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Multipartite numbers are in modern parlane n-tuples of non-negative in-tegers. For example, (7; 5; 0; 3) is a 4-partite number. Partitions of (7; 5; 0; 3)are diret sums of 4-tuples of non-negative integers that add to (7; 5; 0; 3).For example, (7; 5; 0; 3) = (4; 1; 0; 2) + (2; 3; 0; 0) + (1; 1; 0; 1);or = (3; 3; 0; 3) + (4; 2; 0; 0):MaMahon onsiders a variety of ombinatorial and geometrial aspets ofsuh partitions. Of speial interest is the lassial representation of ordinary,or unipartite partitions in \Sylvester-graphs" (today alled Ferrers graphs).For example, the unipartite partition of 29 given by7 + 7 + 5 + 4 + 4 + 2;has the graphial representation� � � � � � �� � � � � � �� � � � �� � � �� � � �� �where eah row of nodes represents the orresponding part of the partition.MaMahon then notes [22, p. 1058℄ that if one has a multipartite partitionin whih the Ferrers graph of eah part ontains the Ferrers graph of the next(alled \the subjaent suession of lines" by him), then one may produea three-dimensional analog of the Ferrers graph. Thus if we start with the\regularised" (i.e., the entries of the tuples involved are weakly dereasing)multipartite partition(16; 8; 6) = (6; 4; 3) + (6; 3; 2) + (4; 1; 1)= A+B + C;we may regard eah of the parts as a unipartite partition, and the respetiveFerrers graphs areA B C� � � � � � � � � � � � � � � �� � � � � � � �� � � � � �2



As MaMahon says [22, p. 1058℄, \it is lear that we may pile B uponA, and then C upon B & A, and thus form a three dimensional graph of thepartition"tgj tgj tgj tgj tg tgtgj tg tg ttgj tg tIn subsequent papers, MaMahon will refer to this three-dimensionalgraph as representing the plane partition of 30 given by6 4 36 3 24 1 1He next determines that there are three suh partitions of 2, six of 3 andthirteen of 4. This leads him to the following onjeture [22, pp. 1064{1065℄;\The enumeration of the three-dimensional graphs that an beformed with a given number of nodes, orresponding to the reg-ularised partitions of all multi-partite numbers of given ontent,is a weighty problem. I have veri�ed to a high order that thegenerating funtion of the omplete system is(1� x)�1(1� x2)�2(1� x3)�3(1� x4)�4 � � � ad inf.;and, so far as my investigations have proeeded, everything tendsto on�rm the truth of this onjeture."In Setion 2, we shall look at MaMahon's e�orts to develop a alulus(later to be named Partition Analysis) that he hoped would allow him toprove his onjeture. In Setion 3 we sketh our proof of all of MaMahon'sonjetures. We onlude with a brief aount of our disoveries made usingour Mathematia implementation of Partition Analysis, the pakage Omegawhih is freely available at [24℄.2 Partition Analysis { the beginningMaMahon [22, p. 1068℄ begins with some very simple problems. As anexample, he onsiders plane partitions that only have 1's and 2's as parts3



and have only two olumns. E.g., 2 22 22 11 111 (1)
The generating funtion for suh partitions isXn1;n2;m1;m2=0n1=n2n1+m1=n2+m2 x2n1+2n2+m1+m2 :Here n1 ounts the number of 2's in the �rst olumn, n2 the number in theseond; m1 ounts the number of 1's in the �rst olumn, m2 the number inthe seond.He then utilizes an idea (traeable bak to Cayley in invariant theory [22,p. 1142℄) of oding the inequalities on the indies by onsideringXn1;n2;m1;m2=0 x2n1+2n2+m1+m2an1+m1�n2�m2bn1�n2 ;where all terms with negative exponents on either a or b will be thrown outand in all other terms a and b are set to 1. This devie immediately allowsall the series to be summed by the geometri series to1(1� xa) �1� xa� (1� abx2) �1� x2ab � = 1(1� xa) �1� xa� (1� x4)�( 11� abx2 + x2ab1� x2ab ) :Now the seond term inside the f g has only negative powers of b and so anbe dropped from onsideration. The �rst term has only positive powers of b,and so we may set b = 1 in this term. Thus we have redued the problem to
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onsidering 1(1� xa) �1� xa� (1� x4)(1� ax2)= 1(1� x4) �1� xa� (1� x) � 11� ax � x1� ax2�= 1(1� x4)(1� x)� � 11� x2 � 11� ax + xa1� xa�� x1� x3 � 11� ax2 + xa1� xa �� :As in the elimination of b, this redues to1(1� x4)(1� x) � 1(1� x2)(1� x) � x(1� x3)(1� x2)�= 1(1� x)(1� x2)2(1� x2) ;a result whih, as MaMahon points out, is not obvious [22, p. 1068℄.Now two things are lear. First, one must streamline this method whihis umbersome even in this simple example, and one must somehow introduea simple notation for the deletion of terms with negative exponents on a andb. MaMahon turns his attention to these requirements in [19℄, and �nally inhis magnum opus [21, Vol. II, Se. VIII℄, he has redued the above treatmentto the following. First he de�nes the omega operator [21, Vol. II, p. 92℄
= Xn1;:::;nj=�1A(n1; n2; : : : ; nj)�n11 �n22 : : : �njj = Xn1;n2;:::;nj=0A(n1; n2; : : : ; nj);where A(n1; n2; : : : ; nj) is generally some rational funtion of variables likex; y or z:Then MaMahon prepares a list of valid omega evaluations [21, Vol. II,p. 102℄ inluding
= 1(1� �x)(1� �y)(1� z�) = 1� xyz(1� x)(1� y)(1� xz)(1� yz) : (2)Hene
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Xn1;n2;m1;m2=0n1=n2n1+m1=n2+m2 x2n1+2n2+m1+m2
= 
= 1(1� x�2)�1� x�2� (1� �1�2x2)�1� x2�1�2�= 
= 1(1� x�2)�1� x�2� (1� �2x2)(1� x4)(by (2) with x, y, z replaed by �2x2; 0; x2�2 , resp.)= 1(1� x4)
= 1(1� x�2)(1� x2�2)�1� x�2�= 1(1� x4) � (1� x4)(1� x)(1� x2)(1� x2)(1� x3)(by (2) with x, y, z replaed by x; x2; x, resp.)= 1(1� x)(1� x2)2(1� x3) :MaMahon learly hoped to hone this tool into one that ould prove hisonjetures on plane partitions. Clearly the problems an all be set up in thelanguage of his Partition Analysis. However, he was unable to develop thismahinery adequately. Sadly he sets up the general problem [21, Vol. II, p.186℄, but is fored to onlude: \Our knowledge of the 
 operation is notsuÆient to enable us to establish the �nal form of result."In the next setion, we desribe the work in [12℄ where we have overomeMaMahon's diÆulties.3 Partition Analysis | the dreamIn our e�orts to make MaMahon's dream ome true the Omega pakage[24℄ has played a deisive role. Remarkably, MaMahon had already beenaware of the algorithmi essene of Partition Analysis; see Setion VIII of[21, Vol. 2, pp. 111{114℄ desribing the \method of Elliott". However, 90years before omputer algebra systems emerged he was on�ned to use histehnique essentially in the form of a table look-up method. After the �rstahievements of revitalizing Partition Analysis, [1℄ and [2℄, we have pursued6



the projet of replaing MaMahon's transformation and elimination rules forhis omega operator by a deterministi algorithmi proedure. Subsequentlywe have implemented these algorithms in the Mathematia system and alledthe orresponding pakage \Omega". For a desription of this work and fora variety of new appliations we refer to [3℄ { [12℄.As an illustration we show how the example disussed in Setion 2 anbe treated with Omega in a fully automati fashion. We initialize by loadingthe pakageIn[1℄:=Omega2.mFollowing MaMahon's terminology, the �rst step is to ompute the \rudegenerating funtion". To this end one has only to input the problem in aform whih is very lose to the usual mathematial syntax. (All summationparameters are assumed to be non-negative, if not spei�ed otherwise.)In[2℄:= Crude = OSum[x2n1+2n2+m1+m2 ; fn1 � n2; n1+m1 � n2+m2g;�℄Out[2℄= 
��1;�2 1(1� x�2 )(1� x2�1�2 )(1�x�2)(1�x2�1�2)Finally the elimination of the � variables is arried out by the proedureallIn[3℄:= OR[Crude℄Eliminating �1...Eliminating �2...Out[3℄= 1(1�x)(1�x2)2(1�x3)Note: During the omputation the pakage tells the user in whih orderthe elimination of the � variables is arried out.To present a brief aount of how MaMahon's dream has ome true weneed a ouple of de�nitions.Given an r �  matrix X = (xi;j) we de�nepr;(X) := X(ai;j )2Mr;xa1;11;1 � � �xa1;1; � � �xar;1r;1 � � �xar;r;where Mr; onsists of all r� matries over non-negative integers ai;j suhthat ai;j � ai;j+1 and ai;j � ai+1;j: Hene pr;(X) is the generating funtionfor all plane partitions with at most r rows and  olumns. In pr;(X),setting all the xi;j to x produes the orresponding enumerative generating7



funtion whih we denote by qr;(x). The limiting ase r; !1 orrespondsto MaMahon's original onjeture [22, pp. 1064 { 1065℄ ited in Setion 1,namely q1;1(x) = 1Yk=1 1(1� xk)k : (3)In [18℄ MaMahon also onsidered the ase where r and  are set toonrete integers. His omputations led him to onjeture thatqr;(x) = 1Xn=0Pr;(n)xn = rYi=1 Yj=1 11� xi+j�1 (4)where Pr;(n) denotes the number of plane partitions of n with at most rrows and  olumns. Obviously, for r; !1 this turns into (3).In our attempt to give a possible explanation of why MaMahon hadfailed to prove (4) with his method, we �rst have to desribe how PartitionAnalysis would work on suh problems in priniple.The usual heuristis approah to prove (4) by means of Partition Analysiswould be as follows: one tries to proeed by mathematial indution withrespet to one of the free parameters, e.g., with respet to  with r �xed. Tothis end, one applies Partition Analysis to speial instanes of the problemin order to guess a pattern for the indution step from  to  + 1. Butin many appliations it turns out that the enumerative generating funtiondoes not provide suÆient information into the mehanism of the indution.In suh situations one often an overome this problem by onsidering thefull generating funtion, i.e., the generating funtion that onstruts all theobjets in question; see the various examples given in [3℄ { [12℄.To illustrate this point let us onsider pr;(X) with r =  = 3. The aseq3;3(x) where all the xi;j in p3;3(X) are set to x, auses no omputationalproblem at all:In[4℄:=OSum[xa11+a12+a13+a21+a22+a23+a31+a32+a33 ;fa11 � a12; a12 � a13; a21 � a22; a22 � a23; a31 � a32; a32 � a33;a11 � a21; a21 � a31; a12 � a22; a22 � a32; a13 � a23; a23 � a33g;�℄Out[4℄= 
��1;�2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12 1(1�x�1�7)(1�x�5�8 )(1�x�3�8�7 )� 1(1�x�2�9�1 )(1� x�6�5�10 )(1�x�4�10�3�9 )(1�x�11�2 )(1� x�6�12 )(1� x�12�4�11 )In[5℄:= OR[%4℄Out[5℄= 1(1�x)(1�x2)2(1�x3)3(1�x4)2(1�x5)8



Despite the fat that the Omega pakage on�rms (4) within a frationof a seond, a loser inspetion shows that in order to exhibit an indutionpattern for a Partition Analysis proof of (4) the setting xi;j = 0 is muh toorestritive.So let us have a look at the full generating funtion p3;3(X). The rudegenerating funtion omes out in perfet analogy to Out[4℄ above:In[6℄:=OSum[xa1111 xa1212 xa1313 xa2121 xa2222 xa2323 xa3131 xa3232 xa3333 ;fa11 � a12; a12 � a13; a21 � a22; a22 � a23; a31 � a32; a32 � a33;a11 � a21; a21 � a31; a12 � a22; a22 � a32; a13 � a23; a23 � a33g;�℄Out[6℄= 
��1;�2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12 1(1�x11�1�7)(1�x31�5�8 )(1�x21�3�8�7 )� 1(1�x12�2�9�1 )(1� x32�6�5�10 )(1�x22�4�10�3�9 )(1�x13�11�2 )(1� x33�6�12 )(1�x23�12�4�11 )The omputation of the full generating funtion takes another ouple ofseonds:In[7℄:= OR[%6℄Out[7℄= (1�x211x12x21�x211x12x13x21� � � �+x1411x1212x713x1221x722x223x731x232)=((1� x11)(1� x11x12)(1� x11x12x13)(1� x11x21)(1� x11x12x21)(1�x11x12x13x21)(1�x11x12x21x22)(1�x11x12x13x21x22)(1�x11x12x13x21x22x23)(1 � x11x21x31)(1 � x11x12x21x31)(1 � x11x12x13x21x31)(1 � x11x12x21x22x31)(1� x11x12x13x21x22x31)(1� x11x12x13x21x22x23x31)(1� x11x12x21x22x31x32)(1� x11x12x13x21x22x31x32)(1� x11x12x13x21x22x23x31x32)(1� x11x12x13x21x22x23x31x32x33))However, the problem arising in this ase onsists in the omplexity ofthe resulting rational funtion; namely, in order to display the numeratorpolynomial1� x211x12x21 � x211x12x13x21 � � � �+ x1411x1212x713x1221x722x223x731x232in fully expliit form, one would need more than 30 printed pages!Summarizing, the oding of the full generating funtion pr;(X) in termsof the omega operator is straight-forward and has been arried out alreadyby MaMahon [21, Vol. II, p. 92℄. But without omputer algebra he didnot sueed in overoming the omputational diÆulties when trying to ob-tain the beautiful produt side of (3) , resp. (4), with omega evaluation.Essentially the problem is this: when speifying all the xi;j to x, the un-derlying algebrai struture gets lost entirely. If all the xi;j are kept, theomputational omplexity soon gets out of hand.9



Consequently, we used the Omega pakage in a heuristi searh to �nda substitution for the xij whih, on one side, provides more insight into theunderlying Partition Analysis indution pattern than qr;(x), and on the otherside, for whih the elimination of the �i results in a more feasible rationalfuntion than for the general pr;(X).Finally, after various attempts our strategy turned out to be suessful.More preisely, we found that the substitutionxij ! zj�i (5)has all the properties desired. First, the elimination of the �i results in arational funtion that fators niely for all hoies of rand . For instane,for r =  = 3,In[8℄:=OSum[za110 za121 za132 za21�1 za220 za231 za31�2 za32�1 za330 ;fa11 � a12; a12 � a13; a21 � a22; a22 � a23; a31 � a32; a32 � a33;a11 � a21; a21 � a31; a12 � a22; a22 � a32; a13 � a23; a23 � a33g;�℄Out[8℄= 
��1;�2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12 1(1�z0�1�7)(1� z�2�5�8 )(1� z�1�3�8�7 )� 1(1� z1�2�9�1 )(1� z�1�6�5�10 )(1� z0�4�10�3�9 )(1� z2�11�2 )(1� z0�6�12 )(1� z1�12�4�11 )In[9℄:=OR[%8℄Out[9℄= 1=((1� z0)(1� z�1z0)(1� z�2z�1z0)(1� z0z1)(1� z�1z0z1)(1� z�2z�1z0z1)(1� z0z1z2)(1� z�1z0z1z2)(1� z�2z�1z0z1z2))Seond, and more importantly, in this situation MaMahon's methodof Partition Analysis works in a way that allows to set up an elementaryindution proof for the orresponding plane partition result whih originallyis due to Emden Gansner. His theorem [16, Thm. 4.2℄ not only generalizes (4)but also Stanley's trae theorem [26, Thm. 2.2℄ whih was also onjeturedby MaMahon in [18℄. In order to state Gansner's theorem we need a oupleof de�nitions.Let � = (ai;j) be an r� matrix over non-negative integers ai;j suh thatai;j � ai;j+1 and ai;j � ai+1;j; i.e., � represents a plane partition of n :=�ijaij with at most r rows and  olumns. For any integer k we de�ne thek-trae tk of � by tk := �ai;j where the sum runs over all i; j suh that k =j � i. E.g., the traes of the plane partition of 30 in Setion 1 are: t�2 =4, t�1 = 7,t0 = 10, t1 = 6, and t2 = 3.If Tr;(t�r+1; :::; t�1; t0; :::; t�1;n) denotes the number of plane partitionsof n with at most r rows and  olumns, and with k-trae tk,�r + 1 � k �� 1, Gansner's theorem reads as follows:10



1Xn=0 1Xt�r+1=0 ... 1Xt�1=0Tr; (t�r+1; ...; t�1; t0; ...; t�1;n)� zt�r+1�r+1 � � � zt�1�1 zt00 � � � zt�1�1 xn= rYi=1 Yj=1 11� z�i+1z�i+2 � � � zj�1xi+j�1 :Obviously, z�r+1 = z�r+2 = ::: = z�1 = 1 gives (4); setting all zk = 1,exept z0, gives Stanley's trae theorem [26, Thm. 2.2℄.It is immediate that pr;(X) for X = (xi;j) with xij := zj�i an berewritten as the multiple series in Gansner's theorem. Our Partition Analysisproof of the fat that it �nds the produt representation above an be foundin [12℄.Summarizing, we want to note that our proof in [12℄ uses only basi powerseries arithmeti; essentially it proeeds by omplete indution involving re-ursively de�ned rational funtions. So our Partition Analysis approah isompletely di�erent from Gansner's original proof whih is based on a om-binatorial bijetion of Burge [14℄. This bijetion is one of those variations ofthe Shensted-Knuth orrespondene whih Burge derived in order to giveombinatorial proofs for a olletion of Shur funtion identities due to D.E.Littlewood.4 ConlusionThe implementation of MaMahon's Partition Analysis in the Omega pak-age has provided the exploratory tool for our dozen papers on this topi [1℄to [12℄. It is important to point out that there have been a number of par-allel and omplementing projets that an be viewed as having goals similarto MaMahon's. An inomplete list would inlude: (1) LattE [15℄, an im-plementation of the work of A. Barvinok and J. Pommersheim [13℄, (2) theMAPLE pakage designed by J. Stembridge [27℄ to implement the disoveriesof R. Stanley [25℄ whih in turn were based on another MaMahon paper [20℄.Reently G. Xiu [28℄ has made ontributions based on his work on partialfrations.In the future we hope to explore further with Omega. Also we are modify-ing Omega to treat problems in whih not only linear Diophantine inequalitiesare onsidered but also divisibility properties of the summands are treated.Toward this goal, we have developed an extension of Partition Analysis thatallows us to treat the G�ollnitz-Gordon partition funtions.11



It is perhaps �tting to lose with J. W. L. Glaisher's evaluation [17℄ of[18℄ (printed with permission of the Royal Soiety):\I don't fany the paper very muh, but it must be printed. Idon't are muh for a paper on very tehnial mathematis beingpublished in the Phil. Trans. unless there is something verystriking in it. However, it is one of a series, and they are indeep water now and annot go on muh farther. I have made myreport beause there is no more to be said than that it shouldbe published (though the interesting results are the onjeturalones!), the balane being on that side."How fortunate we are that Glaisher's lak of enthusiasm did not ausehim to reommend against [18℄. Also we an ongratulate Glaisher on hisreognition of the signi�ane of MaMahon's onjetures.Aknowledgement. We thank Christian Krattenthaler for pointing outthe fat that the substitution (5) we found with Partition Analysis has ledus to a redisovery of Gansner's theorem.Referenes[1℄ G. E. Andrews, MaMahon's Partition Analysis: I. The leture hall par-tition theorem. In: Mathematial Essays in Honor of Gian-Carlo Rota,B. E. Sagan and R. P. Stanley, eds., pp. 1{22. Boston, Birkh�auser, 1998.[2℄ G. E. Andrews, MaMahon's Partition Analysis: II. Fundamental theo-rems. Annals of Combinatoris 4 (2000), 327{338.[3℄ G. E. Andrews, P. Paule and A. Riese, MaMahon's Partition Analysis:The omega pakage. Europ. J. Combinatoris 22 (2001), 887{904.[4℄ G. E. Andrews and P. Paule, MaMahon's Partition Analysis IV: Hy-pergeometri multisums, S�eminaire Lotharingien de Combinatoire 42(1998), Paper B42i. (Also in: The Andrews Festshrift: Seventeen Pa-pers on Classial Number Theory and Combinatoris, D. Foata and G.-N. Han, eds., pp. 189{208. Berlin, Springer, 2001.)[5℄ G. E. Andrews, P. Paule, A. Riese, and V. Strehl, MaMahon's Parti-tion Analysis V: Bijetions, reursions and magi squares. In: AlgebraiCombinatoris and Appliations, proeedings of Euroonferene Aloma99, September 12-19, 1999, Goessweinstein, Germany, A. Betten, A.12
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