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tWe shall provide an a

ount of Ma
Mahon's development of a 
al-
ulational, analyti
 method designed to produ
e the generating fun
-tion for plane partitions. His e�orts did not turn out as he had hoped,and he had to spend nearly twenty years �nding an alternative treat-ment. This paper provides an a

ount of our retrieval of Ma
Mahon'soriginal dream of using Partition Analysis to treat plane partitions ingeneral.1 Introdu
tionMajor P. A. Ma
Mahon's 
olle
ted papers �ll two large volumes [22℄ and [23℄.Among these are seven lengthy works entitled, \Memoir on the theory of thepartitions of numbers, I-VII."The �rst of these [18℄, also [22, pp. 1026{1080℄, appeared in 1895 whenMa
Mahon was President of the London Mathemati
al So
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Multipartite numbers are in modern parlan
e n-tuples of non-negative in-tegers. For example, (7; 5; 0; 3) is a 4-partite number. Partitions of (7; 5; 0; 3)are dire
t sums of 4-tuples of non-negative integers that add to (7; 5; 0; 3).For example, (7; 5; 0; 3) = (4; 1; 0; 2) + (2; 3; 0; 0) + (1; 1; 0; 1);or = (3; 3; 0; 3) + (4; 2; 0; 0):Ma
Mahon 
onsiders a variety of 
ombinatorial and geometri
al aspe
ts ofsu
h partitions. Of spe
ial interest is the 
lassi
al representation of ordinary,or unipartite partitions in \Sylvester-graphs" (today 
alled Ferrers graphs).For example, the unipartite partition of 29 given by7 + 7 + 5 + 4 + 4 + 2;has the graphi
al representation� � � � � � �� � � � � � �� � � � �� � � �� � � �� �where ea
h row of nodes represents the 
orresponding part of the partition.Ma
Mahon then notes [22, p. 1058℄ that if one has a multipartite partitionin whi
h the Ferrers graph of ea
h part 
ontains the Ferrers graph of the next(
alled \the subja
ent su

ession of lines" by him), then one may produ
ea three-dimensional analog of the Ferrers graph. Thus if we start with the\regularised" (i.e., the entries of the tuples involved are weakly de
reasing)multipartite partition(16; 8; 6) = (6; 4; 3) + (6; 3; 2) + (4; 1; 1)= A+B + C;we may regard ea
h of the parts as a unipartite partition, and the respe
tiveFerrers graphs areA B C� � � � � � � � � � � � � � � �� � � � � � � �� � � � � �2



As Ma
Mahon says [22, p. 1058℄, \it is 
lear that we may pile B uponA, and then C upon B & A, and thus form a three dimensional graph of thepartition"tgj tgj tgj tgj tg tgtgj tg tg ttgj tg tIn subsequent papers, Ma
Mahon will refer to this three-dimensionalgraph as representing the plane partition of 30 given by6 4 36 3 24 1 1He next determines that there are three su
h partitions of 2, six of 3 andthirteen of 4. This leads him to the following 
onje
ture [22, pp. 1064{1065℄;\The enumeration of the three-dimensional graphs that 
an beformed with a given number of nodes, 
orresponding to the reg-ularised partitions of all multi-partite numbers of given 
ontent,is a weighty problem. I have veri�ed to a high order that thegenerating fun
tion of the 
omplete system is(1� x)�1(1� x2)�2(1� x3)�3(1� x4)�4 � � � ad inf.;and, so far as my investigations have pro
eeded, everything tendsto 
on�rm the truth of this 
onje
ture."In Se
tion 2, we shall look at Ma
Mahon's e�orts to develop a 
al
ulus(later to be named Partition Analysis) that he hoped would allow him toprove his 
onje
ture. In Se
tion 3 we sket
h our proof of all of Ma
Mahon's
onje
tures. We 
on
lude with a brief a

ount of our dis
overies made usingour Mathemati
a implementation of Partition Analysis, the pa
kage Omegawhi
h is freely available at [24℄.2 Partition Analysis { the beginningMa
Mahon [22, p. 1068℄ begins with some very simple problems. As anexample, he 
onsiders plane partitions that only have 1's and 2's as parts3



and have only two 
olumns. E.g., 2 22 22 11 111 (1)
The generating fun
tion for su
h partitions isXn1;n2;m1;m2=0n1=n2n1+m1=n2+m2 x2n1+2n2+m1+m2 :Here n1 
ounts the number of 2's in the �rst 
olumn, n2 the number in these
ond; m1 
ounts the number of 1's in the �rst 
olumn, m2 the number inthe se
ond.He then utilizes an idea (tra
eable ba
k to Cayley in invariant theory [22,p. 1142℄) of 
oding the inequalities on the indi
es by 
onsideringXn1;n2;m1;m2=0 x2n1+2n2+m1+m2an1+m1�n2�m2bn1�n2 ;where all terms with negative exponents on either a or b will be thrown outand in all other terms a and b are set to 1. This devi
e immediately allowsall the series to be summed by the geometri
 series to1(1� xa) �1� xa� (1� abx2) �1� x2ab � = 1(1� xa) �1� xa� (1� x4)�( 11� abx2 + x2ab1� x2ab ) :Now the se
ond term inside the f g has only negative powers of b and so 
anbe dropped from 
onsideration. The �rst term has only positive powers of b,and so we may set b = 1 in this term. Thus we have redu
ed the problem to
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onsidering 1(1� xa) �1� xa� (1� x4)(1� ax2)= 1(1� x4) �1� xa� (1� x) � 11� ax � x1� ax2�= 1(1� x4)(1� x)� � 11� x2 � 11� ax + xa1� xa�� x1� x3 � 11� ax2 + xa1� xa �� :As in the elimination of b, this redu
es to1(1� x4)(1� x) � 1(1� x2)(1� x) � x(1� x3)(1� x2)�= 1(1� x)(1� x2)2(1� x2) ;a result whi
h, as Ma
Mahon points out, is not obvious [22, p. 1068℄.Now two things are 
lear. First, one must streamline this method whi
his 
umbersome even in this simple example, and one must somehow introdu
ea simple notation for the deletion of terms with negative exponents on a andb. Ma
Mahon turns his attention to these requirements in [19℄, and �nally inhis magnum opus [21, Vol. II, Se
. VIII℄, he has redu
ed the above treatmentto the following. First he de�nes the omega operator [21, Vol. II, p. 92℄
= Xn1;:::;nj=�1A(n1; n2; : : : ; nj)�n11 �n22 : : : �njj = Xn1;n2;:::;nj=0A(n1; n2; : : : ; nj);where A(n1; n2; : : : ; nj) is generally some rational fun
tion of variables likex; y or z:Then Ma
Mahon prepares a list of valid omega evaluations [21, Vol. II,p. 102℄ in
luding
= 1(1� �x)(1� �y)(1� z�) = 1� xyz(1� x)(1� y)(1� xz)(1� yz) : (2)Hen
e
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Xn1;n2;m1;m2=0n1=n2n1+m1=n2+m2 x2n1+2n2+m1+m2
= 
= 1(1� x�2)�1� x�2� (1� �1�2x2)�1� x2�1�2�= 
= 1(1� x�2)�1� x�2� (1� �2x2)(1� x4)(by (2) with x, y, z repla
ed by �2x2; 0; x2�2 , resp.)= 1(1� x4)
= 1(1� x�2)(1� x2�2)�1� x�2�= 1(1� x4) � (1� x4)(1� x)(1� x2)(1� x2)(1� x3)(by (2) with x, y, z repla
ed by x; x2; x, resp.)= 1(1� x)(1� x2)2(1� x3) :Ma
Mahon 
learly hoped to hone this tool into one that 
ould prove his
onje
tures on plane partitions. Clearly the problems 
an all be set up in thelanguage of his Partition Analysis. However, he was unable to develop thisma
hinery adequately. Sadly he sets up the general problem [21, Vol. II, p.186℄, but is for
ed to 
on
lude: \Our knowledge of the 
 operation is notsuÆ
ient to enable us to establish the �nal form of result."In the next se
tion, we des
ribe the work in [12℄ where we have over
omeMa
Mahon's diÆ
ulties.3 Partition Analysis | the dreamIn our e�orts to make Ma
Mahon's dream 
ome true the Omega pa
kage[24℄ has played a de
isive role. Remarkably, Ma
Mahon had already beenaware of the algorithmi
 essen
e of Partition Analysis; see Se
tion VIII of[21, Vol. 2, pp. 111{114℄ des
ribing the \method of Elliott". However, 90years before 
omputer algebra systems emerged he was 
on�ned to use histe
hnique essentially in the form of a table look-up method. After the �rsta
hievements of revitalizing Partition Analysis, [1℄ and [2℄, we have pursued6



the proje
t of repla
ing Ma
Mahon's transformation and elimination rules forhis omega operator by a deterministi
 algorithmi
 pro
edure. Subsequentlywe have implemented these algorithms in the Mathemati
a system and 
alledthe 
orresponding pa
kage \Omega". For a des
ription of this work and fora variety of new appli
ations we refer to [3℄ { [12℄.As an illustration we show how the example dis
ussed in Se
tion 2 
anbe treated with Omega in a fully automati
 fashion. We initialize by loadingthe pa
kageIn[1℄:=Omega2.mFollowing Ma
Mahon's terminology, the �rst step is to 
ompute the \
rudegenerating fun
tion". To this end one has only to input the problem in aform whi
h is very 
lose to the usual mathemati
al syntax. (All summationparameters are assumed to be non-negative, if not spe
i�ed otherwise.)In[2℄:= Crude = OSum[x2n1+2n2+m1+m2 ; fn1 � n2; n1+m1 � n2+m2g;�℄Out[2℄= 
��1;�2 1(1� x�2 )(1� x2�1�2 )(1�x�2)(1�x2�1�2)Finally the elimination of the � variables is 
arried out by the pro
edure
allIn[3℄:= OR[Crude℄Eliminating �1...Eliminating �2...Out[3℄= 1(1�x)(1�x2)2(1�x3)Note: During the 
omputation the pa
kage tells the user in whi
h orderthe elimination of the � variables is 
arried out.To present a brief a

ount of how Ma
Mahon's dream has 
ome true weneed a 
ouple of de�nitions.Given an r � 
 matrix X = (xi;j) we de�nepr;
(X) := X(ai;j )2Mr;
xa1;11;1 � � �xa1;
1;
 � � �xar;1r;1 � � �xar;
r;
where Mr;
 
onsists of all r�
 matri
es over non-negative integers ai;j su
hthat ai;j � ai;j+1 and ai;j � ai+1;j: Hen
e pr;
(X) is the generating fun
tionfor all plane partitions with at most r rows and 
 
olumns. In pr;
(X),setting all the xi;j to x produ
es the 
orresponding enumerative generating7



fun
tion whi
h we denote by qr;
(x). The limiting 
ase r; 
!1 
orrespondsto Ma
Mahon's original 
onje
ture [22, pp. 1064 { 1065℄ 
ited in Se
tion 1,namely q1;1(x) = 1Yk=1 1(1� xk)k : (3)In [18℄ Ma
Mahon also 
onsidered the 
ase where r and 
 are set to
on
rete integers. His 
omputations led him to 
onje
ture thatqr;
(x) = 1Xn=0Pr;
(n)xn = rYi=1 
Yj=1 11� xi+j�1 (4)where Pr;
(n) denotes the number of plane partitions of n with at most rrows and 
 
olumns. Obviously, for r; 
!1 this turns into (3).In our attempt to give a possible explanation of why Ma
Mahon hadfailed to prove (4) with his method, we �rst have to des
ribe how PartitionAnalysis would work on su
h problems in prin
iple.The usual heuristi
s approa
h to prove (4) by means of Partition Analysiswould be as follows: one tries to pro
eed by mathemati
al indu
tion withrespe
t to one of the free parameters, e.g., with respe
t to 
 with r �xed. Tothis end, one applies Partition Analysis to spe
ial instan
es of the problemin order to guess a pattern for the indu
tion step from 
 to 
 + 1. Butin many appli
ations it turns out that the enumerative generating fun
tiondoes not provide suÆ
ient information into the me
hanism of the indu
tion.In su
h situations one often 
an over
ome this problem by 
onsidering thefull generating fun
tion, i.e., the generating fun
tion that 
onstru
ts all theobje
ts in question; see the various examples given in [3℄ { [12℄.To illustrate this point let us 
onsider pr;
(X) with r = 
 = 3. The 
aseq3;3(x) where all the xi;j in p3;3(X) are set to x, 
auses no 
omputationalproblem at all:In[4℄:=OSum[xa11+a12+a13+a21+a22+a23+a31+a32+a33 ;fa11 � a12; a12 � a13; a21 � a22; a22 � a23; a31 � a32; a32 � a33;a11 � a21; a21 � a31; a12 � a22; a22 � a32; a13 � a23; a23 � a33g;�℄Out[4℄= 
��1;�2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12 1(1�x�1�7)(1�x�5�8 )(1�x�3�8�7 )� 1(1�x�2�9�1 )(1� x�6�5�10 )(1�x�4�10�3�9 )(1�x�11�2 )(1� x�6�12 )(1� x�12�4�11 )In[5℄:= OR[%4℄Out[5℄= 1(1�x)(1�x2)2(1�x3)3(1�x4)2(1�x5)8



Despite the fa
t that the Omega pa
kage 
on�rms (4) within a fra
tionof a se
ond, a 
loser inspe
tion shows that in order to exhibit an indu
tionpattern for a Partition Analysis proof of (4) the setting xi;j = 0 is mu
h toorestri
tive.So let us have a look at the full generating fun
tion p3;3(X). The 
rudegenerating fun
tion 
omes out in perfe
t analogy to Out[4℄ above:In[6℄:=OSum[xa1111 xa1212 xa1313 xa2121 xa2222 xa2323 xa3131 xa3232 xa3333 ;fa11 � a12; a12 � a13; a21 � a22; a22 � a23; a31 � a32; a32 � a33;a11 � a21; a21 � a31; a12 � a22; a22 � a32; a13 � a23; a23 � a33g;�℄Out[6℄= 
��1;�2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12 1(1�x11�1�7)(1�x31�5�8 )(1�x21�3�8�7 )� 1(1�x12�2�9�1 )(1� x32�6�5�10 )(1�x22�4�10�3�9 )(1�x13�11�2 )(1� x33�6�12 )(1�x23�12�4�11 )The 
omputation of the full generating fun
tion takes another 
ouple ofse
onds:In[7℄:= OR[%6℄Out[7℄= (1�x211x12x21�x211x12x13x21� � � �+x1411x1212x713x1221x722x223x731x232)=((1� x11)(1� x11x12)(1� x11x12x13)(1� x11x21)(1� x11x12x21)(1�x11x12x13x21)(1�x11x12x21x22)(1�x11x12x13x21x22)(1�x11x12x13x21x22x23)(1 � x11x21x31)(1 � x11x12x21x31)(1 � x11x12x13x21x31)(1 � x11x12x21x22x31)(1� x11x12x13x21x22x31)(1� x11x12x13x21x22x23x31)(1� x11x12x21x22x31x32)(1� x11x12x13x21x22x31x32)(1� x11x12x13x21x22x23x31x32)(1� x11x12x13x21x22x23x31x32x33))However, the problem arising in this 
ase 
onsists in the 
omplexity ofthe resulting rational fun
tion; namely, in order to display the numeratorpolynomial1� x211x12x21 � x211x12x13x21 � � � �+ x1411x1212x713x1221x722x223x731x232in fully expli
it form, one would need more than 30 printed pages!Summarizing, the 
oding of the full generating fun
tion pr;
(X) in termsof the omega operator is straight-forward and has been 
arried out alreadyby Ma
Mahon [21, Vol. II, p. 92℄. But without 
omputer algebra he didnot su

eed in over
oming the 
omputational diÆ
ulties when trying to ob-tain the beautiful produ
t side of (3) , resp. (4), with omega evaluation.Essentially the problem is this: when spe
ifying all the xi;j to x, the un-derlying algebrai
 stru
ture gets lost entirely. If all the xi;j are kept, the
omputational 
omplexity soon gets out of hand.9



Consequently, we used the Omega pa
kage in a heuristi
 sear
h to �nda substitution for the xij whi
h, on one side, provides more insight into theunderlying Partition Analysis indu
tion pattern than qr;
(x), and on the otherside, for whi
h the elimination of the �i results in a more feasible rationalfun
tion than for the general pr;
(X).Finally, after various attempts our strategy turned out to be su

essful.More pre
isely, we found that the substitutionxij ! zj�i (5)has all the properties desired. First, the elimination of the �i results in arational fun
tion that fa
tors ni
ely for all 
hoi
es of rand 
. For instan
e,for r = 
 = 3,In[8℄:=OSum[za110 za121 za132 za21�1 za220 za231 za31�2 za32�1 za330 ;fa11 � a12; a12 � a13; a21 � a22; a22 � a23; a31 � a32; a32 � a33;a11 � a21; a21 � a31; a12 � a22; a22 � a32; a13 � a23; a23 � a33g;�℄Out[8℄= 
��1;�2;�3;�4;�5;�6;�7;�8;�9;�10;�11;�12 1(1�z0�1�7)(1� z�2�5�8 )(1� z�1�3�8�7 )� 1(1� z1�2�9�1 )(1� z�1�6�5�10 )(1� z0�4�10�3�9 )(1� z2�11�2 )(1� z0�6�12 )(1� z1�12�4�11 )In[9℄:=OR[%8℄Out[9℄= 1=((1� z0)(1� z�1z0)(1� z�2z�1z0)(1� z0z1)(1� z�1z0z1)(1� z�2z�1z0z1)(1� z0z1z2)(1� z�1z0z1z2)(1� z�2z�1z0z1z2))Se
ond, and more importantly, in this situation Ma
Mahon's methodof Partition Analysis works in a way that allows to set up an elementaryindu
tion proof for the 
orresponding plane partition result whi
h originallyis due to Emden Gansner. His theorem [16, Thm. 4.2℄ not only generalizes (4)but also Stanley's tra
e theorem [26, Thm. 2.2℄ whi
h was also 
onje
turedby Ma
Mahon in [18℄. In order to state Gansner's theorem we need a 
oupleof de�nitions.Let � = (ai;j) be an r�
 matrix over non-negative integers ai;j su
h thatai;j � ai;j+1 and ai;j � ai+1;j; i.e., � represents a plane partition of n :=�ijaij with at most r rows and 
 
olumns. For any integer k we de�ne thek-tra
e tk of � by tk := �ai;j where the sum runs over all i; j su
h that k =j � i. E.g., the tra
es of the plane partition of 30 in Se
tion 1 are: t�2 =4, t�1 = 7,t0 = 10, t1 = 6, and t2 = 3.If Tr;
(t�r+1; :::; t�1; t0; :::; t
�1;n) denotes the number of plane partitionsof n with at most r rows and 
 
olumns, and with k-tra
e tk,�r + 1 � k �
� 1, Gansner's theorem reads as follows:10



1Xn=0 1Xt�r+1=0 ... 1Xt
�1=0Tr;
 (t�r+1; ...; t�1; t0; ...; t
�1;n)� zt�r+1�r+1 � � � zt�1�1 zt00 � � � zt
�1
�1 xn= rYi=1 
Yj=1 11� z�i+1z�i+2 � � � zj�1xi+j�1 :Obviously, z�r+1 = z�r+2 = ::: = z
�1 = 1 gives (4); setting all zk = 1,ex
ept z0, gives Stanley's tra
e theorem [26, Thm. 2.2℄.It is immediate that pr;
(X) for X = (xi;j) with xij := zj�i 
an berewritten as the multiple series in Gansner's theorem. Our Partition Analysisproof of the fa
t that it �nds the produ
t representation above 
an be foundin [12℄.Summarizing, we want to note that our proof in [12℄ uses only basi
 powerseries arithmeti
; essentially it pro
eeds by 
omplete indu
tion involving re-
ursively de�ned rational fun
tions. So our Partition Analysis approa
h is
ompletely di�erent from Gansner's original proof whi
h is based on a 
om-binatorial bije
tion of Burge [14℄. This bije
tion is one of those variations ofthe S
hensted-Knuth 
orresponden
e whi
h Burge derived in order to give
ombinatorial proofs for a 
olle
tion of S
hur fun
tion identities due to D.E.Littlewood.4 Con
lusionThe implementation of Ma
Mahon's Partition Analysis in the Omega pa
k-age has provided the exploratory tool for our dozen papers on this topi
 [1℄to [12℄. It is important to point out that there have been a number of par-allel and 
omplementing proje
ts that 
an be viewed as having goals similarto Ma
Mahon's. An in
omplete list would in
lude: (1) LattE [15℄, an im-plementation of the work of A. Barvinok and J. Pommersheim [13℄, (2) theMAPLE pa
kage designed by J. Stembridge [27℄ to implement the dis
overiesof R. Stanley [25℄ whi
h in turn were based on another Ma
Mahon paper [20℄.Re
ently G. Xiu [28℄ has made 
ontributions based on his work on partialfra
tions.In the future we hope to explore further with Omega. Also we are modify-ing Omega to treat problems in whi
h not only linear Diophantine inequalitiesare 
onsidered but also divisibility properties of the summands are treated.Toward this goal, we have developed an extension of Partition Analysis thatallows us to treat the G�ollnitz-Gordon partition fun
tions.11



It is perhaps �tting to 
lose with J. W. L. Glaisher's evaluation [17℄ of[18℄ (printed with permission of the Royal So
iety):\I don't fan
y the paper very mu
h, but it must be printed. Idon't 
are mu
h for a paper on very te
hni
al mathemati
s beingpublished in the Phil. Trans. unless there is something verystriking in it. However, it is one of a series, and they are indeep water now and 
annot go on mu
h farther. I have made myreport be
ause there is no more to be said than that it shouldbe published (though the interesting results are the 
onje
turalones!), the balan
e being on that side."How fortunate we are that Glaisher's la
k of enthusiasm did not 
ausehim to re
ommend against [18℄. Also we 
an 
ongratulate Glaisher on hisre
ognition of the signi�
an
e of Ma
Mahon's 
onje
tures.A
knowledgement. We thank Christian Krattenthaler for pointing outthe fa
t that the substitution (5) we found with Partition Analysis has ledus to a redis
overy of Gansner's theorem.Referen
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