenomenon,
namely that the offsetting process transforms a smooth point of the parabola into a
cusp of the offset. Clearly, from the point of view of the applications it is desirable
that the offsetting process does not provide this kind of “local” modifications, so that
every arc of the original curve is transformed into an arc of the offset with the same
shape. This is exactly the problem that we study here.

Similar questions have already been addressed in (5) and (6), for the case when the
original curve is defined by means of a regular parametrization. However, the present
work, though inspired by these mentioned papers, uses a different approach and reaches
more general results. More precisely, here we first define formally the notion of “shape”
around a point by means of the concept of local shape (see Definition 4 in Section 3).
Then, we analyze how the local shape is affected by the offsetting process (see Section
5). Finally, we apply the results to the case of rational algebraic curves, not necessarily
regularly-parametrized (see Section 6 and Section 7). In this sense, we give algorithms
(see Section 6) to check whether the offsetting process, for a given distance, preserves
the shape around all the points of the original curve. Also, we address the existence
of intervals I such that for any d ∈ I the offsetting process behaves properly around
every point, from a local point of view (see Section 7). Furthermore, although most of
the results we present here are developed for rational curves, the framework that we
provide seems to be also applicable to non-rational cases. This is currently ongoing
work.

This work can be seen as a natural extension of the problem of analyzing globally
the topology of offset curves by means of the results appearing in the joint paper of
the authors with Josef Schicho, member of the SFB (see (1)).

Throughout this paper, we assume that C is a real irreducible algebraic plane curve.
In some of our theoretical reasonings we need to work on algebraically close fields, hence
we consider the real curve C immersed in C2. In addition, we assume that C is neither
a line nor a circle; note that the results we present are straightforward for lines and
circles. Lines are excluded because of Definition 2, and circles to ensure that the offset
does not degenerate (see Subsection 2.1.), as well as in the proofs of Theorems 20 and
21. Therefore, C has infinitely many real points and it is defined by an irreducible
polynomial in R[x, y] (see (18)). We also assume that the distances considered in the
offsetting processes are real. Moreover, in Sections 6 and 7 we assume that C is rational.
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2 Preliminary notions and results

In this section we briefly recall some preliminary notions and results on offsets curves,
as well as on normal parametrizations and places of curves. Also, we fix the notation
to be used throughout the paper.

2.1 Offset Curves

We recall some basic facts and notions on offsets seen from the algebraic geometry
perspective (see (2) for further details). The offset curve to C at distance d, that we
denote as Od(C), is “essentially” the envelope of the system of circles centered at the
points of C with fixed radius d. More formally, Od(C) is defined as follows. Let C0 ⊂ C
be the set of all regular points of C having nonzero isotropic normal vectors to C, and
let Ad(C0) ⊂ C2 be the constructible set of all the intersection points of the circles of
radius d ∈ C centered at each point P ∈ C0 and the normal line to C at P. Then, Od(C)
is the the Zariski closure in C2 of Ad(C0).

In our case, since C is not a circle, the offset does not degenerate (see Corollary 1 in
(16)), i.e. Od(C) is an algebraic curve with at most two components being also algebraic
curves. Moreover, since C is real, C0 is not empty and every component of Od(C) is a
real curve, for real values of d (see Proposition 1 in (16)). Indeed, in this case, it holds
that C0 is the set of all regular points of C. Now, let P ∈ C be regular, and let N (P ) be
a unitary vector normal to C at P . P generates two points P+d, P−d ∈ Od(C), namely
P+d = P + d · N (P ), and P−d = P − d · N (P ). We call the external offset of C to the
set of all the points of Od(C) which are of the form P+d, for some point P ∈ C0. The
internal offset of C is similarly introduced. We denote the external offset by O+d(C),
and the internal offset by O−d(C). Note that, in general, O+d(C) and O−d(C) are not
algebraic curves, though the algebraic closure of its union, which is Od(C), obviously
is.

2.2 Normal Parametrizations

In this subsection, we recall the notion of normal parametrizations and we relate them
to the existence of isolated points. For further details we refer to (15). Therefore,
throughout this subsection we assume that the real irreducible algebraic affine curve C
we work with, is rational.

Let ϕ(t) be a rational parametrization of C over C. Then we say that ϕ(t) is C–
normal if ϕ(C) = C; i.e. if for every P ∈ C there exists t0 ∈ C such that ϕ(t0) = P .
Moreover, we say that C is C-normal, or that it can be C-normally parametrized if there
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exists a C-normal rational parametrization of C. Similarly, if C is a real curve (which
is, by assumption, our case) and ϕ(t) is real, then we say that ϕ(t) is R-normal if
ϕ(R) = C ∩R2, i.e. if every real point of C is the image of a real value of the parameter
by means of ϕ. Analogously, one introduces the notion of R-normal or R-normally
parametrized curve.

The main difference between C-normality and R-normality is that every rational
curve over C is C-normal, but there exist real rational curves that are not R-normal
(see (15)). This phenomenon is related to the existence of isolated points. This claim
is intuitively described in (15). In the following, we prove it formally.

Proposition 1 Let C be real and rational. The following statements are equivalent:

(i) C is not R-normal.

(ii) C has isolated singularities.

Proof: Let us see that (ii) implies (i). Let P ∈ C be isolated, and let us assume
that there exists an R-normal real rational parametrization ϕ(t) = (u(t), v(t)) of C.
Then, there exists t0 ∈ R such that ϕ(t0) = P . Since u(t), v(t) are defined at t0, and
they are real rational functions, there exists ε > 0 such that ϕ(t) is continuous in the
interval Iε = (t0− ε, t0 + ε). Therefore, ϕ(Iε) is connected. Furthermore, since u(t), v(t)
are rational functions, not both constant, one has that ϕ(Iε) cannot degenerate into
a point, i.e. ϕ(Iε) consists of infinitely many points of C. Then, since P ∈ ϕ(Iε), we
deduce that P is not an isolated point of C, which is a contradiction. Hence C is not
R-normal.
Let us see that (i) implies (ii). Since C is not R-normal, by Corollary 7 and Definition
7 in (15), for every real proper rational parametrization ϕ(t) of C there exists a non-
empty finite set Eϕ of points in C ∩ R2 that are generated only by parameter values
in C \ R, and such that limt→±∞ ϕ(t) 6= P where P ∈ Eϕ. Let ϕ(t) = (u(t), v(t)) be
a real proper rational parametrization of C (observe that, by (13), ϕ(t) always exists)
and let P ∈ Eϕ. Let us see that P is isolated. For this purpose, we assume that P
is not isolated. Now, let Ii = (ai, ai+1) for i = 0, . . . , r, where a0 = −∞, ar+1 = ∞,
and {a1, . . . , ar} are the real roots of the least common multiple of the denominators
in ϕ(t). Then, there exists at least one real branch of C passing through P , and hence
there exists a sequence {Qn}n∈N of real points on this branch such that limn→∞ Qn = P .
Moreover, since Card((C∩R2)\ϕ(R)) < ∞, and since for every Ii ϕ(Ii) is connected, we
may assume w.l.o.g. that all the points in the sequence are generated by real parameter
values and that all these parameter values belong to the same interval Ii. Let us say
that tn ∈ Ii and ϕ(tn) = Qn. We distinguish two cases:

(i) If i ∈ {1, . . . , r − 1} then {tn}n∈N is bounded, and therefore there exists a con-
vergent subsequence of {tn}n∈N. Moreover, since the rational map induced by
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ϕ(t) from R on C is finite, we may assume w.l.o.g. that {tn}n∈N is indeed con-
vergent; say to α ∈ [ai, ai+1]. However, if α ∈ Ii then ϕ(α) = limt→α ϕ(t) =
limn→∞ ϕ(tn) = limn→∞ Qn = P , which is impossible because P is not reach-
able by ϕ with a real parameter value. Similarly, if α ∈ {ai, ai+1} one reaches a
contradiction because in this case limt→α ϕ(t) 6∈ R2.

(ii) If i ∈ {0, r}, say i = r and similarly for i = 0, then {tn}n∈N is either bounded
or not. If it is bounded reasoning as in (i) one gets a contradiction, and if it is
not bounded one may take a subsequence of {tn}n∈N convergent to +∞, and this
also yields to a contradiction because limt→∞ ϕ(t) 6= P .

In (15) it is proved that, in case that C is not R-normal, there are only finitely many
real points of C that are not reached by any real value of the parameter. Moreover,
these points can be algorithmically computed. We will use this fact in subsequent
sections.

2.3 Places of a Curve

In this subsection we recall some basic fact on places. For a complete treatment on
places see (19). For this purpose, let C[[h]] be the domain of formal power series over
C in the variable h; similarly for R[[h]]. Also, if x(h) = arh

r + ar+1h
r+1 + · · · ∈ C[[h]],

where ar 6= 0, we denote by ord(x(h)) the order of x(h), i.e. ord(x(h)) = r.
A place P(h) of C is an equivalence class of irreducible local parametrizations of C

around a point P ∈ C, which is called the center of the place. In the sequel, by an abuse
of notation, we write P(h) = (x(h), y(h)) to denote that (x(h), y(h)) is a representative
of P(h). The order of P(h) is defined as the minimum of the orders at P(h) of all the
lines passing through the center of the place. In (19), it is proved that P(h) can be
written as (x(h), y(h)) where x(h), y(h) ∈ C[[h]], and

x(h) = α0 + αr1h
r1 + αr2h

r2 + · · · , y(h) = β0 + βs1h
s1 + βs2h

s2 + · · ·

with 0 < r1 < r2 < · · · , 0 < s1 < s2 < · · · , and (x(0), y(0)) being the center of the
place. Hence, ord(P(h)) = min{r1, s1}. Also, we denote r1 by ordx(P(h)) and s1 by
ordy(P(h)). Note that ordx(P(h)) = ord(x(h)− α0) and ordy(P(h)) = ord(y(h)− β0).
Moreover, we say that P(h) is real if there exists a representative of the class where
all the coefficients are real. In the sequel, we always work with real places. It is well
known that any point of C is the center of at least one complex place. Furthermore,
any non-isolated real point of C is the center of at least one real place.
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Furthermore, given a place P(h) = (x(h), y(h)) we denote by x(k)(h) the k-th
derivative of x(h) w.r.t. h, and similarly for y(k)(h). Also, we use the notation P(k)(h) =
(x(k)(h), x(k)(h)).

3 Local shape of a place

In order to study how the offsetting process locally affects to the shape of Od(C)
w.r.t. the shape of C, we introduce in this section the notion of local shape of a place.
Afterwards, the local behavior of C around a point P will be described by putting
together the information provided by the local shape of all the places that are centered
at the point P . We start with the following definition.

Definition 2 Let P(h) be a real place of C. The signature of P(h) is defined as a
pair (p, q) where p is the first non-zero natural number such that P(p)(0) 6= (0, 0), and
q > p is the first natural number such that P(p)(0),P(q)(0) are linearly independent.
We denote by sign(P(h)) the signature of P(h).

Remark 1 We observe that:

(1) Since C is not a line, the natural numbers p, q in Definition 2 always exist. More-
over, using well-known properties of places (see (19)), one can deduce that the
signature of a place is independent of the representative.

(2) If (p, q) = sign(P(h)) then p = ord(P(h)). Moreover, if p = ordx(P(h)) and
ordx(P(h)) < ordy(P(h)) then q = ordy(P(h)). Similarly, if p = ordy(P(h)) and
ordy(P(h)) < ordx(P(h)) then q = ordx(P(h)).

(3) If sign(P(h)) = (1, q) then P(h) is regular or linear (compare to Section 5.3. in
(19)) Otherwise we will say that the place is singular.

The next proposition states the existence of a particular representative of the place
that will be used in our theoretical reasonings.

Proposition 3 Let P be a non-isolated real point of C. Then, in a suitable coordinate
system, P is the center of a real place P(h) = (x(h), y(h)) of C of the form:

x(h) = αph
p, y(h) = βqh

q + βq+1h
q+1 + · · ·

where (p, q) = sign(P(h)), αi, βi ∈ R, and αp · βq 6= 0.
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Proof: Since P is real and non-isolated, it is the center of a real place of C, say P(h).
Applying if necessary a translation, we can assume that P = (0, 0). Therefore, P(h)
can be written as P(h) = (x̄(h), ȳ(h)), where

x̄(h) = ᾱn1h
n1 + ᾱn1+1h

n1+1 + · · · , ȳ(h) = β̄n2h
n2 + β̄n2+1h

n2+1 + · · ·
with ᾱi, β̄j ∈ R, and ᾱn1 β̄n2 6= 0. Now, since p = ord(P(h)), it is either n1 or n2. We
assume w.l.o.g. that p = n1, otherwise one may interchange the axes. In this situation,
one has that n2 ≥ n1. Let us see that we can also assume w.l.o.g. that n2 > n1.
Indeed, if n2 = n1, we apply the orthogonal linear change of coordinates

X =
ᾱn1√

ᾱ2
n1

+ β̄2
n2

x +
β̄n2√

ᾱ2
n1

+ β̄2
n2

y, Y =
β̄n2√

ᾱ2
n1

+ β̄2
n2

x− ᾱn1√
ᾱ2

n1
+ β̄2

n2

y,

so the resulting form of P(h), after this change, is P(h) = (x̃(h), ỹ(h)) where

x̃(h) = α̃n1h
n1 + α̃n1+1h

n1+1 + · · · , ỹ(h) = β̃n∗2h
n∗2 + β̃n∗2+1h

n∗2+1 + · · ·

with α̃i, β̃j ∈ R, α̃n1 β̃n∗2 6= 0 and n∗2 > n1. Thus, we may assume that n2 > n1, and
therefore (p, q) = (n1, n2) Finally, applying a change of parameter (see the proof of
Theorem 2.2. in page 95 of (19)), one gets the result.

Remark 2 Observe that from the proof of the proposition, one gets that in order to set
the place into the desired form, one may only need to apply translations and orthogonal
transformations. This fact is crucial because offsets behave properly w.r.t. this type of
transformations (see (16)), i.e. the offset of the transformed curve is the transformed
of the offset.

Now, based on the notion of signature, we describe the shape of C in the neighbor-
hood of a given real point P ∈ C. First of all, we note that, since P may be the center
of several different real places of C, each of these places must be analyzed. For this
purpose, we proceed as in Differential Geometry of planar curves. There, one analyzes
the local behavior of a parametric curve around a point by considering the terms of
lowest order in the Taylor’s expansion, around the point, of the parametric equations
defining the curve. Thus, in order to analyze the local behavior of a place P(h) of C
around its center P , we can proceed in the same way. In this sense, we observe that
in our case the term of lowest order of x(h) is αph

p, while the term of lowest order of
y(h) is βqh

q (see Proposition 3). Then, we have four different possibilities depending
on whether p, q are even or odd. We formalize this in the following definition. Finally,
the local behavior of C around a point is described by collecting all the information
corresponding to the places that are centered at the point.
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Definition 4 We say that a real place P(h) of signature (p, q), centered at P ∈
C, has local shape (I), (II), (III) or (IV), according to the following criterion:

(I): If both p, q are even. (II): If p is odd, and q is even.
(III): If p is even, and q is odd. (IV): If both p, q are odd.

In Figure 2 one can see the shape corresponding to each local shape up to rotations.
In each case, the center of the place is the intersection point of the two dotted lines.
Furthermore, in all cases the horizontal dotted line is tangent to C in the direction
of P(p)(0). Observe that (I) and (III) correspond to cusps of C. Moreover, in (I) the
curve C is not crossed by the tangent, while in (III) it is. Also, in (II), one has a
local maximum or minimum in a reference system whose ox-axis is parallel to P(p)(0).
Finally, in (IV) a flex point is reached. We also note that if P(h) is regular, then p = 1,
and therefore the only possibilities for the local shape of P(h) are (II) or (IV).

Figure 2: Local shapes

4 Offsetting real places

In this section we see how the offsetting processes can be generalized to real places;
a similar reasoning can be done for complex places. In this sense, if P(h) is a real
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place of C, we see that it gives rise to two real places P+d(h) and P−d(h) of Od(C). If
the center of P(h), P , is a regular point (i.e. if P ∈ C0, recall the notation C0 from
Subsection 2.1.), the places P+d(h) and P−d(h) are centered at the points P+d and P−d,
respectively, which are generated in the offset by the point P . If P is singular, then one
may consider a sequence {Pn}n∈N of regular real points on the branch defined by P(h)
and converging to P , and then the centers of the places P+d(h) and P−d(h) are the
limits of the corresponding sequences of points {P−d,n}n∈N and {P−d,n}n∈N generated
by {Pn}n∈N on the external and internal of offset, respectively.

For this purpose, we need to work with units and square roots of formal power
series. We briefly recall these notions. Units in R[[h]] are characterized as those formal
power series of order zero. Moreover, if φ(h) = a0 + a1h + a2h

2 + · · · ∈ R[[h]] is a unit,
then by performing elementary calculations one gets that its inverse is

1

φ(h)
=

1

a0

− ar

a2
0

hr +O(hr+1)

where r = ord(φ(h)−a0). On the other hand, if φ(h) ∈ R[[h]], we say that ψ(h) ∈ R[[h]]
is a square-root of φ(h) if it holds that ψ(h)2 = φ(h). As in the case of real numbers,
one may check that if φ(h) is not identically zero, and it has square-roots then there
exist two square-roots and they differ in the sign. We will denote them as ±

√
φ(h).

Indeed, one can prove that φ(h) has square-roots if ord(φ(h)) is even and the coefficient
of hord(φ) is positive. More precisely, if φ(h) = a0 + a1h + a2h

2 + · · · ∈ R[[h]] has order
zero, then φ(h) has an square-root iff a0 > 0. Furthermore if a0 > 0, by performing
elementary calculations, then φ(h) has two square-roots, maybe equal, namely:

±√a0 +
ar

2 · ±√a0

hr +O(hr+1),

where r = ord(φ(h)−a0). In particular, we observe that the square-roots of a zero-order
formal power series φ(h), if they exist, are units of R[[h]], and

± 1√
φ(h)

=
1

±√a0

− ar

±2a
3/2
0

hr +O(hr+1).

More generally, if φ(h) has even order, say 2n, then it can be written as φ(h) =
h2nφ∗(h), where ord(φ∗(h)) = 0. Thus, in this case, φ(h) has an square-root iff φ∗(h)
does have, and applying the above remarks to φ∗(h) one gets the square-roots of φ(h)
as ±hn

√
φ∗(h).

Now, let us see how to offset the real place P(h) = (x(h), y(h)), centered at P ∈ C.
We assume w.l.o.g. that P(h) is expressed as in Proposition 3. This implies that
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P is the origin. Let x(h) = αph
p and y(h) = βqh

q + βq+1h
q+1 + · · · . We introduce

the power series φ̄(h) = x(1)(h)2 + y(1)(h)2 (recall from Subsection 2.3. the notation
P(k)(h) = (x(k)(h), x(k)(h)) for the derivatives of the place P(h)). Note that, since
x(1)(h), y(1)(h) ∈ R[[h]], and x(1)(h), y(1)(h) are not identically zero, then φ̄(h) is not
identically zero. Then, we consider

P±d(h) = P(h)± d√
φ̄(h)

(−y(1)(h), x(1)(h)).

Then

±
√

φ̄(h) = ±hp−1
√

φ(h)

where φ(h) := p2α2
p + q2β2

q · h2(q−p) +O(h2(q−p)+1); note that p2α2
p > 0. Moreover,

1

±
√

φ(h)
=

1

±pαp

− q2β2
q

±2p3α3
p

· h2(q−p) + · · · ∈ R[[h]]

Thus, one gets that:

P±d(h) = (αph
p ∓ d(

qβq

pαp

hq−p + · · · ), βqh
q ± dpαp(

1

pαp

− q2β2
q

2p3α3
p

· h2(q−p) + · · · )).

Note that, since p > 0 and q > p, then P+d(h) and P−d(h) are centered at the points
P+d := (0, d) and P−d := (0,−d), respectively. Moreover, because of the construction,
P+d(h) and P−d(h) are places of Od(C), clearly real. Furthermore, taking into account
the convergence properties of analytic functions, there exists an Euclidean neighbor-
hood E of 0 such that for all h0 ∈ E, but finitely many exceptions, P0 := P(h0) ∈ C0

and P±d(h0) are the two points generated by P0 in Od(C). This offsetting construction
of places provides the following relationship between places on C and Od(C).

Theorem 5 Every real place of C generates two real places of Od(C), and every real
place of Od(C) is generated by at least one real place of C.
Proof: We have already proved the first part. Let us prove that every real place Q(h)
of Od(C) comes from at least one real place of C. LetM be the real component of Od(C)
where the branch defined by Q(h) belongs to. We consider Od(M). By Corollary 6
in (16), one has that C is a component of Od(M). Let Q±d(h) be the two real places
generated by Q(h) on Od(M). Then, one of them is a place of C, and it is the one
generating Q(h).
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5 Local shape analysis of places on the offset

In this section we analyze how the offsetting process affects to the local shape of a real
place P(h) of C (see Theorem 7). Moreover, we study the cases when this local shape
is preserved (see Corollaries 8 and 9); we say that the local shape of P(h) is preserved
for d if the local shapes of P(h), P±d(h) are the same.

For this purpose, we consider P(h) expressed as P(h) = (αph
p, βqh

q + · · · ), where
sign(P(h)) = (p, q) (see Proposition 3). Now, we analyze the local shape by studying
sign(P±d(h)). From the subsection before, we observe that ord(P±d(h)) = min{p, q −
p} = ordx(P±d(h)), and that ordx(P±d(h)) < min{q, 2(q − p)} = ordy(P±d(h)). There-
fore, by Remark 1, one has that sign(P±d(h)) = (ordx(P±d(h)), ordy(P±d(h))). Thus,
different cases have to be considered depending on the value of q− 2p. Furthermore, if
q − 2p = 0 it must also be considered whether αp ∓ d · qβq

pαp
vanishes or not. This last

distinction motivates the following definition.

Definition 6 Let P(h) = (αph
p, βqh

q+· · · ) be a real place of C and sign(P(h)) = (p, q).
We say that d0 ∈ R is an (offsetting) critical distance for P(h) if

q − 2p = 0 and d0 =

∣∣∣∣
α2

p

2βq

∣∣∣∣ .

Furthermore, we say that d0 is an (offsetting) critical distance for C if there exists a real
place P(h) of C such that d0 is critical for P(h).

Now, we can state the main result of the section.

Theorem 7 Let P(h) = (αph
p, βqh

q + · · · ) be a real place of C and sign(P(h)) = (p, q).
It holds that

(1) If q − 2p > 0, ∀ d ∈ R∗ the local shapes of P(h), P+d(h), P−d(h) are the same.

(2) If q− 2p = 0, ∀ d ∈ R∗ \ { α2
p

2βq
} the local shapes of P(h) and P+d(h) are the same.

Similarly for d ∈ R∗ \ {−α2
p

2βq
} and P(h), P−d(h).

(3) If q − 2p < 0, ∀ d ∈ R∗ the local shapes of P±d(h) follow this scheme:

p is even p is odd

q is even P±d(h) has (I)-shape P±d(h) has (II)-shape

q is odd P±d(h) has (II)-shape P±d(h) has (I)-shape

12



Proof: We prove the theorem for P+d(h). The proof for P−d(h) is similar. Let
(p̃, q̃) = sign(P+d(h)). Let us prove (1). Since q − 2p > 0, then p < q − p and
q < 2(q − p). Therefore, ordx(P+d(h)) = p, and ordy(P+d(h)) = q. Moreover, since
p < q, one has that p = ord(P+d(h)) = ordx(P+d(h)) < ordy(P+d(h)) and therefore
(p̃, q̃) = (p, q). Now, let us see (2). Since q = 2p, then q − p = p and q = 2(q − p), and
hence:

P+d(h) = (αp(1− 2d
βq

α2
p

)hp + · · · , d + βq(1− 2d
βq

α2
p

)hq + · · · ).

Therefore, since αp 6= 0, βq 6= 0 and d 6= α2
p/(2βq), one has that ordx(P+d(h)) =

p < ordy(P+d(h)). Thus, reasoning as in the previous case one also concludes that
(p̃, q̃) = (p, q). Finally, let us see (3). Since q − 2p < 0, it holds that q − p < p
and 2(q − p) < q, so ordx(P+d(h)) = q − p < 2(q − p) = ordy(P+d(h)). Therefore
(p̃, q̃) = (q − p, 2(q − p)). From this fact, and taking into account Definition 4, the
statement follows directly.

The next corollary follows from Theorem 7.
Corollary 8 Let P(h) be a real place of C of signature (p, q), and let d ∈ R∗. If one
of the following assertions holds:

(1) q − 2p > 0,

(2) q − 2p = 0 and d is not critical for P(h),

(3) q − 2p < 0 and q is even,

the local shape of P(h) is preserved for d. Furthermore, if q− 2p < 0 and q is odd, the
local shape of P(h) is not preserved for d.

Furthermore, if P(h), since q > p = 1, it cannot happen that q−2p < 0. Therefore,
we deduce the following corollary from Theorem 7.
Corollary 9 Let P(h) be a regular real place of C. Then, the local shape of P(h) is
preserved for all d ∈ R∗ except, perhaps, if sign(P(h)) = (1, 2) and d is critical.

Observe that, from an algorithmic point of view, given a particular place P(h) of
C and a non-critical distance d, one can apply Theorem 7 for checking whether its
local shape is preserved or not. Note that there exist algorithmic methods to compute
places of curves (see (19) for a theoretical description, and (7) for a software to compute
them). Moreover, in this section we have explicitly described how to lift places from the
original curve to the offset. In case that we are interested in examining the problem
for a critical distance, more terms of P±d(h) need to be computed. In addition, in
the following section (see Lemma 17) we present further results for analyzing the local
shape of P+d(h) or P−d(h) when d is critical.

The preceding ideas and results are illustrated in the following examples.
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Example 1 We consider the curve of equation −x5 + y2 − 2yx3 + x6 = 0. P(h) =
(h2, h5 + h6) is a place of the curve centered at (0, 0). sign(P(h)) = (2, 5). Therefore,
the local shape of P(h) is (III). Now since q − 2p = 1 > 0, by Theorem 7, the local
shape of P(h) is preserved for every distance.

Example 2 We consider the ellipse of equation x2 + (y+2)2

4
= 1, and the place P(h) =

(h,−h2 − 1
4
h4 − 1

8
h6 + · · · ) centered at (0, 0). sign(P(h)) = (1, 2), hence it has local

shape (II). Moreover, q − 2p = 0 and the critical distance is 1
2
. Thus, from Corollary

8, we have that whenever d 6= 1
2
, the local shape of P(h) is preserved. For d = 1

2
, we

apply the formulas in this section to get that P+ 1
2
(h) = (2h − 3

2
h3 + · · · , 1

2
− 2h2 +

· · · ),P− 1
2
(h) = (3

2
h3 + 5

8
h5 + · · · ,−1

2
− 1

4
h4 + · · · ). Hence sign(P+ 1

2
(h)) = (1, 2),

and sign(P− 1
2
(h)) = (3, 4). Therefore, the local shape is also preserved for the critical

distance.

Example 3 Consider the curve of equation y3 − x2 = 0. P(h) = (h2, h3) is a place
of the curve centered at (0, 0). Since sign(P(h)) = (2, 3) its local shape is (III). Now,
since q−2p = −1 < 0, from Theorem 7 it follows that the local shape of P+d(h),P−d(h)
is (II) for every distance. Thus, the local shape of P(h) is never preserved. Indeed,
P+d(h) = (−3

2
dh+h2+· · · , d− 9

8
dh2+· · · ), P−d(h) = (3

2
dh+h2+· · · ,−d+ 9

8
dh2+· · · ).

Thus, for d 6= 0, sign(P+d(h)) = sign(P−d(h)) = (1, 2).

Example 4 Consider the curve of equation x5−y2+2yx2−x4 = 0. P(h) = (h2, h4+h5)
is a place of the curve centered at (0, 0). sign(P(h)) = (2, 4), hence q− 2p = 0 and the
critical distance is 1

2
. Thus, from Theorem 7 we deduce that if d 6= 1

2
, the local shape of

P(h) is preserved. Now, let analyze the local shape for the critical distance. We apply
the formulas in this section to get that P+ 1

2
(h) = (−5

4
h3 + 2h6 + · · · , 1

2
− 3

2
h5 + · · · )

and P− 1
2
(h) = (2h2 + 5

4
h3 + · · · ,−1

2
+ 2h4 + · · · ). Hence, the local shape of P(h) and

P− 1
2
(h) is (I), but the local shape of P+ 1

2
(h) is (IV).

6 Good local behavior of a rational curve.

In the previous section we have studied the problem of determining whether the offset-
ting process, corresponding to a given distance d, preserves the local shape of a given
real place P(h) of C. Now, we are interested in detecting whether this property holds
for all the real places of C, when a real distance is fixed. This motivates the following
definition.

Definition 10 Let d0 ∈ R∗. We say that Od0(C) has a good local behavior if for every
real place P(h) of C the local shapes of P(h) and P±d0(h) are the same.
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Taking into account Theorem 5, if good local behavior holds, one may claim that
the offsetting process locally preserves the topology of the curve C. In this section,
we address the problem of checking algorithmically whether a given curve has good
local behavior for a given distance. We start our analysis assuming that C is R-normal
(see Subsection 2.2.). In addition, in the sequel, ϕ(t) := (X(t), Y (t)) is an R-normal
proper parametrization of C. In particular, this implies that C does not have isolated
singularities (see Theorem 1), and that every real point of C is reachable via ϕ(t) by
means of real parameter values. In this situation, we provide sufficient conditions to
ensure good local behavior, and we also present an algorithm to decide whether any
curve C, in the above conditions, has good local behavior, or not. In Remark 4, we
show how to proceed when the normality hypothesis does not hold.

The main tool that we use in this section is the notion of curvature, which is widely
studied in the context of Differential Geometry (see for example (4)). More precisely,
if t0 is a regular value of the parameter (regular here means that the speed vector ϕ′(t0)
is not zero), then the curvature of the curve at the point ϕ(t0) can be computed by
using the following formula:

k(t0) :=
X ′(t0)Y ′′(t0)−X ′′(t0)Y ′(t0)

(X ′(t0)2 + Y ′(t0)2)3/2
.

Observe that if t0 6= t1 but ϕ(t0) = ϕ(t1) (which happens at a self-intersection of the
curve), k(t0) and k(t1) are not necessarily equal. Thus, intuitively speaking, curvature
has to do not exactly with points of the curve, but with places. Note that if P0 =
ϕ(t0) = ϕ(t1) is a self-intersection of the curve, then there are at least two places of the
curve centered at P0, one of them corresponding to t0 and another one corresponding
to t1. Furthermore, it is well-known (see also (4)) that the curvature is invariant for
reparametrizations, except perhaps for the sign.

Curvature has also been used in (5) to characterize some aspects of the local shape of
the offset, like the appearance of cusps in the offset. However, in (5) the parametrization
ϕ(t) is assumed to be regular, i.e. verifying that the speed vector does not vanish for
any real value of the parameter. Here we do not impose that condition to ϕ(t), so
there may be points generated by non-regular real values of the parameter. We will
refer to these points as singular points of the parametrization, and we will refer to the
real values of the parameter that generate them as singular values of the parameter.
Observe that since ϕ(t) is rational, the number of real singular values of the parameter
is necessarily finite. Now, for these values of the parameter, curvature is not defined.
Nevertheless, in the following subsection we will see that by studying the signature of
the places centered at the points generated by singular values of the parameter, the
behavior of the curvature in the vicinity of these points can be described. This will
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allow us to extend the notion of curvature also to singular points of the parametrization,
giving rise to the notion of extended curvature, which will be the key to detect good
local behavior.

6.1 Extended Curvature

In order to properly define the notion of extended curvature, some previous work must
be carried out, first. We begin with the following definition:

Definition 11 Let P(h) = (x(h), y(h)) be a real place of C. Then, the curvature of C
at P(h) is defined as follows:

kP(h) := lim
h→0

∣∣∣∣
x′y′′ − x′′y′

(x′2 + y′2)3/2

∣∣∣∣

Taking into account that x(h), y(h) ∈ R[[h]], because the place is affine and real, and
after making calculations with formal power series, one deduces that (x′y′′−x′′y′)/(x′2+
y′2)3/2 can be expressed as hp · ∑∞

i=0 aih
i, where p ∈ Z and ai ∈ R; i.e. it is in the

quotient field R((h)). Moreover, using that x(h), y(h) are analytic functions in a certain
Euclidean neighborhood of 0 (in which case their derivatives are also analytic there),
one may see that

∑∞
i=0 aih

i must be convergent for h sufficiently small. Therefore,
kP(h) ∈ R ∪ {∞}. Furthermore, one may easily see that Definition 11 is independent
of the representative of the place, and that kP(h) stays invariant for translations and
orthogonal transformations, so w.l.o.g. it can be assumed that P(h) has the form of
Proposition 3. Now, the following result relates the value of kP(h) to the signature of
P(h).
Theorem 12 Let P(h) = (αph

p, βqh
q + · · · ) be a real place of C with signature (p, q).

Then, it holds that:

kP(h) =





0 if q − 2p > 0
2|βq |
α2

p
if q − 2p = 0

∞ if q − 2p < 0

Proof. Substituting the derivatives of X(h) = αph
p, Y (h) = βqh

2 + · · · into the
expression of kP(h), and after some calculations, one gets that:

kP(h) =

∣∣∣∣
αpβqpq · hp+q−3 · [(q − p) +O(hp+q−2)]

±α3
pp

3 · h3(p−1) · [1 +O(h2(q−p))]3/2

∣∣∣∣

Since, by the definition of signature, p, q, αp, βq and q − p are different from 0, the
numerator of kP(h) has order p + q− 3. Also, the order of the denominator is 3(p− 1).
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Thus, in order to evaluate kP(h) one has to compare the orders of its numerator and its
denominator, respectively. In other words, one has to discuss the sign of (p + q − 3)−
3(p− 1), which is equivalent to discuss the sign of q − 2p. The rest follows easily.

Now, we will relate the definition of curvature of a place to the classical notion of
curvature. For this purpose, the following definition is also needed:

Definition 13 Let P(h) be a real place of C. We say that t0 ∈ R is the associated
parameter (w.r.t. ϕ(t)) of P(h), if it holds that:

(i) the center of P(h) is ϕ(t0), i.e. P(0) = (X(t0), Y (t0)).

(ii) there exists a non-empty Euclidean neighborhood E0 of t0 such that ∀t ∈ E0, there
exists h ∈ R satisfying that ϕ(t) = P(h).

Since C is R-normal, any real place P(h) has an associated parameter. Moreover,
because of condition (ii), the associated parameter of a place is unique, and different
places have different associated parameters. Also note that, since we are working with
a rational parametrization ϕ(t), for a given parameter value t0 where ϕ(t) is defined,
one can always obtain the place which associated parameter is t0. For this, one simply
has to consider the Laurent expansion of ϕ(t) around t0.

In addition, since X(h), Y (h) are analytic in a neighborhood of 0, so are their
derivatives, and therefore, also using condition (ii), one has that for h sufficiently close
to 0, there exists t sufficiently close to t0 such that P(h) = ϕ(t), P(1)(h) = ϕ′(t) and
P(2)(h) = ϕ′′(t), simultaneously. Hence, taking into account Definition 11, one has
that:

kP(h) = lim
t→t0

|k(t)|

where t0 is the associated parameter of P(h). Observe in particular that if t0 is regular,
then k(t0) is defined and since ϕ(t) is a rational parametrization, k(t) is continuous
at t = t0. Hence, whenever t0 is regular one has that limt→t0 |k(t)| = |k(t0)|. Thus,
in that case it holds that kP(h) = |k(t0)|. In other words, for regular values of the
parameter the curvature coincides with the absolute value of the curvature of C at the
corresponding places the parameters are associated with. For singular values of the
parameter the curvature is not defined. However, since kP(h) = limt→t0 |k(t)|, with t0
being associated with P(h), we have that the curvature at a place centered at a point
generated by a singular value t0, describes the behavior of the classical curvature when
t tends to t0. Hence, by using the notion of curvature at a place one can generalize
the notion of curvature to also reach the singular values of the parameter. This leads
to the notion of extended curvature, which is made precise in the following definition.
Here, we denote by D the following set:
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D = {t ∈ R|ϕ(t) is defined}
Thus, D is the set of real values which are associated with some real place of C.

Definition 14 Let t0 ∈ D, and let P(h) be a real place of C with associated parameter
t0. The extended curvature of C at ϕ(t0) (we denote it by k̃(t0)) is defined as:

k̃(t0) := kP(h).

Remark 3 Note that the extended curvature essentially coincides with the classical
notion of curvature for regular values of the parameter. Furthermore, note that, at a
singular value of the parameter, the extended curvature may be formally infinite (see
Theorem 12). Observe also that, by definition, the extended curvature k̃(t) is non-
negative.

6.2 Algorithm

The notion of extended curvature stated in the subsection before allows to formulate
the following result. We will use this theorem, first, to give a sufficient condition for C
to have good local behavior for a given distance, and second, to device an algorithm
for checking good local behavior.

Theorem 15 Let P(h) be a real place of C, t0 its associated parameter, and d0 > 0.
The following statements hold:

(i) d0 is critical for P(h) iff k̃(t0) = 1
d0

.

(ii) There are finitely many real places of C whose signature (p, q) verifies q−2p < 0.

(iii) There are finitely many real places of C whose local shape is not preserved for d0.

(iv) If the local shape of P(h) is not preserved for d0, then either k̃(t0) = 1
d0

(i.e. d0

is critical for P(h)), or k̃(t0) = ∞ (i.e. q − 2p < 0 where sign(P(h)) = (p, q)).

Proof. (i) follows directly from the definition of critical distance (see Definition 6 in
Section 5), Definition 14, and Theorem 12. In order to prove (ii), we observe that if
the signature (p, q) of a real place P(h) verifies that q− 2p < 0, then k̃(t0), where t0 is
associated with P(h), is infinite (see Theorem 12). This can only happen when t0 is a
singular value of the parameter (note that otherwise k̃(t0) = |k(t0)| and is finite), and
since ϕ(t) is a rational parametrization, there are only finitely many singular values of
the parameter. Since different places have different associated parameters, (ii) follows.
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Now, let us see (iii). From Corollary 8, one has that if P(h) is a real place of C whose
local shape is not preserved when d = d0, then one of the two following situations
arise: (a) q− 2p = 0 and d0 is critical for P(h); (b) q− 2p < 0, with q odd. Now, from
statement (i) one may derive that there are just finitely many real places of C such that
d0 is critical for them (namely, those real places whose associated parameters are the
solutions of k̃(t) = 1

d0
; note that since ϕ(t) is rational, this equation has finitely many

solutions, each one corresponding to a different place). Moreover, from statement (ii)
one has that there are finitely many real places of C in the situation (b). Thus, (iii)
holds. Finally, (iv) follows from Corollary 8 and statements (i) and (ii).

This result provides the following corollary, which gives a sufficient condition for C
to have good local behavior for a distance d0.

Corollary 16 (Sufficient Condition) If, for every t ∈ R where ϕ(t) is defined, it
holds that k̃(t) 6= ∞ and k̃(t) 6= 1

d0
, then C has good local behavior for d0.

Proof. It follows from the statement (iv) in Theorem 15.
In order to algorithmically check the hypotheses in Corollary 16 for a given d0, on

one hand one has to study the existence of real solutions of the equation |k(t)| = 1
d0

,
and on the other hand one has to compute the singular values ti of the parameter, and
limt→ti |k(t)|, to afterwards check whether any of these limits is equal to 1

d0
, or infinite.

Theorem 15 also gives a clue on how to check good local behavior for the case when
some hypothesis in Corollary 16 does not hold. Indeed, by Theorem 15 there are only
finitely many real places of C whose local shape may not be preserved. Therefore,
examining this finitely many cases, we can check good local behavior. In fact, let P(h)
be one of these real places, let t0 be its associated parameter, and let sign(P(h)) =
(p, q), then one of the following cases hold:

(A) t0 is regular and |k(t0)| = 1
d0

(note that here k̃(t0) = |k(t0)|); so, d0 is critical for
P(h).

(B) t0 is singular and limt→t0 |k(t)| = 1
d0

; thus, d0 is critical for P(h) and k̃(t0) = 1
d0

.

(C) t0 is singular and limt→t0 |k(t)| = ∞; thus, k̃(t0) = ∞ and q − 2p < 0.

Hence, one has to check whether the local shape of the places whose associated
parameters are the numbers in the situations (A), (B), (C) are preserved, or not. In
case (C), from Corollary 8 one has that the local shape of the place is preserved only
when q is even, so these places can be checked by examining q. In case (B), the only
possibility is to compute the signature of the place of C associated with the parameter,
and the signatures of the places it generates in the offset (see Section 4), in order to
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compare them with the original ones. Finally, in case (A) one can use the following
lemma, which can be easily derived from the results in Section 2.5 of (5) (in fact, it
suffices to adapt Definition 2.3 of (5) to our terminology). Here, note that since ϕ(t) is
rational, k(t) and and its derivative k′(t) are defined over the same real set, i.e. k(t0)
exists if and only if the derivative k′(t0) exists.

Lemma 17 Let P(h) be a real place of C with associated parameter t0. Let t0 be
regular, and d0 critical for P(h). If k′(t0) 6= 0, then the local shape of either P+d0(h)
or P−d0(h)), is (I) or (III).

This lemma provides the following corollary:

Corollary 18 In the preceding situation, the local type of P(h) is not preserved. There-
fore, C has not good local behavior.

Proof: Since t0 is regular, the local type of P(h) is either (II) or (IV). The rest follows
from Lemma 17.
If the hypotheses of Lemma 17 do not hold, the alternative is to directly compute the
signature of the place of C and the signatures of the places generated by it in the offset
in order to compare them, like one does in case (B).

Therefore, we can derive the following algorithm to check good local behavior:
algorithm: Good Local Behavior

Given a real, proper, rational, R-normal parametrization ϕ(t) of an algebraic curve C,
and a distance d0 ∈ R, the algorithm checks whether Od0(C) has good local behavior.

(1) Compute the function curvature k(t).

(2) Check the existence of real solutions of the equation |k(t)| = 1
d0

.

(3) Compute the singular values tr+1, . . . , ts of the parameter. For i = 1, . . . , s,
compute limt→ti |k(t)|.

(4) If the equation in step (2) has no real solution, and the limits in step (3) are all
finite and different from 1

d0
or ϕ(t) has no singular value, then Return "Od0(C)

has good local behavior".

(5) Solve the equation |k(t)| = 1
d0

. Let t1, . . . , tr be the real solutions.

(6) If there exists i ∈ {1, . . . , r} such that k′(ti) 6= 0 then Return "Od0(C) does not

have good local behavior".

(7) For i = 1, . . . , s do:

(7.1) Compute the signature (pi, qi) of the place Pi(h) associated with ti.
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(7.2) If qi − 2pi < 0 and qi is odd, then Return "Od0(C) does not have good

local behavior". If some of the following situations happen: (a) qi−2pi >
0; (b) qi − 2pi < 0 with qi even; (c) qi − 2pi = 0 but d0 is not critical for
Pi(h), then set i := i + 1 and go to Step (7.1).

(7.3) Compute the signatures (p̃i,±d0 , q̃i,±d0) of the places Pi,±d0(h) generated by
Pi(h) in the offset.

(7.4) Compare the local shapes of Pi(h) and of Pi,±d0(h). If they are different,
Return "Od0(C) does not have good local behavior".

(8) Return "Od0(C) has good local behavior".

Remark 4 (The non-normal case)
In the non-normal case, the above algorithm allows to decide whether the local shapes
of the real places of C centered at points generated by real values of the parameter t,
are preserved or not. Thus, in order to complete the study, one must also analyze the
real places of C which are generated only by complex values of the parameter. There are
only finitely many points of this type (see Proposition 1 in (15)) and can be computed
(see algorithm L-degenerations in (15)). Then, in order to finish the analysis, one can
compute the real places of C which are centered at these points, and use the results in
Section 5.
The ideas of the section are illustrated by the following examples.
Example 5 Consider the curve C in Example 1, which can be parametrized by ϕ(t) =
(t5 + t6, t2), and the offset curve Od0(C) where d0 = 1

3
. Applying the algorithms in (15),

one can see that ϕ(t) is R-normal. Now, the computation of the function curvature
k(t) yields:

k(t) =
−6t2(5 + 8t)

(25t6 + 60t7 + 36t8 + 4) ·
√

t2(25t6 + 60t7 + 36t8 + 4)

Then, one checks that the equation |k(t)| = 1
d0

= 3 has no real solution. Furthermore,
one may observe that there is just one singular value of parameter, namely t = 0. Since
limt→0 |k(t)| = 0, which is finite and different from 1

d0
= 3, one concludes that the

hypotheses of Corollary 16 holds. Therefore, the offset Od0(C) has good local behavior
for d0 = 1

3
.

Example 6 Consider the algebraic rational curve parametrized as ϕ(t) = (t2, t4 + t5)
(i.e. the curve in Example 4), and let d0 = 1

2
. One can check that ϕ(t) is R-normal.

Now, the function curvature is

k(t) =
2t(8 + 15t)

(4 + 16t4 + 40t5 + 25t6) ·
√

t2(4 + 16t4 + 40t5 + 25t6)
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The equation |k(t)| = 2 has the solution t1 = 0.4777915904. Moreover, the parametriza-
tion has one singular value, namely t = 0. Since in this case Corollary 16 is not appli-
cable, we go on with the algorithm. Here, we get that k′(t1) does not vanish. Therefore,
we conclude that good local behavior is not present.

Example 7 (Case of a non-normal parametrization) Let C be the rational curve
parametrized by ( t

1+t5
, t

1+t6
), and let d0 = 1. First, we observe that ϕ(t) is not R-normal.

In fact, C has two isolated singularities (see Proposition 1). One first checks that in
this case the equation |k(t)| = 1 has two real solutions, namely t1 = −0.499039249630
and t2 = −2.10977984057. The parametrization has no singular value, but since the
hypotheses of Corollary 16 do not hold, more steps of the algorithm need to be executed.
Thus, one has to analyze the places whose associated parameters are t1 and t2, and for
this purpose we check whether the derivatives k′(t1), k′(t2) are 0, or not. Since k′(t1)
does not vanish, one concludes that good local behavior is not present for d0 = 1.

7 Safe intervals

In the previous section, we have addressed the problem of checking whether C has
good local behavior for a particular given distance d0. Now, we address the problem
of characterizing the existence, and actually computing, of an interval I verifying that
Od(C) has good local behavior for every distance d ∈ I. If this happens, the offset
curve corresponding to each distance in the interval, locally shows the same topology
as C. We will say that such an interval I is a safe interval.

In this section, we present a systematic way for computing safe intervals. More
precisely, here we address the existence of safe intervals of the types Iα = (0, α) or
Iγ = (γ,∞), with α, γ > 0, but we do not treat intervals of the form (α, β) where
0 < α < β. In order to study this problem, we assume in the sequel that C is rational
and R-normal, and that ϕ(t) := (X(t), Y (t)) is an R-normal proper parametrization of
C. The non-normal case will be considered at the end of the section (see Remark 6).

We start with the following result that follows directly from Corollary 8.

Proposition 19 If there exists a real place P(h) of C such that q− 2p < 0, with q odd
and sign(P(h)) = (p, q), then there is no d where Od(C) has good local behavior.

For instance, the curve in Example 3 has a place with signature (2, 3), and therefore
it never has good local behavior.

Observe that if P(h) is such that q− 2p < 0, with q odd, then kP(h) is infinite, and
this can only happen when the associated parameter of P(h) is singular. Since one can
always determine the singular values of the parameter, one can always algorithmically
check whether the hypothesis in Proposition 19 is fulfilled. If it happens, there does
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not exist any safe interval. Thus, in the rest of the section we also assume w.l.o.g. that
there is no real place P(h) of C, whose signature (p, q) verifies q − 2p < 0, with q odd.

The following result characterizes the existence of a safe interval of the type Iα =
(0, α), with α > 0. We recall that D = {t ∈ R|ϕ(t) exists}.
Theorem 20 There exists a safe interval of the type Iα := (0, α), with α > 0, iff k̃(t)
is upper bounded in D. Moreover, if ∀t ∈ D k̃(t) < a, then (0, 1

a
) is safe.

Proof: Let us see the left–right implication. First, we assume that there exists α > 0
such that Iα = (0, α) is safe, and that k̃(t) is not upper bounded in D, in which case
neither is |k(t)|. Since ϕ(t) is rational, then k(t) is continuous at any regular value of
the parameter, and so is |k(t)|. Moreover, since there are finitely many singular values
of the parameter, and since R\D is also finite, one has that there are only finitely many
values of t, which we write as t1, . . . , tm, where |k(t)| is not continuous. Moreover, there
are also finitely many values of t, denoted as tm+1, . . . , tn, where |k(t)| is continuous
and k′(t) = 0; note that k(t) is not constant, since circles and lines have been excluded.
Now, since |k(t)| is not upper bounded, by continuity there exists β > 0 sufficiently big
satisfying that: (i) β > 1

α
; (ii) there exists t̄ /∈ {t1, . . . , tn}, such that |k(t̄)| = 1

β
; (iii)

k′(t̄) 6= 0. In this case, by Theorem 15, Lemma 17 and Corollary 18, we have that for
d0 = 1

β
, the offset Od0(C) has not good local behavior. However, this is a contradiction

because d0 ∈ (0, α) and (0, α) is a safe interval.
Now, let us see the right–left implication. Let a be an upper bound of k̃(t) in D, and
let us see that (0, 1

a
) is a safe interval. Indeed, let d0 ∈ (0, 1

a
). Since k̃(t) is bounded,

then k̃(t) is not infinite for any t ∈ D. Moreover, since a < 1
d0

and k̃(t) < a, one has

that k̃(t) < 1
d0

. Thus, by Theorem 15, statement (i), d0 is not critical for any real
place of C. Therefore, by Corollary 16, one has that the offset Od0(C) has good local
behavior, and hence Iα is safe.

Remark 5 Observe that if k̃(t) is bounded, then k̃(t) is not infinite at any point, so
there cannot be any real place of C whose signature (p, q) verifies that q − 2p < 0
(see Theorem 12). Thus, in that case the hypothesis of Proposition 19 needs not to be
checked.

Now, in the following theorem, we also characterize the existence of safe intervals
of the type (γ,∞), with γ > 0.

Theorem 21 There exists a safe interval of the type Iγ := (γ,∞), with γ > 0, iff
there exists b > 0 such that ∀t ∈ D, b < k̃(t). Moreover, if ∀t ∈ D, k̃(t) > b > 0, the
interval (1

b
,∞) is safe.

Proof: Let us see the left–right implication. We assume that there exists a safe
interval Iγ = (γ,∞) with γ > 0, and that there does not exist any b > 0 such that
b < k̃(t). Reasoning as in the proof of the previous theorem, one gets that there exists
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a regular value t̄ ∈ D verifying that k′(t̄) 6= 0 and such that k̃(t̄) is sufficiently close to
0, so that the distance d0 := 1/k̃(t̄) ∈ Iγ. Hence, by Theorem 15, statement (i), d0 is
critical for the real place P̄(h) associated with t̄. Thus, as in the preceding theorem,
by Lemma 17 and Corollary 18, we deduce that C has not good local behavior for the
distance d0, which is impossible because d0 ∈ Iγ and it is a safe interval.
Now, let us see the right–left implication. Let b > 0 verify that b < k̃(t), and let
γ = 1/b, Iγ = (γ,∞). Now, we consider a distance d0 ∈ Iγ. Hence, k̃(t) > b > 1

d0
.

Therefore d0 cannot be critical for any real place of C (see Theorem 15, statement (i)).
Thus, by statement (iv) of Theorem 15, the only real places of C whose local shape
may not be preserved verify q− 2p < 0, where (p, q) is its signature. However, we have
assumed along the section that there is no real place of C with signature (p, q) where
q − 2p < 0 and q is odd. Thus, if q − 2p < 0 for a particular place, then q must be
even, and in that case by Corollary 8 the local shape of the place is also preserved.

The proofs of these two theorems provide ways of computing safe intervals. More
precisely, in order to check the existence of safe intervals of the type (0, α), one has to
check whether k̃(t) is upper bounded. Thus, for this type of intervals, one may proceed
as follows:

(i) Compute limt→±∞ |k(t)|.
(ii) For every real singular value t0 compute limt→t0 |k(t)|.
(iii) Compute the value of |k(t)| at each real root of k′(t).

Then, it is straightforward that k̃(t) is upper bounded in D iff the limits in (i) and
(ii) are finite. Furthermore, in the affirmative case, an upper bound a of k̃(t) can be
computed as the maximum of the quantities in (i), (ii), (iii).

On the other hand, from Theorem 21 we get that in order to analyze the existence of
safe intervals of the type (γ,∞), one needs to analyze the existence of strictly positive
lower bounds of k̃(t). Now, k̃(t) has a positive lower bound if and only if the following
statements hold: (a) the equation k(t) = 0 has no real solution; (b) the minimum ξ of
the quantities in (i) and (ii) (see above) is not 0. Furthermore, if these conditions hold
we can take the positive lower bound b as the minimum of ξ and the value of |k(t)| at
each real root of k′(t).

All these considerations lead to the following algorithm, that allows to determine
whether safe intervals of the types (0, α) and (γ,∞) exist, and which computes them
in the affirmative case. This algorithm works under the hypotheses of rationality and
R-normality of C.
algorithm: Safe-Interval
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Given a real, proper, rational, R-normal parametrization ϕ(t) of an algebraic curve
C, the algorithm checks whether there exist safe intervals of the types analyzed in
Theorems 20 and 21. Moreover, in the affirmative case it computes them.

(1) Compute the function curvature k(t).

(2) Check whether k̃(t) is upper bounded; for instance as shown above. If it is,
then go to (3). Otherwise, compute the singular values, and the signature of the
corresponding real places, and check whether any of them verify q− 2p < 0, with
q odd. If this happens, then return Safe intervals do not exist; else print
Safe interval of the type (0, α) does not exist, and go to (4).

(3) Compute an upper bound a of k̃(t), for instance as shown above, and return Safe

interval: (0, 1
a
).

(4) Check the existence of a strictly positive lower bound b of k̃(t); for instance,
as shown above. If it does not exist, then return Safe interval of the type

(γ,∞), does not exist. Else return Safe interval: (1
b
,∞).

Example 8 Consider the rational curve parametrized by ( t
1+t5

, t
1+t6

) (See Example 7).

In this case, limt→±∞ |k(t)| = ∞ and k(0) = 0. Therefore, k̃(t) is neither upper bounded
nor lower bounded with a positive bound. Hence, safe intervals of the type (0, α) or of
the type (γ,∞) do not exist.

Remark 6 (The non-normal case)
In the non-normal case, the left–right implications of both Theorem 20 and Theorem 21
still hold. However, the right–left implications of these theorems do not necessarily hold,
because we still need to check whether the local shapes of the real places P1(h), . . . ,Pm(h)
of C (that are centered at the non-isolated points that are not generated, via ϕ(t), by
real values of the parameter) are preserved. Let (pi, qi) be the signature of Pi(h). In
this situation, the following facts show how to proceed:

• If any Pj(h), where j ∈ {1, . . . , m}, verifies that qj − 2pj < 0 with qj odd, then
there does not exist any safe interval of any type (see Proposition 19).

• If k̃(t) is not upper bounded, because of the left–right implication of Theorem 20,
there does not exist any safe interval of the type (0, α).

• If k̃(t) is upper bounded by a ∈ R, we have that:

◦ If all the places Pj(h), j ∈ {1, . . . , m}, verify that qj−2pj > 0 or qj−2pj < 0
with qj even, then I = (0, 1

a
) is a safe interval (see Corollary 8).
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◦ If among P1(h), . . . ,Pm(h) there are r real places where qj − 2pj = 0, their
corresponding critical distances being d1, . . . , dr, then I = (0, α), where α =
min{ 1

a
, d1, . . . , dr}, is a safe interval (see Corollary 8).

• If k̃(t) has no positive lower bound, because of the left–right implication of Theo-
rem 21, there does not exist any safe interval of the type (γ,∞).

• If there exists b > 0 such that k̃(t) > b, then we have that:

◦ If all the places Pj(h), j ∈ {1, . . . , m}, verify that qj−2pj > 0 or qj−2pj < 0
with qj even, then I = (1

b
,∞) is a safe interval.

◦ If there are r real places where qj − 2pj = 0, with corresponding critical
distances d1, . . . , dr, then I = (γ,∞), where γ = max{1

b
, d1, . . . , dr}, is a

safe interval.

7.1 Safe Intervals for Conics

We finish this section applying the previous results to the case of irreducible conics.
We omit the trivial case of circles where for every real distance different from the radius
the offset behaves properly.

Proposition 22 For a curve defined by a real polynomial y− p(x) there always exists
a safe interval of the type (0, α), but there exists no safe interval of the type (γ,∞).

Proof: Let C be the curve defined by y − p(x). ϕ(t) := (t, p(t)) is an R-normal
proper parametrization of C. Then k(t) = p′′(t)/

√
(1 + p′(t)2)3. Now, the result follows

observing that limt→±∞ |k(t)| = 0, and ϕ(t) has no real singular value.

Corollary 23 (The parabola) For the parabola y = ax2 + bx + c, where a 6= 0, the
interval (0, 1

2a
) is safe, and no safe interval of the type (γ,∞) exists.

Proof: By Proposition 22 no safe interval of the unbounded type exists. Moreover,
let ϕ(t) be as in the proof of Proposition 22. Then limt→±∞ |k(t)| = 0, ϕ(t) has no real
singular value, t0 := −b/(2a) is the only root of k′(t) and k(t0) = 2a. Thus, 1/(2a) is
an upper bound of k̃(t). So, (0, 1/(2a)) is safe.

Proposition 24 (The ellipse) For the ellipse x2

a
+ y2

b
= 1, where a, b > 0 and a 6= b,

the intervals (0, min{b/√a, a/
√

b}) and (max{b/√a, a/
√

b},∞) are safe.

Proof: For simplicity in the computations, we apply w.l.o.g. a translation of vector
(0,−

√
b), and we work with the transformed ellipse C defined by y2a+2a

√
by+bx2 = 0.
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C can be parametrized as ϕ(t) := (2
√

at/(t2+1),−2
√

b/(t2+1)), which is not R–normal,
but the only unreachable real point of C is (0, 0). The function curvature is:

k(t) =

√
a
√

b(t2 + 1)3

(at4 − 2at2 + a + 4bt2)
3
2

.

We check whether k̃(t) is upper bounded. One has that limt→±∞ |k(t)| =
√

b/a, ϕ(t)
has no real singular value, and the real zeros of k′(t) are 0, 1,−1, that provide |k(0)| =√

b/a and |k(±1)| =
√

a/b. Thus k̃(t) is upper bounded by max{
√

b/a,
√

a/b}. Now,
accordingly to the above process, we compute the real place centered at the origin. One
gets P(h) = (2

√
ah− 2

√
ah3 + · · · ,−2

√
bh2 + 2

√
bh4 + · · · ). Thus sign(P(h)) = (1, 2)

and d0 := a/
√

b is critical. Therefore, if α := min{1/ max{
√

b/a,
√

a/b}, a/
√

b} =
min{b/√a, a/

√
b}, then (0, α) is safe. For the other interval, we observe that k(t) = 0

has no real solution. Thus, a positive lower bound of k̃(t) is min{
√

b/a,
√

a/b}. Now if
γ := max{1/ min{

√
b/a,

√
a/b}, a/

√
b} = max{b/√a, a/

√
b}, then (γ,∞) is safe.

Proposition 25 (The Hyperbola) For the hyperbola x2

a
− y2

b
= 1, where a, b > 0, the

interval (0, b/
√

a) is safe, and no safe interval of the type (γ,∞) exists.
Proof: For simplicity in the computations, we apply w.l.o.g. a translation of vector
(
√

a, 0), and we work with the transformed hyperbola C defined by −x2ba + 2a
√

abx +
a2y2. C can be parametrized as ϕ(t) := (2a

√
a/(−bt2+a),−2b

√
at/(−bt2+a)), which is

not R–normal, but the only unreachable real point of C is (0, 0). The function curvature
is:

k(t) =
−√a(bt2 − a)3

(b(4t2a2 + a2 + 2at2b + t4b2)
3
2 )

.

We check whether k̃(t) is upper bounded. One has that limt→±∞ |k(t)| =
√

a/b, ϕ(t)
has no real singular value, and the real zeros of k′(t) are 0,±

√
a/b, that provide |k(0)| =√

a/b and |k(±
√

a/b)| = 0. Thus k̃(t) is upper bounded by
√

a/b. Now, accordingly
to the above process, we compute the place centered at the origin, getting P(h) =
(2
√

a b/a h2 + 2b2
√

a/a2 h4 + · · · ,−2
√

a b/a h− b2
√

a/a2 h3 + · · · ). Thus sign(P(h)) =
(1, 2) and d0 := b/

√
a is critical. Therefore, (0, b/

√
a) is safe. For the other interval, we

observe that k(t) = 0 has real solutions. Thus, safe intervals of the type (γ,∞) does
not exist.
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