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Abstract

We shall provide an account of MacMahon’s development of a cal-
culational, analytic method designed to produce the generating func-
tion for plane partitions. His efforts did not turn out as he had hoped,
and he had to spend nearly twenty years finding an alternative treat-
ment. This paper provides an account of our retrieval of MacMahon'’s
original dream of using Partition Analysis to treat plane partitions in
general.

1 Introduction

Major P. A. MacMahon's collected papers fill two large volumes [22] and [23].
Among these are seven lengthy works entitled, “Memoir on the theory of the
partitions of numbers, I-VII.”

The first of these [18], also [22, pp. 1026-1080], appeared in 1895 when
MacMahon was President of the London Mathematical Society. It was 65
pages long and was mostly a leisurely account of what MacMahon termed
partitions of multipartite numbers.
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Multipartite numbers are in modern parlance n-tuples of non-negative in-
tegers. For example, (7,5,0,3) is a 4-partite number. Partitions of (7, 5,0, 3)
are direct sums of 4-tuples of non-negative integers that add to (7,5,0,3).
For example,

(7,5,0,3) = (4,1,0,2) + (2,3,0,0) + (1,1,0,1),

or
=(3,3,0,3) 4 (4.2,0.0).

MacMahon considers a variety of combinatorial and geometrical aspects of
such partitions. Of special interest is the classical representation of ordinary,
or unipartite partitions in “Sylvester-graphs” (today called Ferrers graphs).
For example, the unipartite partition of 29 given by

T+74+54+44+44+2,

has the graphical representation

where each row of nodes represents the corresponding part of the partition.

MacMahon then notes [22, p. 1058] that if one has a multipartite partition
in which the Ferrers graph of each part contains the Ferrers graph of the next
(called “the subjacent succession of lines” by him), then one may produce
a three-dimensional analog of the Ferrers graph. Thus if we start with the
“regularised” (i.e., the entries of the tuples involved are weakly decreasing)
multipartite partition

(16,8,6) = (6,4,3)+(6,3,2)+ (4,1,1)
= A+ B+C,

we may regard each of the parts as a unipartite partition, and the respective

Ferrers graphs are
A B C



As MacMahon says [22, p. 1058], “it is clear that we may pile B upon
A, and then C upon B & A, and thus form a three dimensional graph of the
partition”
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In subsequent papers, MacMahon will refer to this three-dimensional
graph as representing the plane partition of 30 given by

643
632
411

He next determines that there are three such partitions of 2, six of 3 and
thirteen of 4. This leads him to the following conjecture [22, pp. 1064-1065];

“The enumeration of the three-dimensional graphs that can be
formed with a given number of nodes, corresponding to the reg-
ularised partitions of all multi-partite numbers of given content,
is a weighty problem. I have verified to a high order that the
generating function of the complete system is

(1—2)""(1—2)2(1 —2*)3 (1 — 2" -+ ad inf,

and, so far as my investigations have proceeded, everything tends
to confirm the truth of this conjecture.”

In Section 2, we shall look at MacMahon's efforts to develop a calculus
(later to be named Partition Analysis) that he hoped would allow him to
prove his conjecture. In Section 3 we sketch our proof of all of MacMahon’s
conjectures. We conclude with a brief account of our discoveries made using
our Mathematica implementation of Partition Analysis, the package Omega
which is freely available at [24].

2 Partition Analysis — the beginning

MacMahon [22, p. 1068] begins with some very simple problems. As an
example, he considers plane partitions that only have 1's and 2’s as parts



and have only two columns. E.g.,
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The generating function for such partitions is

E 12n1+2ny+m1+nm

ni,n2,mi,ma20
niZns
ni-+miZna+ms

Here n; counts the number of 2’s in the first column, n, the number in the
second; m; counts the number of 1’s in the first column, ms the number in
the second.

He then utilizes an idea (traceable back to Cayley in invariant theory [22,
p. 1142)) of coding the inequalities on the indices by considering

E l@n1+2n2+nu4ﬂn2an1+nn4n27nubn17n2

3

ni,n2,mi1,m22>0

where all terms with negative exponents on either a or b will be thrown out
and in all other terms a and b are set to 1. This device immediately allows
all the series to be summed by the geometric series to

1 1

(l—xa)(l—f)(l—abﬁ)(l—ﬁ) B (1—2a)(1—%)(1—a%)

ab
2
X ! —+ %E
1 — abx? 1—% ’

Now the second term inside the { } has only negative powers of b and so can
be dropped from consideration. The first term has only positive powers of b,
and so we may set b = 1 in this term. Thus we have reduced the problem to




considering

1
(1—za)(1—2)(1—a*)(1—aa?)

ﬂx?@lgﬂlm{llm12ﬁ}

(1—2%(1 -2

W L, x Lo,
1—22\1—-ax 17 1—a3 \1—ax? 1-2 '

As in the elimination of b, this reduces to

1 1 T
(1—a*)(1 - {(1 —2?)(1—-2) (1—a3)(1 —962)}

1
(1—2)(1 —22)2(1 — a2)’

a result which, as MacMahon points out, is not obvious [22, p. 1068].

Now two things are clear. First, one must streamline this method which
is cumbersome even in this simple example, and one must somehow introduce
a simple notation for the deletion of terms with negative exponents on a and
b. MacMahon turns his attention to these requirements in [19], and finally in
his magnum opus [21, Vol. 11, Sec. VIII], he has reduced the above treatment
to the following. First he defines the omega operator [21, Vol. II, p. 92]

ni y\n2 ngo__
(>2 E A(ng,ng, . ng) ATASE LN = g A(ny,ng, ..., ny),
= ni,.e., nj=-—00 n1,N2,..., nj ZU
where A(ny,no,...,n;) is generally some rational function of variables like
X, or .

Then MacMahon prepares a list of valid omega evaluations [21, Vol. II,
p. 102] including
1 1 —ayz
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Hence



E 12n1+2ny+m1+nm

ni,n2,mi1,mz2>0
ni2ns
ni+mi2na+ma

1

Z1—ak) (1= £) (1= Mae?) (1- 32%5)
1

(1— ) (1 - A—Z) (1= Moz2)(1 — z)
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(by (2) with z, y, z replaced by A\p22,0, %, resp.)
1 1

(1 —x4>Z(1 — o) (1 — 22),) (1 _ /\x_2>

1 (1 -z
(1—at) (1 —2)1—2?)(1—2?)(1-2%)

|
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(by (2) with z, y, 2z replaced by xz, 2%, z, resp.)
1
(1—x2)(1 —a2)2(1 —a3)

MacMahon clearly hoped to hone this tool into one that could prove his
conjectures on plane partitions. Clearly the problems can all be set up in the
language of his Partition Analysis. However, he was unable to develop this
machinery adequately. Sadly he sets up the general problem [21, Vol. II, p.
186], but is forced to conclude: “Our knowledge of the Q operation is not
sufficient to enable us to establish the final form of result.”

In the next section, we describe the work in [12] where we have overcome
MacMahon’s difficulties.

3 Partition Analysis — the dream

In our efforts to make MacMahon’s dream come true the Omega package
[24] has played a decisive role. Remarkably, MacMahon had already been
aware of the algorithmic essence of Partition Analysis; see Section VIII of
[21, Vol. 2, pp. 111-114] describing the “method of Elliott”. However, 90
years before computer algebra systems emerged he was confined to use his
technique essentially in the form of a table look-up method. After the first
achievements of revitalizing Partition Analysis, [1] and [2], we have pursued
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the project of replacing MacMahon’s transformation and elimination rules for
his omega operator by a deterministic algorithmic procedure. Subsequently
we have implemented these algorithms in the Mathematica system and called
the corresponding package “Omega”. For a description of this work and for
a variety of new applications we refer to [3] — [12].

As an illustration we show how the example discussed in Section 2 can
be treated with Omega in a fully automatic fashion. We initialize by loading
the package

In[1] :=Omega2.m

Following MacMahon’s terminology, the first step is to compute the “crude
generating function”. To this end one has only to input the problem in a
form which is very close to the usual mathematical syntax. (All summation
parameters are assumed to be non-negative, if not specified otherwise.)

In[2] := Crude = OSum[z?"t+2n2tmitmz Lo, > po ni+my > ng+ma kA

Out[2]= © —t
> (1)1 555 ) (1-220)(1-22A1 ha)
A1sAg

Finally the elimination of the A\ variables is carried out by the procedure
call

In[3]:= OR[Crude]
Eliminating A;...
Eliminating As...

Out [3]= gy

Note: During the computation the package tells the user in which order
the elimination of the A variables is carried out.

To present a brief account of how MacMahon’s dream has come true we
need a couple of definitions.

Given an r x ¢ matrix X = (x; ;) we define

l— al,l R al,C DY aT',l « e a’I‘,C
pT,C<X) T § xl,l xl,c xr,l xr,c
(aij)EMr,c

where M, . consists of all 7 X ¢ matrices over non-negative integers a; ; such
that a;; > a; j41 and a;; > a;41;. Hence p,.(X) is the generating function
for all plane partitions with at most » rows and ¢ columns. In p,.(X),
setting all the x; ; to x produces the corresponding enumerative generating



function which we denote by ¢, .(x). The limiting case r, ¢ — oo corresponds
to MacMahon’s original conjecture [22, pp. 1064 — 1065] cited in Section 1,
namely

S|
wool®) = | —- 3
k=1
In [18] MacMahon also considered the case where r and ¢ are set to
concrete integers. His computations led him to conjecture that

i) = P =TT (1

i=1j=1
where P, .(n) denotes the number of plane partitions of n with at most r
rows and ¢ columns. Obviously, for r, ¢ — oo this turns into (3).

In our attempt to give a possible explanation of why MacMahon had
failed to prove (4) with his method, we first have to describe how Partition
Analysis would work on such problems in principle.

The usual heuristics approach to prove (4) by means of Partition Analysis
would be as follows: one tries to proceed by mathematical induction with
respect to one of the free parameters, e.g., with respect to ¢ with r fixed. To
this end, one applies Partition Analysis to special instances of the problem
in order to guess a pattern for the induction step from ¢ to ¢+ 1. But
in many applications it turns out that the enumerative generating function
does not provide sufficient information into the mechanism of the induction.
In such situations one often can overcome this problem by considering the
full generating function, i.e., the generating function that constructs all the
objects in question; see the various examples given in [3] — [12].

To illustrate this point let us consider p,.(X) with » = ¢ = 3. The case
¢33(r) where all the z;; in p33(X) are set to x, causes no computational
problem at all:

- a1 +aia+aiz+asi+asa+azz+azi+aza+a
In[4]._osum|:x 11 121T@13+a21 1+a22+a23+a31 1032 33’

{a11 > a12, 412 > @13, a21 > agg, azn > ass, azy > ase, aze > ass,
a1 > ag1, Aoy > 31, (12 > Gga, A2 > A3, (13 > (a3, A23 > (33 },A]

1
Out [4]= Q
> (1—93,\1,\7)(1—””;85)(1_%)
A1:A2,A3,24,A5,26,A7,A8:29:A10:A 11,212
% 1

71‘X2X9 - g 71‘X4X10 71%11 - z - X190
(1 Al )1 *5k10)(1 AzAg )1 A9 )1 *skm)(l *4A11)

In[5]:= OR[%4]

_ 1
Out[8]= aararraar i)
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Despite the fact that the Omega package confirms (4) within a fraction
of a second, a closer inspection shows that in order to exhibit an induction
pattern for a Partition Analysis proof of (4) the setting x; ; = 0 is much too
restrictive.

So let us have a look at the full generating function p33(X). The crude
generating function comes out in perfect analogy to Out[4] above:

a a a [ a [ Q. a3y a
In[6] :=08un [af} oy alyafd o3 3asy afasy
{a11 > a12, 412 > @13, 21 > agg, azp > a3, Az > ase, aze > ass,
a1y > g1, A9y > A3, (12 > Gg2, A2 > A3, G13 > (a3, (23 > (33 },A]

1
Out[6]= Q X XX
> (=211 A1 A7) (1— S5L28) (1 2210858 )
A1,A2,23,24,25,26,A7,28,29,310:211, 12
% 1

z12A2Ag 3276 2222410 1371 r33 223719
(1- X1 )(1_>\5>\10)(1_ A3Xg (1= X2 )(1_A6>\12)(1_ A4>\11)

The computation of the full generating function takes another couple of
seconds:

In[7]:= OR[%6]

_ 2 2 14,12,.7 12,7 .2 .7 .2
Out [7]1= (1 —afyz19w21 — X7 T12T13T21 — - -+ + 95111512%3%1%2%3%1%2)/

((1 - 51311)(1 - $11$12)(1 - $11$12$13)(1 - 5131151321)(1 - $11$12$21)
(1—$11$12$13$21)(1—$11$12$21$22)(1—$11$12$13$21$22)(1—$11$12$13$21$22$23)
(1 - 96115132151331)(1 - $11$12$21$31>(1 - $119€12$13$21$31)(1 - $11$12$21$22$31>
(1 - I11I12I13I21I22$31>(1 - $11$12$13I21I22I23I31)(1 - $11$12$21$22$31$32)
(1 - I11I12I13I21I22$31$32>(1 - $11$12I13I21I22I23I31I32)

(1 - 513115131233139521$22$23$31$32$33))

However, the problem arising in this case consists in the complexity of
the resulting rational function; namely, in order to display the numerator
polynomial

1 — 2} @101 — 27 219% 130001 — - T TEBT TG00 05 75

in fully explicit form, one would need more than 30 printed pages!

Summarizing, the coding of the full generating function p, .(X) in terms
of the omega operator is straight-forward and has been carried out already
by MacMahon [21, Vol. II, p. 92]. But without computer algebra he did
not succeed in overcoming the computational difficulties when trying to ob-
tain the beautiful product side of (3) , resp. (4), with omega evaluation.
Essentially the problem is this: when specifying all the x;; to x, the un-
derlying algebraic structure gets lost entirely. If all the z;; are kept, the
computational complexity soon gets out of hand.



Consequently, we used the Omega package in a heuristic search to find
a substitution for the z;; which, on one side, provides more insight into the
underlying Partition Analysis induction pattern than ¢, (), and on the other
side, for which the elimination of the \; results in a more feasible rational
function than for the general p, .(X).

Finally, after various attempts our strategy turned out to be successful.
More precisely, we found that the substitution

Tij = Zj—j (5)
has all the properties desired. First, the elimination of the \; results in a

rational function that factors nicely for all choices of rand c¢. For instance,
for r = ¢ =3,

In[8] :=0Sum [26111 ZlengZafll 26122 Zil23 Zg321 Zi312 261337
{a11 > a12, 412 > @13, a21 > agg, azg > ass. azy > ase, aze > ass,
a1 > g1, Aoy > a3, 12 > Ao, A2 > A3, (13 > (a3, A23 > (33 },A]

1
Dut [8]= Q Z_ o\ P o\
> (1=z0 M A7) (1- 2528 )(1- 2240028,
A1:A2,A3,24,A5,26,A7,A8:29:A10:A 11,212
% 1

_ 212909\ 1 #2126 \q_ 20MaX10 \(1_ 22 M1y/_ _ 20 _ 212
a Al )1 *5k10)(1 RERY )1 Ag a Aa*u)(l A4*11)

In[9] :=0R[%8]

Out[91= 1/((1 — 20)(1 — 2_120)(1 — 222 120)(1 — 2021)(1 — z_12021)
(1 — 2_22_12021>(1 — 202122>(1 — 2_1202122)(1 — 2_22_1202122))

Second, and more importantly, in this situation MacMahon’s method
of Partition Analysis works in a way that allows to set up an elementary
induction proof for the corresponding plane partition result which originally
is due to Emden Gansner. His theorem [16, Thm. 4.2] not only generalizes (4)
but also Stanley’s trace theorem [26, Thm. 2.2] which was also conjectured
by MacMahon in [18]. In order to state Gansner’s theorem we need a couple
of definitions.

Let m = (a; ;) be an rxc matrix over non-negative integers a; ; such that
a;; > a1 and a;; > a;41 5 l.e., mrepresents a plane partition of n =
Yijai; with at most r rows and ¢ columns. For any integer k& we define the
k-trace tj, of ™ by t; := ¥a;; where the sum runs over all 4, j such that £ =
j — 1. E.g., the traces of the plane partition of 30 in Section 1 are: t_, =
4, t_1 = 7,t0 = ]_O, t, = 6, and ty = 3.

If T (g1, oon to1i tg, .oy t—1; m) denotes the number of plane partitions
of n with at most r rows and ¢ columns, and with k-trace t,,—r +1 < k <
¢ — 1, Gansner’s theorem reads as follows:

10



t_rt1 t_1 _to te—1
T R IR

T c 1
- HHl—z, it

. 27 . e Z:
=1 j=1 1+1 1+2 i

Obviously, z_,11 = 24490 = ... = z._1 = 1 gives (4); setting all z, =1,
except zg, gives Stanley’s trace theorem [26, Thm. 2.2].

It is immediate that p,.(X) for X = (x;;) with x;; := 2;_; can be
rewritten as the multiple series in Gansner’s theorem. Our Partition Analysis
proof of the fact that it finds the product representation above can be found
in [12].

Summarizing, we want to note that our proof in [12] uses only basic power
series arithmetic; essentially it proceeds by complete induction involving re-
cursively defined rational functions. So our Partition Analysis approach is
completely different from Gansner’s original proof which is based on a com-
binatorial bijection of Burge [14]. This bijection is one of those variations of
the Schensted-Knuth correspondence which Burge derived in order to give
combinatorial proofs for a collection of Schur function identities due to D.E.
Littlewood.

4 Conclusion

The implementation of MacMahon’s Partition Analysis in the Omega pack-
age has provided the exploratory tool for our dozen papers on this topic [1]
to [12]. It is important to point out that there have been a number of par-
allel and complementing projects that can be viewed as having goals similar
to MacMahon’s. An incomplete list would include: (1) LattE [15], an im-
plementation of the work of A. Barvinok and J. Pommersheim [13], (2) the
MAPLE package designed by J. Stembridge [27] to implement the discoveries
of R. Stanley [25] which in turn were based on another MacMahon paper [20].
Recently G. Xiu [28] has made contributions based on his work on partial
fractions.

In the future we hope to explore further with Omega. Also we are modify-
ing Omega to treat problems in which not only linear Diophantine inequalities
are considered but also divisibility properties of the summands are treated.
Toward this goal, we have developed an extension of Partition Analysis that
allows us to treat the Gollnitz-Gordon partition functions.
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It is perhaps fitting to close with J. W. L. Glaisher’s evaluation [17] of

[18] (printed with permission of the Royal Society):

“I don’t fancy the paper very much, but it must be printed. I
don’t care much for a paper on very technical mathematics being
published in the Phil. Trans. unless there is something very
striking in it. However, it is one of a series, and they are in
deep water now and cannot go on much farther. I have made my
report because there is no more to be said than that it should
be published (though the interesting results are the conjectural
ones!), the balance being on that side.”

How fortunate we are that Glaisher’s lack of enthusiasm did not cause

him to recommend against [18]. Also we can congratulate Glaisher on his
recognition of the significance of MacMahon’s conjectures.

Acknowledgement. We thank Christian Krattenthaler for pointing out

the fact that the substitution (5) we found with Partition Analysis has led
us to a rediscovery of Gansner’s theorem.
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