PARTITION ANALYSIS XII: PLANE PARTITIONS

GEORGE E. ANDREWS AND PETER PAULE

ABSTRACT. MacMahon developed Partition Analysis as a calculational and
analytic method to produce the generating function for plane partitions. His
efforts did not turn out as he had hoped, and he had to spend nearly twenty
years finding an alternative treatment. This paper provides a detailed account
of our retrieval of MacMahon’s original project. One of the key results ob-
tained with Partition Analysis is an extension of a theorem of Gansner which
generalizes Stanley’s famous trace theorem.

1. INTRODUCTION

This is the twelfth paper in this series on MacMahon’s Partition Analysis. It has
been our belief from the beginning that MacMahon’s ideas could be best exploited
by computer implementation, and that was the genesis of our Partition Analysis
project. Our algorithmic version of MacMahon’s method has been implemented in
the form of the Mathematica package Omega which is freely available via the web;
see [20].

In the back of our minds was always MacMahon’s melodramatic experience with
his own invention. He created Partition Analysis solely to treat the generating
functions associated with various classes of plane partitions. This specific project
failed, and in this paper, we shall retrieve MacMahon’s original project and ob-
tain, using only Partition Analysis, an extension, Theorem 5.6, of a general plane
partition theorem originally due to E. R. Gansner [14, Thm. 4.2]. For further
remarks on plane partition history, in particular, on how Partition Analysis has led
us to a rediscovery and to an alternative proof of Gansner’s theorem, we refer the
interested reader to [7].

The initial stage of MacMahon’s investigations is chronicled by him in [16] where
he refines the study of partitions and compositions of multipartite numbers into
the theory of plane partitions. On page 658 of [16], MacMahon first states as an
unproven assertion that the generating function for plane partitions is, in fact,

o 1
(1.1) H —_.
n=1 (1 - qn)n
This function has the series expression
L4+q+3¢" +6¢°+13¢" + - .
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Thus there are 13 two-dimensional or plane partitions of 4, namely:

1
2 11
3 2 21 111 11 1
4,31, 7,22, 5,211, [0, 1. 111 0, 0L,
1 L

Indeed, MacMahon proceeds directly to a nascent form of what he will later
perfect into Partition Analysis, a method inspired by earlier work of Cayley [10] in
invariant theory. His object is clear from this early stage: One should be able to
prove general theorems on plane partitions with Partition Analysis.

Sadly, after two memoirs [16], [17] on developing Partition Analysis for this
problem, MacMahon eventually concludes [18, Vol. II, p. 187] with the following
comment concerning (2, the central operator of Partition Analysis, and the gener-
ating function for plane partitions with at most m rows and [ columns:

“Our knowledge of the 2 operation is not sufficient to enable us to establish the
final form of result. This will be accomplished by the aid of new ideas which will
be brought forward in the following chapters.”

The “new ideas” did, in fact, allow MacMahon to establish his generating func-
tion conjecture. Subsequently, R. P. Stanley [21], [23, Ch. 7], inspired by MacMa-
hon’s beginning [18, Vol. II, Art. 495], developed these latter methods into a
powerful combinatorial tool, (P,w)-partitions. Stanley provides an extensive ac-
count of his researches in Chapter 7 of [23].

Stanley’s treatment of plane partitions also keeps track of the trace of the par-
tition [23, p. 365]. For example, the plane partition

2 2
1

W = Ot
N =

(1.2) T =

N W Ot Ot

of 42 has trace 5 +4 + 2 = 11, the sum of the entries on the main diagonal.

Stanley’s trace theorem [23, Thm. 7.20.1] (a slightly different version of it is given
in [22, Thm. 2.2]) can be extended either by utilizing combinatorial properties of
the Burge correspondence, as done by Gansner [14], or by the Partition Analysis
treatment that we shall present in the remainder of this paper. Namely, there are
lots of diagonals besides the main diagonal. Following Gansner [14], we shall label
all these diagonals with integer numbers where the main diagonal is labeled with
0. Starting with label 1, the diagonals above the main diagonal are labeled with
positive integers in ascending order. Starting with label —1, the diagonals below
the main diagonal are labeled with negative integers in descending order.

More formally, one can specify a plane partition 7 as an r x ¢ matrix 7 = (a;, ;) of
non-negative integers a; ; which are weakly decreasing in rows and columns. (When
writing concrete examples of plane partitions, the 0’s are often suppressed as e.g.
in (1.2).) Then for integer k with —r+1 < k < ¢—1 the k-trace try(7) of 7 = (a; ;)
is defined as

(1.3) trp(m) = Y aiy.
1<i<r
1Z5e
j—i=k
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For example, for m as in (1.2) we have tro(w) = 11, try(m) = 9, tr_1(7) = 8,
tra () = 5, tr—a(7) = 3, etc.
We will also use the standard abbreviation || for the sum of all elements of =,
ie.,
c—1

| = Z a;j = Z try (7).

1<i<r k=—r+1
135<e

We denote by P, . the set of all plane partitions with < r rows and < ¢ columns.
In addition, we define 7 c(t_y41,...,—1;%0,...,tc—1;n) to be the number of plane
partitions 7 in P, . with |7| = n and with trace try(7) = t; in the kth diagonal,
—r <k <e¢,and

Pr7c($—r+1a sy L1505 - -+ 3 Le—13 Q) =
00 oo 00 c—1
§ § § . . t
Tr,c(t77-+17...7t71,t07...7t571’n)qn H $kk.
n=0%t_,41=0 te—1=0 k=—r+1

Using only Partition Analysis we shall extend and prove Gansner’s theorem [14,
Thm.4.2]:

Theorem G. For integers r,¢ > 1,

r o c
1
/Pr,c($77’+1a"'axfl;x():"':xcfl;q) = HH 1—2

1T —ig2 T

To illustrate, we provide the power series expansion in the case r = ¢ = 4 with
the relevant plane partitions listed below each term:

1 +x0q¢ +(z_1m0 +z0m1 +23)¢

1
1%} 1 1 11 2
+(z 9 120 +T_ 12071 +T 22 +moTime +2ir1 +23)¢°
1
1 1 2 111 21 3
1 1
1
+(£E_3£E_QCU_1ZEO +T_2T_1T0x1 —l—a:_gm_lsng —l—a:%la:% +Tr_1ToT1T2
1
1 11 2 2 111
1 1 1 2 1
1 1 1
+2r_123x1  +r_12) Aworimozsy +wdTime +adr? +adm +:U3)q4 +-
21 11 3
1 11 1 1111 211 22 31 4

We note that Gansner’s Theorem G not only generalizes (1.1), but also Stanley’s
trace theorem [22, Thm. 2.2].

To make this paper as self-contained as possible, we present in Section 2 a brief
account on the way how MacMahon’s method of Partition Analysis works. In
Section 3 we introduce rational function families Q¥ and R} which together with
various symmetry properties will be used throughout the rest of the paper. In
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Section 4 we exhibit important connections between 3 and R: which will be used
in the proof of our main result, Theorem 5.4. In Section 5 our main theorem,
Theorem 5.4, is introduced together with some corollaries. The first consequence is
an elegant special case, Theorem 5.5, which turns out to be equivalent to Gansner’s
Theorem G stated in the Introduction; see Corollary 1. Then Theorem 5.6 is
derived as a reformulation of Theorem 5.4 under a special substitution of variables.
Finally, using the product representation (5.7) of a certain Q}, a simple instance of
Theorem 5.6 is given in the form of Corollary 2. It contains as special cases results
by Gansner [14] and Bender and Knuth [8]. In Section 6 the Partition Analysis
proof of Theorem 5.4 is presented. The paper concludes with a few remarks about
what the future of Partition Analysis might be.

2. GENERATING FUNCTIONS AND PARTITION ANALYSIS

In this section we introduce to MacMahon’s method of Partition Analysis and
present various representations of generating functions in terms of MacMahon’s fun-
damental Q> operator. The section concludes with a reduction argument, Lemma
2.5, which is used as a key ingredient for the proof of our main result, Theorem 5.4
in Section 6.

Definition 2.1. Given an m x n matrix X = (z; ;) we define

Pmn(X) =

r11 . Tin
21t T2n
. E : a1 at,n am,1 Am,
pm,n : . : = xl,l ...xl’n ...xm’l men"
’ ’ ’ (ai j)EPm n
Tm,1 e Tm,n

where P, , consists of all m x n matrices (a; ;) over non-negative integers a; ; such
that g, Z Aj, 541 and g, Z Aj41,5-

Hence ppm n(X) is the generating function for all plane partitions with at most
m rows and n columns. For instance, it is easily seen that for m > 1,

1
(=2 0)(I =z 1z21) - (1 = 211220+ T 1)

and, by symmetry, for n > 1,

(2.1) pma(X) =

7

1
M—z1)A—zi1212) (L —z11T12 T1 )

Already for m = n = 2 the numerator is different from 1. To find the rational
function representation of ps»(X) we follow MacMahon [18, Vol. II, p. 183] to
illustrate his method. To this end we recall the definition of the key ingredient of
Partition Analysis, the Omega Operator 2> :

o oo o oo
Q Z Z Ay s ATT - A = Z . Z At s
s1= =—00

~ s1=—00 Sp=—00 =—00 Sp=—

(2.2) p1n(X) =

where the domain of the A, ;, is the field of rational functions over C in several
complex variables and the ); are restricted to a neighborhood of the circle |A;| = 1.
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In addition, the Ay, . 4, are required to be such that any of the series involved is
absolute convergent within the domain of the definition of A;, ., .

It is important to note that throughout the paper the operator > is supposed
to act only on the Greek letters A or u, or on corresponding indexed versions like
A; and p;, or A;; and p; ;. The parameters uneffected by 2> will be denoted by
letters from the Latin alphabet.

Now the first step to compute the closed form of ps2(X) is to derive what
MacMahon called the “crude form” of the generating function:

1,1 T1,2 ai,1,_ai,2 _@a2;1 Q232
P2,2(X) = pap ’ )= E T1,1 T1,3 Toq To o
’ T A\Z21 T22
(ai,;)EPy 2
_ all a12 a21 a22 ai,1—aa 1 ai,2—az2 i1 at,2 a21 as 2
—Q E /\ /\ M1 M2 Ti1 T3 Toq Tog
“a; ;>0
1
(2.3) =0
>

T2, 12, Ti,2M1, Z2, '
(=211 M 101,1) (1 - = 1) (1 -5 2) (1 - szfﬁivz)

Note that the “crude form” in the last line has been obtained by geometric series
summation.

The next step is to eliminate the A and the p variables from the “crude form”.
To this end MacMahon compiled tables of elimination rules like [18, Vol. II, p.
102],

1 B 1
(I—a\)(1-2%) (1-a)(1-ab)

(2.4) 0

MacMahon’s fundamental rules are elementary to prove. For instance, by geo-
metric series expansion the left side of (2.4) equals

QD ANTTa =0 Y Ma T,

T 4,j20 ~5,k20

where the summation parameter ¢ has been replaced by j + k. Finally, 1> sets A
to 1 which completes the proof of (2.4).

Equipped with the above rule, we are in the position to eliminate the A and the
u variables from (2.3). Using (2.4) we eliminate successively A1 1, A21, and py o

1
p22(X) = g _ _ ZTaadea - —
(I —mip,0) (1 p (1= z1a219p,1p0,2) (1 A21i1,2
1
:g s 2,122 2
21 —ziap10) (1 T 1) (I =z 121 20,1 01,2) (1 B m)
1
=0
>

(1—z1,1011) (1 - zl 1) (I—ziaz1211) (1 — 21,121 222,122 2)
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After partial fraction decomposition, (2.4) can be applied again to eliminate 1 1:

—~

p2,2(X)

1

(1—z1,1011) (1 - zf—i) (1—z12) (1 — 21,121 20T2122,2)

\2e)

T1,2

\2e)

(1—211%1,2M1,1) (1 - ﬁi) (1 —212) (1 — 211212221 %2,2)

1
(I—211) (1 —21,172,1) (1 —21,2) (1 — 1,121,2%2,172,2)
Z1,2
(I—2z11212) (1 — 21121 2%21) (1 —212) (1 — 21,121 2%2,1T2,2)
1-— l‘%’ll‘l,g,rg’l

(1—211)1 —211212) (1 —211221) (1 — 21121 0221) (1 — 21171 2221 222)

For increasing m,n > 2 the numerator polynomial of the rational function form
of pm.n(X) is getting more and more complicated. To get a better handle on it, we
follow MacMahon and transform the general py, ,,(X) series into its “crude form”.
To this end we need again to invoke the elimination rule (2.4) and also the following
straightforward generalization for m > 2,

m—1 s -1 1 —1
— _1 . —_— . ? . J—
(2.5) 2(1 a ) 1;[2 (1 azA“> <1 amAm1>
1

(1—a1)(1 —ara2) (1 —ajas - -ap)

)

which is obtained by successive application of (2.4). In addition, it will be conve-
nient to introduce some short-hand notation.

Definition 2.2. For i,j > 1, we define Xi(j) =TT, Xéj) = 1; Agj) =
/\Lj"'/\i,j and A((]]) = 1.

Our first version of a “crude form” of py, »(X) reads as follows.

Lemma 2.3. Given an m x n matriz X = (z;;). Form >1 andn > 2,
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Proof. We code the inequalities a;; > a;j41 by A5 “"*" and ai; > @iy by
i34 Consequently,
Pm.n(X)
— ai,j "‘z [FARIE RS H i, j—ai41,5
=0 > [« I X i
- al ;201<i<m 1<i<m 1<i<m—1
1<j<n 1<j<n—1 1<j<n
1 1
>‘m 1 ,ul n
=Q(1—211 A11 1) <1—$m,1 : 11—z,
> Hm—1,1 M-t
—1 m-—1 -1
1 Ai,lﬂ@l
X |(1-gmp— H 11—z ———
Am,nfllllmfl,n i—2 Mi—1,1
- 1

X

Min - Agbag)
1—x;pp— | | 11—y j———>=
( ’ >\i,n—1,ui—17n> < b A j—1 )

Am.j -1 Nij i -1
1 — T m,) ) ) <1 x; i,jHi,j >
( Y A1 m—1,j 11 I Nig—1 i1 5

2<i<m—1
2<j<n—1

X

by geometric series summation. Simple rearrangement of the factors gives

pm,n(X) = Q(]- —T11 >\1,1 Hl,l)i

m—1 —1 1 —1
X < — Ty, 1A2 1 Hil > (1 - xm,lAm,l )
5 Hi—1,1 Hm—1,1

i=
1 1.5 Mg 1 met Cig Mg mig
n— _ N ¥ i - _ Zij Aiyj ij
(1 A1j-1 MLJ) Hi=2 (1 Xij—1 Nz’—l,j)
1

T Amyj 1 -
_ X _ ¥ ¥
2 (1 Am,j—1 um71,]‘)

x —1m-—1 2 1 -1
1,n i,n in

X 1 _ it 1 _ k) it

< AMon—1 Ml’”) , ( Xin—1 Hi—l,n)

.

which reduces to the right side of (2.6) after using rule (2.5) n times to eliminate
the Hi1, Hi,2, etc., up to Min- O

The product in (2.6) can be reduced further by eliminating all the A,, ; variables.
This gives the following second version of a representation in “crude form”.
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Lemma 2.4. Given an m x n matriz X = (z;;). Form >1 andn > 2,

m—1 1
Pmn(X) = (1- Xr(;) o X’,(?;l))*lg (1 _ Xi(l)Agl))
— =1
m—1n—1 : -1 1 n -1
x <I_X<]> A ) ( x™ )

¢ -1 n—1
i=1 j=2 AEJ : i=1 AE )
n—1 _

(2.7) x (1 ~x ---X£€>A£?_1)

j=1

i=1 i=1 j=2 i
m—1 m \ 7! -
X; (1) (1 !

(-3 (oo

i=1 i

n—1 i)\ (G -1 -1
XA, oy T, X

s ASTY Am-r AR At )

and (2.7) follows after applying (2.5) with respect to all the A, ;. O

The proof of our main theorem, Theorem 5.4 in Section 6, is based on the
following basic reduction lemma which is an immediate consequence of Lemma 2.4.

Lemma 2.5. Form > 1 andn > 1,

T1,1 Ti,n 20 =1
T2,1 T2,n 21
Pm+1,n+1 . , . =120z, H T
: : : 1<i<m+1
Tm+41,1 e Tm+1,n  Zm I<j<n
(2.8)
T1,1 Tin—1 )\Oxl,n
21 T2,n—1 >\1$2,n m 1
. . s ZO v Zi—l
XPmt1.n : .. : : = :
> i Ao Aot
1=
Tm,1 e Tm,n—1 Amflxm,n
Im+1,1 " Tm4+1,n-1 Tm+1,n

Proof. To connect to Lemma 2.4 we introduce the renaming A\, — Xj41,, of vari-
ables. The case n = 1 follows from Lemma 2.4 after applying (2.1) to rewrite

/\1,1$1,1
Pm+1,1

m,1Tm,1
Tm+1,1
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into product form. For n > 2 it is convenient to define

m

_1 m n—1 ) () -1
Hyn =] (1 - X}”AE”) 1 II <1 —xY Aﬁg)
i=1 2 i

i=1 Jj= i

—1 B
X nl_[ (1_X7(73—1"'X7(31—1A%)) 1
j=1

Applying Lemma 2.4 to the right side of (2.8) gives

—1 —1

1 — 20" "Zm H l‘i,j QHm’n 1 —Agg) H ,Tl"j

1<i<m+1 = 1<i<m+1
1<j<n 1<j<n
-1 -1
m AP x ']
X 1- — 1- ENCETE .
i=1 [ A; A J

Finally it is easy to check that applying Lemma 2.4 to left side of (2.8) gives the
same expression. O

3. RATIONAL FUNCTIONS AND SYMMETRY

In this section we introduce rational functions which together with various sym-
metry properties will be used throughout the rest of the paper.

Definition 3.1. Let A = {49, A1,..., A} and X = {Xp, X1,..., X} be two sets
of variables. For A € A define

X XI_E[X (1 B %)
qn(A) = :
" (1-4)
A'eA\{A}

For example, for A={Aq, 41, A2} and X ={X,, X, },

oy )0 o (o) (%)
= ) T R )

Aq As
Throughout the paper we use the convention [] ., f(4) = 1, hence, for ex-
ample, q?AO}(AO) = 1. Similarly, we will use (J,c, S1 = @; for example, if n = 0
then

etc.

e

(X0, X1,.... X0} = |J {Xi}=w2.
0<i<n—1

Subsequently the rational functions ¢ will play a crucial role. In particular, they
serve as building blocks of two fundamental families of rational functions which we
define next.
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Definition 3.2. Given A = {A4g, 41,..., Apt1} and X = {Xo, X4,..., X} where
n > 0. We define recursively a rational function Q% in 29, 21,..., 2,41 and in the
variables from A and X by

1
<z -
Q{AO}(ZO) T 1= Agz
and
Q% (20,21 Znt1) = !
AV Bl It T AgAr - Apg12021 - Zng
n+1

X Z qfi(Ai)Qi\\{{i"}} (20,215 -5 2n)-
i=0

Definition 3.3. Given A = {Ag, 44,..., App1} and X = {Xg, Xy, ..., X,,} where

3 3

n > 0. We define recursively a rational function R in wg,w,...,w,s1 and
20,215 -+« 5 2nt1 and in the variables from A and X by
1
R?, (wo; 20) =
(a0} (0 20) (1 = Agwo)(1 — Agwozo)
and
Ri{(wo, ..., Wnt1;20,- -, Zn41)

N 1
: 1_AO...An+1w0...wn+120...zn+1

B LD (REE)

T A A\{Ai}(wo,...,wn;zo,...,zn)
i—0 1 Wn+1
- AiwnJrlRi\\{{zn}} (wo, ..., Wp_1, WpWni14i; 20, ..., Zn))

Next we state elementary properties of the Q% and RY that will be used later.
The first one is immediate from the Definitions 3.1 and 3.2.

Lemma 3.4. Given A = {X¢, X1,..., X} and X = {Xo, X4y,..., Xpn-1}, n > 0.
Then

n
Qi(20,21,...,2,) = H(1 —Xo- Xizo-z) .
i=0
For general A and X there is no such factored form but both, Q% and R}, have
important symmetry properties. For such considerations it is convenient to recall
the concept of Lagrange symmetrization.
For a given set A = {Ag, 4;,..., A, } of variables let K (A, z) denote the field of
rational functions in z and in the A; with coefficients from a field K.
Definition 3.5. Given A = {4,,...,4,}, n > 0, let f(Ao,...,An—1;2) be a
rational function from K(A\{A,},z) that is symmetrical in all the variables from
A\{A,}. We denote f in short by faja,3(2). In order to define the Lagrange
symmetrization L(f) of f we proceed as follows. For each i € {0,...,n — 1} let
fa\{4,}(2) denote that rational function from K (A\{A4;},2) which is produced by
replacing in f the variable A; by A,. Obviously each fa\{4,}(2) is symmetrical in
all the variables from A\{A;}, and we define L(f) € K(A) by

: fA\{Ai}(Ai)
L = .
- = laemqay(Ai — 47
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Definition 3.5 introduces Lagrange symmetrization in a version which was studied
extensively by A. Lascoux; see e.g. [15]. Lemma 3.6 states its crucial symmetry
property which is easily verified.

Lemma 3.6. L(f) as in Definition 3.5 is symmetrical in all the variables from A.
Lemma 3.6 implies an important symmetry of our fundamental rational functions

Q% and RY.

Lemma 3.7. Given A = {Ag, 44,..., Ap} and X = {Xo, X1,..., Xp-1}, n > 0.

The rational functions Q% and RY are symmetrical in all the variables from A.
Proof. The proof is immediate from Lemma 3.6 by induction on n. E.g., the sym-
metry of Q% is implied by the fact that for n > 1,

0411 n L(f)
l—A()Al"'AnZ[)Zl"'Zn

where for each i € {0,...,n},
_1 2\ X\ X1}
favgan(z) = ;};{X (1 - }) Qu'ary (20,21, 2n-1).

The symmetry of R} is proved analogously. d
Setting z9 = 0 in Q% will become important; see Theorem 5.5 in Section 5.

Lemma 3.8. Given A = {Ag, 41,...,An} and X = {Xo, X1,..., Xn_1}, n > 0.
Then

Qi(oazla" '7Z'n) =1

Proof. We proceed by induction on n. According to Definition 3.2, to proceed
from n — 1 to n, n > 1, we need to show that

(3.1) Soaia =1
i=0

In view of Definition 3.5, we rewrite identity (3.1) to

Fanga;y(4:) __ =D
P HA’GA\{Ai}(Ai_A,) AOAlAn
where fa1a,1(2) = % [Ixex (1 — %) After expanding the product, identity (3.2)
is implied by the relations

n k
Az’

(3.2)

(3.3) ; Moo, () =0 (0<k<n-1)
and
(3.4) A7 (=1)"

; ITaeman(Ai =AY AgAi--- A,

which are folklore in the context of classical Lagrange interpolation; see e.g. Sect.
1.3 in [19]. O

Writing deg y, for the polynomial degree with respect to X;, the following lemma
is immediate from Definition 3.3.
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Lemma 3.9. Given A = {4, A1,..., Ay} and Y = {1/X0,1/X4,...,1/ X1}
with n > 0. The expression RX(wO, W3 20,5 2n) can be viewed as a multi-
variate polynomial in the X; with coefficients being rational functions in the A;,
where

(3.5) degy, Ry <n—i (0<i<mn-—1).

Now we are ready for another fundamental result based on Lagrange symmetriza-
tion.

Lemma 3.10. Given A = {Ag, A1,...,Apy1} and Y = {¥o,Y1,..., Y}, n > 0.
Then

= QX(Ai) Y\{V,.}
(3.6) ZAil e RA\{A,-} (Wo, . s Wn—1, WnAi520,. .., 2n) =0
i=0 T Y.

for arbitrary variables w; and z;.

Proof. Let g denote the left side of (3.6). First we note that g is a rational function
being symmetrical in Ag, A1, ..., Apt1. This, in view of Definition 3.5, is implied
by the Lemmas 3.6 and 3.7, since g = (—1)"*1 AgA; ... A, 11 L(f) where

z Y\{Y»
fA\{Ai}(Z) = H (1—?) RA\\EAii(wo,...,wn,hwnZ;ZO,...,Zn).
YeY\{Y,}

Secondly, we introduce another set X = {Xj,...,X,,} of variables such that
after the substitutions ¥; = 1/X;, 0 < i < n, g can be viewed as a polynomial
9(Xo, X1,...,X,) in the X; with coefficients being rational functions in the A;, w;
and zj,. Note that degy g < 0since 1 — A;/V, =1— 4;X,, is a factor of g (4;).
Moreover, from Lemma 3.9 we obtain the degree bounds with respect to the X;
where 0 < ¢ < n — 1, namely

(3.7) degy, g <n—i+1
For k € {0,...,n + 1} define
. 1 1 1
in(k) =49 (A—Oa A_lu---7m:Xn—k+1:Xn—k+27---7Xn> .

Note that gi(0) is g for the special choice Y = {Ag, A1,..., A,}. Because of
degx g < 0 we have that g5 (0) = gi(1). As a crucial ingredient of the proof we
show that for all k € {1,...,n}:

(3.8) gi(k) =0 implies gx(k+1)=0.

Consequently, to prove (3.6), which is nothing but g5 (n + 1) = 0, it is sufficient to
prove gx(0) = 0.

First we will prove (3.8). Owing to gi(k) = 0 there exists a polynomial h =
h(Xn—k,-.-,Xy) such that

1
gi(k+1) = (Xn_k - ) h.
Anfk

Suppose that permutations o of A act in the usual way on rational functions in
the Al, i.e.,

or(Aog, A1, .., App1) = r(Ag0), A1)y - - 5 Ac(nt))-
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For each i € {0,...,k + 1} let 0; be such a permutation which, in addition, leaves
each of the Ag, Ai,..., Ap_g—1 fixed and which exchanges A, _j with A,_p4;.
Owing to the full symmetry of g with respect to all the elements of A we have for
all such o,

1
O+ 1) = 04 1) = (X = ol
An_kti

Hence g (k + 1), viewed as a univariate polynomial in X,_j, has at least k + 2
different roots, namely 1/A4,_, 1/An_r41, .., 1/Ans1. But from (3.7) we have
that degx,_, ga(k+1) < k+1, hence g5 (k+ 1) must be the zero polynomial which
proves (3.8).

Finally our proof is completed by showing ¢%(0) = 0 which is equality (3.6) for
Y = {4o, A1,..., A,}. For this special choice, according to the definition of ¢} , the
sum in (3.6) reduces to the two summands for i = n and i = n+ 1. In other words,
it remains to prove the identity

R%U{A}(wg, e Weo1, W B 20, ..., 2n)
(3.9) =R§U{B}(w0,...,wn,1,wnz4; 2053 2n)

for arbitrary variables A, B and X = {Xg,..., X1}, n > 0. For n = 0, i.e.
X =@, (3.9) is immediate from Definition 3.3. For n > 1 Definition 3.3 gives
R;%U{A}(wo, W20y - 5 Zn)
_ 1
- 1—Xg- X, 1Awg - wn20 - 2n
1 X\{Xn-1}
Xm(RX ! (U)(],...,wnfl;Z(],...,anl)

X\{ X1} .
— Aw, Ry (Woy .« oy W9, Wn—1WnA; 20, ..y Zn—1) |

Using this relation to rewrite the left and the right hand side of (3.9) verifies the
equality (3.9), and the proof of Lemma 5 is completed. O
4. RELATIONS BETWEEN Q% AND R}

In this section we exhibit identities, used in the proof of our main result, Theorem
5.4, that relate the rational functions Q% and RX.

Lemma 4.1. Given A = {4, A1,...,An}, Y = {Yo,.Y1,....Yao1}, n > 0, and
additional arbitrary variables Apy1,wo, ..., Wyt1, and 2g,...,2,. Then

QX(UJOAO: e awnAn)

(1= Ag- Apprwo -+ wnp1do - An) [Ti—g (1 - ;{ji’;)

\Ze]

1
4.1 =———(Ri(wo,..., 05205y n) — Aps1wn
(4.1 1—An+1wn+1( AW, s Wnj 20, 2n) +1Wn41

Y .
X RA(w()a s 7wn715wnwn+1An+1: 2050 Zn))

Proof. We proceed by induction on n. For n = 0 the verification of (4.1) is a

simple exercise using the elimination rule
1 1 —abe
4.2 Q0 =
(4.2) >(1—aX)(1-b\)(1-%) (1—-a)(1-b)(1—ac)(l~-be)
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from MacMahon’s table [18; Vol. II, pp. 102-103]. For the step from n — 1 to n,
n > 1, we invoke Definition 3.2 together with the partial fraction decomposition

1 I 1 b
(1—a)(1—ab) 1—-b\l—a 1-ab)’
This way the left side of (4.1) can be rewritten as

1
1—Appiwpta

n QY\{Yé_l} Wo A\ s, Wn— >‘n—
ADIHEBIY miay (wolko nt)
i=0 Z(1—Ag- Apwo - wpo - M) [Th_g (1 B ng\’;)
— Ant1Wni1
n Qupry ' (wodo, . w1 An
X > i (A)Q a4y (Wolo A1) |
i=0 Z(1=Ag-- Apprwo - wnr1do - An) [T0—g (1 - i"ﬁii)

After elimination of A,, by rule (2.4) this expression is equal to

1

(43) m(h(wn) — An+1wn+1h(wnwn+1An+1))
n n
where
1
h =
(wn) = 1—Ag - Apwg - WnZo - 2n
- Q= (woho, -+ W1 An1)
x Y al(4)Q nind — -
— Z(1— Ao Apwo - wpdo A1) [11—o (l—ﬁ)
Applying the induction hypothesis gives
1
h(wy,) =
(wn) 1— Ay Aywg - wnzo -2,
n Y
0a(Ai) [ py\(va .}
— (R . (wo...w_l'zo....z_l)—Aiwn
— 1. A\ {A;} ) y Wn—1,<0, s 4n
P 1 Alwn(
X RZ{\%XZIEI} (U)(], sy Wp—2, wnflwnAi; 205 .- :anl))
=Rl (wo,...,Wn;20,...,%n),

where the last equality is by Definition 3.3. This completes the proof of Lemma 4.1.
O

Finally we show that the Q§ can be represented as rational function multiples
of certain RY. We state this relation in a form that is convenient for our proof of
Theorem 5.4 in Section 6.

Lemma 4.2. For k > 0 let X = {X¢,X1,...,Xk-1} and B = {By, B1,...,By}.
For additional variables x and Xy let Y = {Xi/z,Xo/z,...,Xp/z} and A =
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{xBo,zB1,...,2By}. Then for arbitrary zo, ..., z:

b zB; T x T
1— — RY (= = ... = 2,...
l_HQ( X(])X B(X(]’Xl‘ :Xk7207 :Zk>
4.4 —Qr (X 2 Zk )
(1.4 (2.2

Proof. The case k = 0 is immediate from the Definitions 3.2 and 3.3. For the
induction step from k — 1 to k, we rewrite the left side of (4.4) by Definition 3.3
which gives

k B

Hz:o( _mx_ol)
k. B,z
1— 2k ]2 XJZ-
E oy

45 (Bi) [pv\(Xu/a} (2 T

Xgl_w_BiliRB\{Bi} (X—O,Z,...,ﬂ,z[),...,zk,l)
2
\{Xk/z A T T Bi
(XO’X U Xp o X Xy O Bk 1)}

ZB[
1 x)f; v Hz 0( _X_O)

= B)——————~
l_karle:Oszj Zl &qﬂ%( i) 1 _ 2B:

i=0 Xk Xo

[T T x
X Y\\f{{g’“}/ (fo= X ﬁ;zo, e ,zk_l)
where the last equality is by Lemma 5. Applying the trivial identity
zB;
Sm-ai (Bi) = di (¢B;)

Xr

1-—-

and the induction hypothesis, reduces this expression to
1 X\{Xi_1} [ 20 21 Zk—1
Bz] ZqA ZL'B QA\{%BZ} X_O’ZP“,kal

— pk+1 H
_ SRS
QA <X0 Xl 3 Xk)

where in the last step Definition 3.2 has been applied. This completes the proof of
equality (4.4). O

X

5. THE MAIN THEOREM AND COROLLARIES

In this section we state our main theorem, Theorem 5.4, together with some
corollaries. The first consequence is an elegant special case, Theorem 5.5, which
turns out to be equivalent to Gansner’s Theorem G stated in the Introduction;
see Corollary 1. Then Theorem 5.6 is derived as a reformulation of Theorem 5.4
under a certain substitution of variables. Finally, using the product representation
(5.7) of a specialized Q%, a simple instance of Theorem 5.6 is given in the form of
Corollary 2. Tt contains as special cases results by Gansner [14] and Bender and
Knuth [8].

First we introduce some convenient definitions.
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Definition 5.1. Given an m X n matrix X = (;g”) and a column vector y =
(Y1,Y2,- -, ym)t, we define

11 o Tin Y1

. T2, o Tan Y2
XANy=

Im,a1 ' Tmpn Ym

If X =g, ie., X is the empty matrix, then X Ay = y.

Of particular importance are matrices of Toeplitz type, i.e., having constant
entries along their diagonals.

Definition 5.2. For m,n > 1 let * = {z1,...,Zn+m-1} be a set of variables.
Define an m x n matrix T, n(2) = (ti;) by ti; = nti—j. For n = 0 we define
Tmo(x) = @, the empty matrix.

Example 5.3. For (m,n) = (4,6) and = {z1,...,29},

Tg Ty T4 T3 T2 T
Ty Te Ts T4 T3 T2
rg Ty Tg Xz T4 T3
g X8 I7 Tg Ty T4

T4,6((B) =

Now we are ready to state the main theorem of this paper.

Theorem 5.4. Let Xg = 1 and Xy = 1z, k > 1. For m,n > 0 let A =
{Xn, Xog1s0 1y Xoim}, X={X0, Xy,..., Xm-1}, and x = {x1,...,2pym}. Then

3 3

for any z = (20,21, ..., 2m)" we have

Ty e 1 20
Tnt+1 T2 Z1
Pm+1,n+1 (Tm+17n(m) A Z) = Pm+1,n+1
Tntm Tm+1  Zm
n—1
1
(51) - X Xng1 Xntm
w05
X 20 Zm
X —,.
(QA (;YOI ,)(nz>
Proof. The proof of Theorem 5.4 is given in Section 6. O

The first corollary of Theorem 5.4 is an elegant special case.
Theorem 5.5. Form >0 andn > 1 let x = {x4,..., ZTptm}. Then

3 3

xn - :r2 :rl
Tny1 - rs3 T2
Prmt1,0(Tmt1,0(T)) = Pmtin
anrm e xm+2 xm+1

X3

_-n—l 1
©2) L S e ey ey

where Xo =1 and Xy =x1---xp, (k> 1).



PARTITION ANALYSIS XII 17

Proof. Theorem 5.4 with 2o = 0 gives

Tn e T 0
Tnt1 - T2 21
pm+17n+1(Tm+1,n(m) A 2)‘20:0 = Pm+1,n+1
In+m ' Tm4+1 Zm
e 1 z z
1
11 L - xQ§<o,?,...,X—m).
e e e R S

By Definition 2.1 it is obvious that

pm+1,n+1(Tm+17n(m) A 2)|z0=0 = pm+17n(Tm+17n(m)):

and the rest of Theorem 5.5 follows immediately from Lemma 3.8. O

Corollary 1. Gansner’s Theorem G is equivalent to Theorem 5.5.

Proof. In (5.2) replace m and n by » — 1 and ¢, respectively. Then replace all the
x; by qz.—; and the statement follows. O

Next we consider a variant of Theorem 5.4 which is obtained by the following
substitution of variables in (5.1). First, to relate the result to Theorem G from
the Introduction, it will be convenient to replace m and n by r and ¢, respectively.
Then, replace all the ; by gz.—;, and all the 2z; by qz._;2;. As a consequence the
left side of (5.1) turns into

Prtt,e+1(Trgr,e(T) A 2)|zfqu?sfi?éz

- Alietl || Grilct1 )] @i
= E Zg 2T T

7=(ai ;) €Prt1,c41 1<i<r+1
’ 1<%+
c
= Aletl || 0r41,ct1 |7l tri (m)
- Z = 2y q T,
m=(a; ;) €EPrt1,c41 k=—r
oo oo o0 o0 o0
:Z Z Z Z ZTr+1,c+1(t7m---,t—1;t0,---,tc;ao,--.,ar;n)
n=0¢t_,.=0 te=0ap=0 ar,=0
r c
H it
j=0 k=—r
where
(53) Tr+1,c+1(t,7«, e ,tfl; t(], e ,tc; ag, ..., 0p; n)

denotes the number of plane partitions 7 = (a; ;) in Pry1, 41 With |7] = n and with
trace try(m) = ¢ in the kth diagonal where —r < k < ¢, and with a;c11 = a;—1
where 1 < i <r+1.
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Under the same replacements of variables, the right side of (5.1) turns into

c—1

11 ! Qr (2 .z
1_Xc 1_Xc+1 1_Xc+r A XO;-..aXT
k=0 Xr Xr Xr PR
Zzﬁqwcizzl
A 1
by (1 — qc_kwo . "L‘C—k—l) P (1 — qc_k'i‘rm_r P xc—k—l)
_ z9 i, zZ3 _ z
XQIE'(qchOazlaq ! ,q 2 yeeenq T+1—T>
Te—1 Te—2Te—1 LTe—p41 " Te—1
r+1 ¢
_ H H 1 QY o Z1 29 Zp
] 1_x7i+1__,x 1qz+31 B qCOvY Y, ,le
i=1 j=1
with
(5.4) Y={¥s,Y1,....Y,—1} and B={Y,Yei1,...,Yeqr}
where
k—1
(55) Yk : qk H Te—ktj-
=0
We summarize in the form of a theorem.
Theorem 5.6. For r,c > 0 let Trp1,c41(t—p, .- t—1;t0, .- te; a0, ..., ar; 1) be as

in (5.8). Then for Y and B as in (5.4) and (5.5), respectively, one has that

4o qr qr2 T qTc—1 qTc2o

qr—1 4o qry T qTc—2  GTc-121
Praterr | 9¥-2 9T 4o e qTc—3  qTc—222

qr o 4T -r41 4T _pq2 - qTe—r—1 GTc—rZp

o]
:Z Z Tr+1c+1(t,m....t 1,t0....,tc;a0,...,ar;n)

n=0 t_,,....t.>0
aOZ...Za,nZO

r c
o 1= 11 #4

j=0 k=—r

r+1 ¢
1 29 Zp
5.6 = a—y}{ .
(56) ggl_w_,_%lqmIQB(WOY 2

Remark. Our crucial rational functions Q¥ and R satisfy many additional relations
that are not stated explicitly in this paper but which could be explored further.
For example, using the fact that for Xg = 1, Xy = z1 -+ -z, kK > 1, and arbitrary
Ai: Q, ﬂa and Y 7é 0:

(5.7)

A A
Q{Xo,---,Xk—1} (i ﬂ Tr—1 6 ) o 1- ka1a H
{Ao,. Ak} P ; = o 5 -
0rreer ik Xo Xy X1 v X1 1 - o of e o1 Aa
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one can obtain Gansner’s Theorem G differently to Corollary 1. Namely, in (5.6)
just set all the z; to 1. — It should be also noted that the proof of (5.7) is very
similar to the proof of Lemma 3.8. Finally we remark that (5.7) can be used to
obtain further specializations of Theorem 5.5, for instance, Corollary 2.

Corollary 2. Let 7(t;a, 3,7;n) denote the number of plane partitions © = (a; ;)

in P.. with |t| = n , with 0-trace tro(m) = t, and with a,1 = a, a1, = B, and
Ap,c =", then
r—1lc—1
(58) ZZ Z t a, B vin )qnmém?waS - H H 1 _x0q2+j 1
n>0t>0 o,3,7>0 i=1 j=1

1 1 1 1-—
X H 1 ct+i—1 H 1 r4+j—1 1 r+c—1 1 ifoxleq re’
=1 1 T ToT2g — ZoT19q — XoT1Z29 — XyT1T223q
Note that setting x1 = 9 = x3 = 1 gives Stanley’s trace theorem [23, Thm. 7.20.1];
setting xog = x3 = 1 gives Thm. 4.5 in Gansner [14]; setting xg = z2 = 23 = 1
gives Cor. 4.6 in [14] which is equivalent to a theorem of Bender and Knuth [8].

6. PROOF OF THE MAIN THEOREM

In this section we present the proof of our main result, Theorem 5.4.

The case m = 0 is immediate from (2.2). Thus we shall proceed by induction on
n assuming that m > 1. The case n = 0 of Theorem 5.4 is settled by Lemma 3.4
together with (2.1).

For the induction step from n — 1 to n, n > 1, we first apply Lemma 2.5 to
rewrite the left side of (5.1). In the resulting pn,41,, expression we rename the
z-variables by y; = x;41 for all i > 0. In view of this renaming of variables, it is
convenient to introduce the sets Y={Yo,Y1,...,Y,,_1} and B = {By, By, ..., m}
where Y; = Xi+1/iE1 and Bi = Yn—1+i for i Z 0. Note that YO =1land Y = yl Y
fori > 1.

Now invoking the induction hypothesis on the py,1,, expression gives

m -1
Pmi1ntl(Tmsin(T) A2) = (1 - H X;:k Zk)
k=0
n- y
XII1_x1gu_zguml_ﬁﬁlqng“”“E:”f”:?Z*w”)
Y Yi Yk - k=0 ( - ,\0...)\k)
where w; = y;/Y; for 0 < i < m. We abbreviate the Q expressmn by Hp,; i.e.,
QE(A(]U)U, . Amflwmfl, ’U}m) .

H,=Q
>

-1 20z
o (1 5 )
Applying Definition 3.2 to H,, we obtain that
QY\{Ym—l} (

< B\ {B;
o = S0 ) -
pard Z(1 =By Bmwo - WmAo- - Am_1) k0(1—kg Af;)
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Applying Lemma 6 to each of the summands (i.e., B; is playing the same role as
Ap41 in Lemma 6) results in

m Y
ag (Bi .
Hp = %(RE\\;{{EI} 1}(’11}0,...,wm_l;ZO,...,Zm_l)
i=0
— Byw,, - Rg\\igm} ik (Wo, .+« sy W9, Wy —1wm Bj; 20, . .. ,zm,l))
— @ (Bi -
= %RE\\T{{;} 1}(w0,...,wm_l;zo,...,zm_l);
=0 2 m
the second equality is by Lemma 3.10 noting that wy, = ym/Ym =1/ Ym—1.
Summarizing, in view of Yk”’ = ;,(Z—L and Xy = 1, we have derived that
Pm+1, n+1(Tm+1,n(m) A z)
nl—[l 1 _ H;'nzo(l = Xntj)
b0 (1__k) (1_X§+1)...(1_—X;(+km) 1_H;10Xn+i)z(_ii

m

BU) RE\\Egm} 1} 07"':wm71;20a"'=zm71)-

This means, to complete the proof of (5.1) it remains to show that

m m Y
g (Bi) Lv\{Ynm_1}
1-X,45)- R , Woy e e o s Win—15 20y« -+ s Zm—
jl;[o( +]) i:Ol_Bz’wm B\{Bi} (wo b 2

_ = X\{X;m-1} Zm—1 >
6.1 => i (Xnp = ..., ,
( ) ' ( +1i ) A\ {Xpyi} (X[) Xom_1

since by Definition 3.2 the right side of (6.1) turns into

A Zm
(I_HXn+z > <X0=---=X—m>-

To prove identity (6.1), in view of Xg = 1, X,y = 1By, YV; = X411 /21, and
w; = 21/X;, we apply Lemma 4.2 to each of the summands of its left side which
then is transformed into

il—ixle ¥ (g QR X (20 Zmt
i:Ol_Biwqu YA\ { X, i} XU X))

But this, because of

o (1- %) et (1- )
G (Xnyi) = Xk N (1-21B)) 1;;_
Mogeen (1~ 23) Moggsn (1~ 527)
1—$1Bi \% 1—£B1Bi \%
— T H vy — — TP Vg
1- _1(]13( i) l—Biwqu( i)s

turns out to be equal to the right side of (6.1). This completes the proof of identity
(5.1) and thus of Theorem 5.4.
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7. CONCLUSION

This paper marks a milestone in our study of the implications of Partition Anal-
ysis. Many others have become interested in its use; see e.g. [1], [11], [12], and
[13]. Also G. Xin [24] has introduced a variation to the algorithm. We hope in the
future to examine more recondite types of compositions and partitions along the
lines of [4], [5], and [6].

We live in an exciting era when the growing power of computers and extensive
use and improvement of computer algebra algorithms promises seemingly boundless
vistas for the Omega package and its offsprings to explore.

Acknowledgement. We thank Christian Krattenthaler for pointing out the fact
that Partition Analysis has led us to a rediscovery of Gansner’s theorem.
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