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Abstract. In the papers [15, 16] a new regularization method, adaptive grid regu-
larization, was presented. Numerical results there show in a convincing way that this
method is a powerful tool to identify discontinuities of solutions of ill-posed problems.
It is the aim of this paper to give a convergence analysis for this new method.

1. Introduction

When studying (linear or nonlinear) ill-posed problems

F (x) = y , F : D(F )(⊂ X ) → Y , (1.1)

where usually only noisy measurements yδ of y with ‖yδ − y‖ ≤ δ are known, where
Y is a Hilbert space and X is a Banach space of functions defined on Ω, an open
bounded convex subset of Rd (d = 1, 2, 3) with Lipschitz boundary, it is well known
by now that standard regularization methods (cf., e.g., [7, 8]) are not appropriate for
ill-posed problems with discontinuous solutions, since they have a smoothing effect on
regularized solutions.

If one expects discontinuous solutions, special care has to be taken in choosing the
regularization method. Bounded variation regularization has turned out to be an ef-
fective method [1, 4, 18] when dealing with such problems. In [17] a new approach for
regularizing problems with discontinuous solutions was introduced, regularization for
curve representations. The essence of this method is to replace a discontinuous function
by its continuous graph and to apply standard regularization methods in Hilbert spaces
to this parameterization. Generalizations of this method to two-dimensional problems
were presented in [9, 11, 12].

A realization of this method for the most general case of discontinuities as considered
in [9] via a moving grid algorithm was developed in [14] (see also [13]). This algorithm
yields good numerical results. However, in each iteration step of this method the
whole grid is changed. To reduce the numerical effort the method of adaptive grid
regularization was introduced in [15, 16]. Numerical results in these papers show that
this method is an efficient and fast tool to identify discontinuities of solutions of ill-posed
problems.
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The idea of the method is to adjust not only the grid but also the regularizing norm
after each iteration: Let w ∈ L1(Ω) be a weight function satisfying∫

Ω
w(ξ) dξ = |Ω| , w > 0 a.e. , w−1 ∈ L∞(Ω) . (1.2)

Then the regularization is carried out in Xw defined as the Hilbert space H1(Ω) or
H1

0 (Ω) equipped with the (semi) norm

‖x‖w :=
∫
Ω
|∇x(ξ)|2w−1(ξ) dξ .

If one uses Tikhonov regularization, then one lookes for a minimizer of

‖F (x)− yδ‖2 + α‖x− x∗‖2
w

in x∗+Xh, where Xh is a finite-dimensional subspace of Xw consisting of finite elements
corresponding to a triangulation τh of Ω. An appropriate choice are piecewise linear ele-
ments. x∗ usually plays the role of an initial guess. Since it can always be incorporated
into F or y, we assume w.l.o.g. in the following that x∗ = 0.

Instead of Tikhonov regularization also the iteratively regularized Gauss-Newton
method can be used to obtain good results especially for nonlinear problems (cf. [15]).

It turns out from regularization for curve representations that a somewhat optimal
choice for w would be obtained by minimizing

gα,β(x, w) := ‖F (x)− yδ‖2 + α
∫
Ω
(β2 + |∇x(ξ)|2) w−1(ξ) dξ (1.3)

simultaneously with respect to x and w yielding that w ∼
√

β2 + |∇x|2. These consid-
erations led us to the following algorithm:

Algorithm 1.1. (Adaptive grid regularization) Let α, β > 0.

(i) Start with a uniform (rather coarse) grid in Ω yielding the triangulation τ1. Set
n := 1, xδ

0 :≡ 0.

(ii) Compute a minimizer xδ
n of

g̃α,β(x, wn) := ‖F (x)− yδ‖2 + α
∫
Ω
|∇x(ξ)|2 w−1

n (ξ) dξ

wn(ξ) := |Ω|
√

β2 + |∇xδ
n−1(ξ)|2

/ ∫
Ω

√
β2 + |∇xδ

n−1(ξ)|2 dξ
(1.4)

in the finite element space of piecewise linear functions Xn corresponding to the
triangulation τn.

(iii) If a stopping criterion is satisfied, the iteration is finished; otherwise:

(iv) Perform a local grid refinement

τn+1 := G(τn, x
δ
n) . (1.5)

Set n := n + 1 and go to step (ii).
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As grid refinement in (1.5) we have chosen the following procedure: triangles Ti ∈ τn

are bisected whenever ∇xδ
n is large. This is done according to the following rules: a

refinement is only performed if the size of the triangle is larger than a certain threshold,
i.e.,

diam(Ti) ≥ hmin (1.6)

Under all these admissible triangles only those are refined where the corresponding
weight wn,i := wn|Ti

, which is constant on each triangle Ti (note that the finite elements
are linear), is not smaller than the k-th largest weight and close enough to the largest
weight, i.e.,

wn,i ≥ w̄k := k-th largest element among all wn,j with diam(Ti) ≥ hmin , (1.7)

wn,i > κ ∗max{wn,j : diam(Tj) ≥ hmin} . (1.8)

We want to mention that the Algorithm 1.1 (except for the local grid refinement)
is similar to algorithms discussed in [5] (F = Id, ∇x is approximated by Lγx), [6]
(F = Id), and [3] (F = Id, infinite-dimensional setting, i.e., Xn = Xwn , different
penalty term).

2. Convergence Analysis

In this section we want to show that the sequence {xδ
n} obtained by Algorithm 1.1 is

convergent.
First of all, note that the subspaces Xn are increasing, i.e., Xn ⊆ Xn+1. Due to the

refinement condition (1.6) no refinement will occur anymore after some iteration step
n̄, i.e., Xn = Xn̄ for all n ≥ n̄. It will turn out that under some conditions xδ

n will
converge towards a minimizer of

fα,β(x) := ‖F (x)− yδ‖2 + α|Ω|−1
( ∫

Ω

√
β2 + |∇x(ξ)|2 dξ

)2

in Xn̄ if F is linear and at least towards a stationary point if F is nonlinear.
If the threshold hmin in (1.6) is getting smaller and smaller, then obviously n̄ is getting

larger and larger. Therefore, we are also interested if such minimizers in Xn̄ converge
to a minimizer in some infinite-dimensional space if n̄ tends to infinity. To be able to
show this, the penalty term above has to be replaced by a variational formulation that
extends to non-smooth functions, i.e.,

fα,β(x) := ‖F (x)− yδ‖2 + α|Ω|−1Jβ(x)2 , (2.1)

where

Jβ(x) := sup{Qβ(x, v) : v ∈ [C1
c (Ω)]d, ‖v‖∞ ≤ 1} , (2.2)

Qβ(x, v) :=
∫
Ω

(
x(ξ) div v(ξ) + β

√
1− |v(ξ)|2

)
dξ . (2.3)

Here, | · | denotes the Euclidean norm in Rd and ‖v‖∞ := sup |v(ξ)|. It is easy to show

that Jβ(x) coincides with
∫
Ω

√
β2 + |∇x(ξ)|2 dξ if x ∈ W 1,1(Ω) (cf. [1]).
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As usual, we say that a function x ∈ L1(Ω) is of bounded variation if J0(x) < ∞. It
is well known that the space of all functions of bounded variation, BV (Ω), equipped
with the norm

‖x‖BV := ‖x‖L1 + |x|BV , |x|BV := J0(x) , (2.4)

is a Banach space. Obviously, Jβ(x) < ∞ if and only if J0(x) < ∞.
It was shown in [1] that, for any β ≥ 0, Jβ(x) is convex and weakly lower semicon-

tinuous with respect to the Lp(Ω) topology for 1 ≤ p < ∞.
To be able to guarantee the existence and stability of minimizers of (1.4) or (2.1) and

for our convergence proofs we need some assumptions on the operator F :

Assumption 2.1. Let Ω be an open bounded convex subset of Rd (d = 1, 2, 3)
with Lipschitz boundary. The operator F : D(F ) ⊂ Lp(Ω) → Y is continuous, with
D(F ) convex and closed in Lp(Ω), for some p < p̄ or continuous and weakly sequentially
closed for p = p̄ in case d ≥ 2, where

p̄ :=

{
∞ , d = 1 ,

d
d−1

, d > 1 .

(i) If F is linear, then D(F ) = Lp(Ω).

(ii) If F is nonlinear, it holds that Xn∩D(F ) 6= {} and that F is continuously Fréchet-
differentiable from Xn → L(Xn,Y) for all n ∈ N, where Xn is as in Algorithm 1.1.
Moreover,

‖F (x)− F (x̄)‖ ≤ ρ(‖x− x̄‖Lp) , x, x̄ ∈ D(F ) , (2.5)

for some continuous monotonically increasing function ρ. Furthermore, it holds
for all constant functions κ that κ ∈ D(F ) and that

‖F (κ)‖ ≥ γ̄|κ| (2.6)

for some constant γ̄ > 0.

Proposition 2.2. Let Assumption 2.1 hold. Then the functional g̃α,β as defined in
(1.4) has a minimizer xδ

n in Xn ∩ D(F ) and the functional fα,β as defined in (2.1) has
a minimizer xδ

α,β,n in Xn ∩D(F ) and a minimizer xδ
α,β in BV (Ω)∩D(F ), respectively.

In case that F is linear and injective the minimizer xδ
α,β is unique. If F is linear,

the minimizers xδ
n and xδ

α,β,n are unique in case 1 /∈ N (F ) and unique up to a constant
otherwise.

Proof. Let us consider functional fα,β and let Z be either the space Xn ∩ D(F ) or
BV (Ω) ∩ D(F ). Then there is a sequence {xk} in Z such that

lim
k→∞

fα,β(xk) = inf
x∈Z

fα,β(x) < ∞ .

Therefore,
‖F (xk)‖ ≤ γ and J0(xk) ≤ γ , k ∈ N ,

where γ > 0 is a generic constant.

4



Let x̄k := |Ω|−1
∫
Ω

xk(ξ) dξ. Then it follows from [2, Theorem 3.44] that

‖xk − x̄k‖Lp ≤ γp‖xk − x̄k‖BV ≤ γJ0(xk) .

Let us assume that condition (2.6) also holds if F is linear, i.e., that 1 /∈ N (F ). Then
it follows that

γ̄|x̄k| ≤ ‖F (x̄k)‖ ≤ ‖F (xk)‖ + ‖F (xk)− F (x̄k)‖ .

Together with (2.5) this implies that |x̄k| is uniformly bounded. Now the estimate

‖xk‖BV ≤ |Ω| |x̄k|+ γJ0(xk)

yields that ‖xk‖BV is uniformly bounded.
If F is linear and 1 ∈ N (F ), then obviously fα,β(xk + κ) = fα,β(xk) for all constants

κ ∈ R. Therefore, we could have chosen xk from the very beginning such that x̄k = 0
which again yields the uniform boundedness of ‖xk‖BV .

From an embedding theorem (cf. [2, Corollary 3.49]) we now obtain together with
the uniform boundedness of ‖F (xk)‖ that {xk} has a subsequence, again denoted by
{xk}, such that

xk
Lp

→ x and F (xk)
Y→ F (x)

for some x ∈ Z, where norm convergence has to be replaced by weak convergence if
p = p̄. Together with the weak lower semicontinuity of fα,β this now yields that

inf
x∈Z

fα,β(x) ≤ fα,β(x) ≤ lim
k→∞

fα,β(xk) = inf
x∈Z

fα,β(x) .

Thus, x ∈ Z is a minimizer.
The existence of a minimizer of g̃α,β follows similarly. Note that, since Xn is finite-

dimensional, all norms are equivalent on Xn and weak convergence already implies norm
convergence.

It is obvious that the minimizers are unique if the functionals are strictly convex,
which is the case if F is linear and injective.

Let us now assume that F is linear and that 1 /∈ N (F ). Then strict convexity of g̃α,β

and fα,β when considered over Xn follows from the fact that

J ′′β (x)(h, h) =
∫
Ω

|∇h(ξ)|2(β2 + |∇x(ξ)|2)− (∇x(ξ)T∇h(ξ))2

(β2 + |∇x(ξ)|2) 3
2

≥ β2
∫
Ω

|∇h(ξ)|2

(β2 + |∇x(ξ)|2) 3
2

.

A similar estimate holds for the second derivative of the penalty term in g̃α,β. As already
mentioned above the minimizers xδ

n and xδ
α,β,n are unique up to a constant if F is linear

and 1 ∈ N (F ).

We believe that the condition F linear and 1 /∈ N (F ) is also sufficient for the mini-
mizer xδ

α,β ∈ BV (Ω) to be unique, since we think that

Jβ(λx1 + (1− λ)x2) < λJβ(x1) + (1− λ)Jβ(x2)
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also holds in the general case as long as β > 0 and x2− x1 6= const. However, so far we
have not succeeded in proving it.

Results about stability follow similarly as in [7] and [1].
In the next theorem we will show our first convergence result in the finite-dimensional

space Xn̄.

Theorem 2.3. Let Assumption 2.1 hold and let xδ
n be as in Algorithm 1.1 where the

grid refinement is done according to (1.6) – (1.8).
Then {xδ

n} has a convergent subsequence. The limit of every convergent subsequence
is a stationary point of fα,β, defined by (2.1), in case F is nonlinear.

If F is linear, the limit is even a minimizer xδ
α,β,n̄ of fα,β in Xn̄. If this minimizer is

unique, then xδ
n → xδ

α,β,n̄ as n →∞.

Proof. It is obvious from (1.3) and (1.4) that xδ
n is not only a minimizer of g̃α,β(x, wn)

but also of gα,β(x, wn). Since by the Cauchy-Schwarz inequality

( ∫
Ω

√
β2 + |∇x(ξ)|2 dξ

)2
≤

∫
Ω

√
β2 + |∇xδ

n−1(ξ)|2 dξ
∫
Ω

β2 + |∇x(ξ)|2√
β2 + |∇xδ

n−1(ξ)|2
dξ ,

it follows with (1.4) and (2.1) that

fα,β(xδ
n) ≤ gα,β(xδ

n, wn) ≤ gα,β(xδ
n−1, wn) = fα,β(xδ

n−1) . (2.7)

Thus, fα,β(xδ
n) is monotonically decreasing and hence convergent. Moreover, ‖xδ

n‖BV

is uniformly bounded.
Let now xδ

nk
be an arbitrary subsequence of xδ

n. Then there exists a further subse-
quence, again denoted by xδ

nk
, converging towards some x ∈ Xn̄ (in whatever norm,

since all norms are equivalent). Note that then ‖wn‖L∞ ≤ γ for some γ > 0 and

lim
k→∞

wnk+1(ξ) = w(ξ) := |Ω|
√

β2 + |∇x(ξ)|2
/ ∫

Ω

√
β2 + |∇x(ξ)|2 dξ . (2.8)

It follows with (1.3), (2.7), the definition of wnk+1 (cf. (1.4)), and a Taylor expansion
of w−1 that (for some θ ∈ (0, 1))

fα,β(xδ
nk−1)− fα,β(xδ

nk
) ≥ gα,β(xδ

nk
, wnk

)− gα,β(xδ
nk

, wnk+1)

= α
∫
Ω
(β2 + |∇xδ

nk
(ξ)|2)(w−1

nk
(ξ)− w−1

nk+1(ξ)) dξ

= α
∫
Ω
(β2 + |∇xδ

nk
(ξ)|2)

(wnk+1(ξ)− wnk
(ξ))

wnk+1(ξ)2

+
(wnk

(ξ)− wnk+1(ξ))
2

(wnk+1(ξ) + θ(wnk
(ξ)− wnk+1(ξ)))3

)
dξ

= α
∫
Ω
(β2 + |∇xδ

nk
(ξ)|2) (wnk

(ξ)− wnk+1(ξ))
2

(wnk+1(ξ) + θ(wnk
(ξ)− wnk+1(ξ)))3

dξ

≥ αβ2γ−3‖wnk
− wnk+1‖2

L2 .

Since the left hand side of the estimate above goes to 0, this together with (2.8) shows
that also wnk

converges towards w. With the first order condition for a minimum of
(1.4), i.e.,

〈F (xδ
nk

)− yδ, F ′(xδ
nk

)(z − xδ
nk

) 〉+ α
∫
Ω
∇xδ

nk
(ξ)T (∇z(ξ)−∇xδ

nk
(ξ))w−1

nk
(ξ) dξ ≥ 0
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for all z ∈ D(F )∩Xn̄ and k ∈ N sufficiently large (such that Xnk
= Xn̄), we now obtain

with k →∞ that

〈F (x)− yδ, F ′(x)(z − x) 〉+ α
∫
Ω
∇x(ξ)T (∇z(ξ)−∇x(ξ))w−1(ξ) dξ ≥ 0

for all z ∈ D(F ) ∩ Xn̄.
However, this is the first oder condition for a minimizer of (2.1) and hence x is a

stationary point. If F is linear, the functional in (2.1) is convex and, therefore, the first
order condition for a minimizer is also sufficient then, i.e., x is a minimizer of fα,β.

If x is unique, then obviously the whole sequence xδ
n converges towards x by a subse-

quence subsequence argument.

Since fα,β(xδ
n) is monotonically decreasing, the stationary point in the theorem above

will never be a local maximum.
In the next theorem we will show that minimizers of (2.1) in Xn converge towards

a minimizer of (2.1) in BV (Ω) if the spaces Xn approximate the space BV (Ω) in an
appropriate way: let Pn : BV (Ω) → Xn be projection operators and let Pβ ⊂ BV (Ω)
be defined as follows

Pβ := {x ∈ BV (Ω) ∩ D(F ) : Pnx
Lp

→ x , Jβ(Pnx) → Jβ(x) ,
Pnx ∈ D(F ) for n sufficiently large}

(2.9)

with p as in Assumption 2.1.

Theorem 2.4. Let Assumption 2.1 hold and assume that Pβ 6= {}, where Pβ is
defined as in (2.9). Moreover, let xδ

α,β,n be a minimizer of fα,β, defined as in (2.1), in
Xn.

Then {xδ
α,β,n} has a weakly∗ convergent subsequence in BV (Ω). The limit x̃ of every

weakly∗ convergent subsequence satisfies the condition

fα,β(x̃) ≤ lim inf
n→∞

fα,β(xδ
α,β,n) ≤ lim sup

n→∞
fα,β(xδ

α,β,n) ≤ inf
x∈Pβ

fα,β(x) . (2.10)

If
D(F ) ∩

⋃
n∈N

Xn ⊂ Pβ (2.11)

then it even holds that
lim

n→∞
fα,β(xδ

α,β,n) = inf
x∈Pβ

fα,β(x̃) . (2.12)

If a minimizer xδ
α,β of fα,β in BV (Ω) is an element of Pβ, then x̃ is also a minimizer

of fα,β in BV (Ω) and

lim
n→∞

fα,β(xδ
α,β,n) = inf

x∈BV ∩D(F )
fα,β(x̃) .

If, in addition, xδ
α,β is unique, then {xδ

α,β,n} weakly∗ converges towards xδ
α,β and hence

xδ
α,β,n

Lp

→ xδ
α,β , ∀1 ≤ p < p̄ , and xδ

α,β,n
Lp̄

⇀ xδ
α,β , d ≥ 2 .

Proof. Let x ∈ Pβ. Then, due to Assumption 2.1, fα,β(Pnx) → fα,β(x). Since
fα,β(xδ

α,β,n) ≤ fα,β(Pnx) for n sufficiently large, we now obtain that

lim inf
n→∞

fα,β(xδ
α,β,n) ≤ lim sup

n→∞
fα,β(xδ

α,β,n) ≤ inf
x∈Pβ

fα,β(x) .
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As in the proof of Proposition 2.2 this yields that ‖F (xδ
α,β,n)‖ and ‖xδ

α,β,n‖BV are
uniformly bounded and, furthermore, that a weakly∗ convergent subsequence exists
such that its limit x̃ satisfies (2.10).

If condition (2.11) holds, then xδ
α,β,n ∈ Pβ and hence

inf
x∈Pβ

fα,β(x) ≤ lim inf
n→∞

fα,β(xδ
α,β,n) ,

which together with (2.10) implies that (2.12) holds.
All other assertions are now obvious. Note that the convergence in Lp follows from

weak∗ convergence due to an embedding theorem already cited in the proof of Propo-
sition 2.2.

Of course, it would also be interesting to investigate what happens if α, β, and/or δ
converge to 0 or if F is approximated by some Fm as it is usual for nonlinear problems.
Results can be derived similary as in [5, 7].

We would like to discuss now what it means that the set Pβ is not empty or that a
minimizer of fα,β in BV (Ω) is an element of this set:

Note that condition (2.11) is not really restrictive: if for instance Xn ⊂ Xn+1 for all
n ∈ N, then obviously for all x ∈ ⋃

n∈NXn it holds that Pnx = x for n sufficiently large.
Hence, condition (2.11) is then satisfied if Pnx ∈ D(F ) for n sufficiently large.

We want to mention that condition

lim inf
n→∞

fα,β(Pnx) ≤ fα,β(x) , (2.13)

requested in [6, Theorem 2.2], only guarantees convergence of a subsequence and not
that the whole sequence converges even if the minimizer xδ

α,β is unique. According to [6],
condition (2.13) is satisfied for the L2-orthogonal projectors Pn if x is smooth enough.
This is correct but the solutions we are interested in have jumps and are therefore not
smooth.

We will show below that in the one-dimensional case there is a projector Pn such that

Pnx
Lp

→ x and Jβ(Pnx) → Jβ(x) holds for all x ∈ BV (Ω). The proof of this result is
essentially based on the following theorem:

Theorem 2.5. Let the set M be defined as

M := {φ ∈ H1[0, 1] : φ(0) = 0, φ(1) = 1, φ̇ ≥ 0 a.e.} . (2.14)

Then it holds that

∃(φ, c) ∈M×H1[0, 1] : x = c(φ−1) a.e. ⇐⇒ x ∈ BV [0, 1] , (2.15)

where
φ−1(s) := inf{t : φ(t) = s} . (2.16)

Moreover, if x ∈ BV [0, 1], then for every β > 0 the functions φ and c in (2.15) may be
even chosen such that

β2φ̇2 + ċ2 = Jβ(x)2 a.e. J0(x) = ‖ċ‖L1 (2.17)

holds. Thus, φ, c ∈ W 1,∞[0, 1].
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The proof of this theorem can be found in [10] (see also [9]). Since these references
have not been published, a new proof based on the variational definition in (2.2) is
given in the appendix for the convenience of the reader.

Example 2.6. We consider the space BV [0, 1] and the finite-dimensional subspaces
Xn ⊂ H1[0, 1] of piecewise linear functions with triangulation

τn := {0 = s0 < s1 < . . . < sn−1 < sn = 1} , hn := max
1≤i≤n

(si − si−1) ,

and assume that lim
n→∞

hn = 0.

The projection operators Pn : BV [0, 1] → Xn are now defined as follows

Pnx :=
n∑

i=0

xivi , xi := lim
ε→0

1
2ε

∫ si+ε

si−ε
x(ξ) dξ , 1 ≤ i < n ,

x0 := lim
ε→0+

1
ε

∫ ε

0
x(ξ) dξ , xn := lim

ε→0+

1
ε

∫ 1

1−ε
x(ξ) dξ ,

(2.18)

where the functions vi are piecewise linear such that vi(sj) = δij.
The projectors Pn are well defined as the following argument shows: it is well known

(cf., e.g., [2, Theorem 3.28]) that for any x ∈ BV [0, 1] there is a unique function x̃
satisfying

x = x̃ a.e. , x̃(0) = lim
ξ→0

x̃(ξ) , ∀s ∈ (0, 1] : x̃(s) = lim
ξ→s−

x̃(ξ) . (2.19)

Thus, x̃ is of bounded variation with J0(x) = J0(x̃) and continuous from the left.
Moreover, it holds that x̃+ exists and that x̃+(s) = x̃(s) for all but at most countably
many points. Here and below the superscript + for a function f means that

∀s ∈ [0, 1) : f+(s) := lim
ξ→s+

f(ξ) , f+(1) := f(1) .

The values xi in (2.18) may be now expressed as

x0 = x̃(0) , xi = 1
2
(x̃(si) + x̃+(si)) , 1 ≤ i < n , xn = x̃(1) .

Now we use Theorem 2.5, i.e., let φ ∈ M and c ∈ H1[0, 1] be such that x = c(φ−1)
a.e. and that (2.17) holds for some β > 0.

Due to the intermediate value theorem, there are values t̃i ∈ [φ−1(si), φ
−1(si)

+] such
that xi = c(t̃i) (note that t̃0 = 0, t̃n = 1). Together with the transformation rule (see
Remark A.9) we obatin that

‖(I − Pn)x‖p
Lp =

∫ 1

0
|c(η)− (Pnx)(φ(η))|pφ̇(η) dη

=
n∑

i=1

∫ t̃i

t̃i−1

∣∣∣((c(η)− xi−1)(si − φ(η))

+ (c(η)− xi)(φ(η)− si−1)
)
(si − si−1)

−1
∣∣∣pφ̇(η) dη

≤
n∑

i=1

( ∫ t̃i

t̃i−1

|ċ(η)| dη
)p

(si − si−1)

≤
( ∫ 1

0
|ċ(η)| dη

)p
hn ,
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where we used that
∑

ap
i ≤ (

∑
ai)

p (for ai ≥ 0, p ≥ 1). Thus,

‖(I − Pn)x‖Lp ≤ J0(x) h
1
p
n (2.20)

and hence Pnx
Lp

→ x for any 1 ≤ p < ∞.
Using formula

√
β2a2 + b2

√
β2 + e2 ≥ β2a+be (which can be easily shown), we obtain

that

√
β2φ̇2(η) + ċ2(η)−

√
β2 + ((Pnx)′(φ(η)))2φ̇(η)

=

√
β2φ̇2(η) + ċ2(η)

√
β2 + ((Pnx)′(φ(η)))2 − (β2 + ((Pnx)′(φ(η)))2)φ̇(η)√

β2 + ((Pnx)′(φ(η)))2

≥ (Pnx)′(φ(η))√
β2 + ((Pnx)′(φ(η)))2

(ċ(η)− (Pnx)′(φ(η))φ̇(η))

This together with (2.17) implies that

Jβ(x)− Jβ(Pnx) =
∫ 1

0

√
β2φ̇2(η) + ċ2(η) dη −

∫ 1

0

√
β2 + ((Pnx)′(φ(η)))2φ̇(η) dη

≥
n∑

i=1

ei

∫ t̃i

t̃i−1

(ċ(η)− (Pnx)′(φ(η))φ̇(η)) dη = 0 ,

where ei := xi−xi−1√
β2(si−si−1)2+(xi−xi−1)2

. Note that c(t̃i) = xi = Pnx(si) = Pnx(φ(t̃i)) for all

0 ≤ i ≤ n.
Thus, Jβ(Pnx) ≤ Jβ(x) which together with the lower semicontinuity of Jβ and (2.20)

implies that Jβ(Pnx) → Jβ(x).
This means that Pβ = BV [0, 1] ∩ D(F ) if Pnx ∈ D(F ) for n sufficiently large which

is always the case if F is linear.
If Xn is chosen to be a subspace of H1

0 [0, 1], then the definition of the projection
operators in (2.18) has to be adjusted, namely: x0 = 0 = xn.

Then it follows as above that Pnx
Lp

→ x for any 1 ≤ p < ∞ and for all x ∈ BV [0, 1].
However, Jβ(Pnx) → Jβ(x) only if x ∈ BV [0, 1] is such that

x̃(0) = 0 = x̃(1) .

To obtain convergence of xδ
α,β,n towards a minimizer xδ

α,β of fα,β in BV [0, 1] according
to Theorem 2.4 can, therefore, only be guaranteed if xδ

α,β satisfies the above condition.
This means that only if xδ

α,β is 0 at the boundary it is advisable to choose Xn as subspace
of H1

0 [0, 1].

Unfortunately, a similar result will not hold in higher dimensions. Even for piece-
wise constant functions, where jumps occur along lines of finite perimeter, it does not
automatically hold that Jβ(Pnx) → Jβ(x). This is only the case if the triangulation
approximates the line, where the jumps occur, good enough. In all other cases, one can
only show that Jβ(Pnx) remains bounded.

It will be the topic of future research to investigate if other finite elements than
piecewise linear ones are better suited to yield a result as in Example 2.6 also for higher
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dimensions. Moreover, we want to consider also other regularization methods than
Tikhonov regularization in Algorithm 1.1.

Once more, we want to mention that numerical results confirming the theoretical ones
can be found in [15, 16].

Appendix A: Proof of Theorem 2.5

For the proof of Theorem 2.5 we need some preparatory work. In analogy to (2.3) and
(2.2) we define for β ≥ 0 and 0 ≤ s1 < s2 ≤ 1:

Qβ,s1,s2(x, v) :=
∫ s2

s1

(
x(ξ)v̇(ξ) + β

√
1− v2(ξ)

)
dξ , (A.1)

where | · | denotes the Euclidean norm in Rd, and

Jβ,s1,s2(x) := sup{Qβ,s1,s2(x, v) : v ∈ C1
c (0, 1), ‖v‖∞ ≤ 1} . (A.2)

Whenever used below, x̃ will be defined as in (2.19).

Proposition A.7. Let x ∈ BV [0, 1] and 0 ≤ s1 < s2 < s3 ≤ 1. Then it holds that

Jβ,s1,s3(x) = Jβ,s1,s2(x) + Jβ,s2,s3(x) + |x̃+(s2)− x̃(s2)| .

Proof. Let v ∈ C1
c (s1, s3) with ‖v‖∞ ≤ 1 and such that the corresponding restrictions

are still in C1
c (s1, s2) and C1

c (ss, s3), respectively, be arbitrary but fixed.
For ε > 0 sufficiently small such that v|[s2−2ε,s2+2ε] ≡ 0 we define vε as follows:

vε = v in [s1, s3]\[s2− ε, s2 + ε] and vε|[s2−ε,s2+ε] is a piecewise linear function such that
vε(s2 − ε) = 0 = vε(s2 + ε) and vε(s2) = sgn(x̃(s2)− x̃+(s2)). By locally smoothing the
three corners, we can find a function ṽε ∈ C1

c (s1, s3) such that

Qβ,s1,s3(x, ṽε) ≥ Qβ,s1,s2(x, v) + Qβ,s2,s3(x, v)− γ1ε

+
(

1
ε

∫ s2

s2−ε
x(ξ) dξ − 1

ε

∫ s2+ε

s2

x(ξ) dξ
)

sgn(x̃(s2)− x̃+(s2))

for some γ1 > 0. Taking the limit ε → 0, this yields together with (A.2) that

Jβ,s1,s3(x) ≥ Jβ,s1,s2(x) + Jβ,s2,s3(x) + |x̃+(s2)− x̃(s2)| . (A.3)

To finish the proof we will now show that the same estimate holds with ≤ .
Let v ∈ C1

c (s1, s3) with ‖v‖∞ ≤ 1 be arbitrary but fixed. For ε > 0 sufficiently small
we define vε as above, however, the piecewise linear part satisfies: vε(s2± ε) = v(s2± ε)
and vε(s2) = 0. Again by locally smoothing the three corners, we can find a function
ṽε such that the corresponding restrictions are in C1

c (s1, s2) and C1
c (ss, s3), respectively.

Moreover,

Qβ,s1,s3(x, v) ≤ Qβ,s1,s2(x, ṽε) + Qβ,s2,s3(x, ṽε) + γ2ε

+
(

v(s2−ε)
ε

∫ s2

s2−ε
x(ξ) dξ − v(s2+ε)

ε

∫ s2+ε

s2

x(ξ) dξ
)

for some γ2 > 0 (depending on v). Taking the limit ε → 0 we obtain together with
(A.2) estimate (A.3) with ≥ replaced by ≤ .

Corollary A.8. Let x ∈ BV [0, 1] and 0 ≤ s1 < s2 < s3 ≤ 1. Then it holds:
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(i) Jβ,0,s(x) is continuous from the left as function in s.

(ii) J+
β,0,s(x) = Jβ,0,s(x) + |x̃+(s)− x̃(s)| for all 0 < s < 1 and lim

s→0
Jβ,0,s(x) = 0.

(iii) Jβ,0,s2(x) ≥ J+
β,0,s1

(x) + β(s2 − s1) for all 0 < s1 < s2 ≤ 1.

Proof. The assertion in (i) follows immediately from the definition (A.2) and the
assertions in (ii) and (iii) follow from Proposition A.7 if we can show that

lim
h→0

Jβ,s,s+h(x) = 0 , 0 ≤ s < 1 . (A.4)

Let 0 ≤ s < s̄ ≤ 1 and ε > 0 be arbitrary but fixed. Due to (A.2), there is a function
ṽε ∈ C1

c [s, s̄] with ‖ṽε‖∞ ≤ 1 such that

Jβ,s,s̄(x) ≤ Qβ,s,s̄(x, ṽε) + ε .

Let now h̄ > 0 be such that ṽε|[s,s+2h̄] ≡ 0. Then it follows together with (A.2) and

Proposition A.7 for all 0 < h ≤ h̄ that

Jβ,s,s+h(x) + Jβ,s+h,s̄(x) ≤ Jβ,s,s̄(x) ≤ Qβ,s,s̄(x, ṽε) + ε

= Qβ,s+h,s̄(x, ṽε) + ε ≤ Jβ,s+h,s̄(x) + ε .

Thus, Jβ,s,s+h(x) ≤ ε. Since ε was arbitrary, this proves (A.4).

Remark A.9. For the following considerations we need the transformation rule:
Let φ ∈M (cf. (2.14)), c, f ∈ C[0, 1]. Then it holds that∫ 1

0
f(ξ) dξ =

∫ 1

0
f(φ(η))φ̇(η) dη ,

∫ 1

0
f(ξ)c(φ−1(ξ)) dξ =

∫ 1

0
f(φ(η))c(η)φ̇(η) dη .

This is well known to hold for φ ∈ C1[0, 1]. For φ ∈ M the inverse is defined as in
(2.16). From this definition we know that φ−1 is strictly monotonically increasing and
continuous from the left. Moreover,

φ(φ−1(s)) = s for all s ∈ [0, 1] , (A.5)

{φ−1(s)} = {t : φ(t) = s} for all but at most countably many s ∈ [0, 1] . (A.6)

The transformation rules above now also hold for φ ∈M, since one can find a sequence
of functions φn ∈ C1[0, 1] such that φn(0) = 0, φn(1) = 1, φ̇n > 0 and φn → φ as
n →∞ and since the following lemma holds.

Lemma A.10. Let {φn} be a sequence in M. Then it holds that

φn
H1

⇀ φ =⇒ φ−1
n (s) → φ−1(s) a.e.

Proof. Let {φn} be a sequence in M converging weakly in H1 towards φ. Since M
is weakly closed in H1, φ ∈ M. Let now {φnk

} be an arbitrary but fixed subsequence
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of {φn} and s ∈ [0, 1]. Since φ−1
nk

(s) ∈ [0, 1], there exists a further subsequence denoted
by {φl} and t ∈ [0, 1] with φ−1

l (s) → t as l →∞. Since, due to (A.5),

|s− φ(t)| ≤ |
∫ φ−1

l
(s)

t
φ̇l(ξ) dξ|+ |φl(t)− φ(t)| ≤ ‖φ̇l‖L2|φ−1

l (s)− t|
1
2 + ‖φl − φ‖L∞

and since ‖φ̇l‖L2 is uniformly bounded and ‖φl − φ‖L∞ → 0, we now obtain that
s = φ(t). If s satisfies (A.6), then t = φ−1(s). Since {φnk

} was an arbitrary subsequence
this implies that then φ−1

n (s) → φ−1(s).

We are now in the position to prove Theorem 2.5:

Proof of Theorem 2.5. Let us first assume that the left hand side in (2.15) holds and
that v ∈ C1

c [0, 1] with ‖v‖∞ ≤ 1. Then

Q0(x, v) =
∫ 1

0
c(η)v̇(φ(η))φ̇(η) dη = −

∫ 1

0
ċ(η)v(φ(η)) dη .

Thus, J0(x) ≤ ‖ċ‖L1 and hence x ∈ BV [0, 1].
Let now β > 0 and assume that x ∈ BV [0, 1]. Then Jβ(x) < ∞ and we may define z

as follows

z(0) := 0 and z(s) :=
Jβ,0,s(x)

Jβ(x)
. (A.7)

With Corollary A.8 we obtain that z is continuous from the left, z+(0) = 0, z(1) = 1,
and

z(s2) ≥ z+(s1) + β
Jβ(x)

(s2 − s1) , 0 ≤ s1 < s2 ≤ 1 . (A.8)

We now define φ as follows

φ(t) := inf{s : t ≤ z(s)} (A.9)

Then we immediately obtain together with (A.7) and (A.8) that φ is monotonically
increasing, φ(0) = 0, φ(1) = 1, 0 < φ(t) < 1 for 0 < t < 1, and

z(φ(t)) = t ≤ t , z+(φ(t) = t ≥ t , (A.10)

where
t := min{η : φ(η) = φ(t)} t := max{η : φ(η) = φ(t)} . (A.11)

W.l.o.g. let 0 ≤ t1 < t2 ≤ 1. Then φ(t1) ≤ φ(t2). If φ(t1) < φ(t2), we obtain with (A.8)
and (A.10) that

t2 ≥ z(φ(t2)) ≥ z+(φ(t1)) + β
Jβ(x)

(φ(t2)− φ(t1))

and furthermore that
0 ≤ φ(t2)− φ(t1) ≤ Jβ(x)

β
(t2 − t1) .

Therefore, φ is Lipschitz continuous and hence φ ∈ H1[0, 1] with φ̇ ≥ 0 a.e., i.e., φ ∈M.
The function c will be defined as follows

c(t) := x̃(φ(t)) + (t− t)Jβ(x) sgn(x̃+(φ(t))− x̃(φ(t))) (A.12)

with t as in (A.11).
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If s1 < s2, then it is easy to show (by choosing appropriate functions ṽε) that
Jβ,s1,s2(x) ≥ |x̃(s2) − x̃+(s1)|. This together with Proposition A.7, Corollary A.8, and
(A.7) yields that

Jβ(x)(z(s2)− z+(s1)) ≥ |x̃(s2)− x̃+(s1)| , Jβ(x)(z+(s1)− z(s1)) = |x̃+(s1)− x̃(s1)| .

Together with (A.10) and (A.12) we obtain for 0 ≤ t1 < t2 ≤ 1 that c(t1) = x̃+(φ(t1))
and

|c(t2)− c(t1)| = |(t2 − t2)Jβ(x) sgn(x̃+(φ(t2))− x̃(φ(t2))) + x̃(φ(t2))− x̃+(φ(t1))

+ (t1 − t1)Jβ(x) sgn(x̃+(φ(t1))− x̃(φ(t1)))|
≤ Jβ(x)(t2 − t2 + t2 − t1 + t1 − t1) = Jβ(x)(t2 − t1)

Therefore, c is Lipschitz continuous and hence c ∈ H1[0, 1].
Since z is continuous from the left, φ−1 defined as in (2.16) satisfies that φ−1 = z.

Together with (A.5), (A.6), and (A.12) this implies that c(φ−1) = x̃ and hence, due to
(2.19), c(φ−1) = x a.e. This proves (2.15).

Let us now assume that 0 < s = φ(t) ≤ 1. Then by definition (A.1), we get that

Qβ,0,s(x, v) =
∫ s

0

(
c(φ−1(ξ))v̇(ξ) + β

√
1− v2(ξ)

)
dξ

=
∫ t

0

(
c(η)v̇(φ(η))φ̇(η) + βφ̇(η)

√
1− v2(φ(η))

)
dη

=
∫ t

0

(
− ċ(η)v(φ(η)) + βφ̇(η)

√
1− v2(φ(η))

)
dη

A density argument together with (A.2), (A.7), and (A.10) yields that

Jβ(x) t = Jβ,0,s(x) = sup
ṽ∈P1[0,t]

∫ t

0

(
ċ(η)ṽ(η) + βφ̇(η)

√
1− ṽ2(η))

)
dη ,

where P1[0, t] is defined as follows: let P2[0, t] be the set of piecewise constant functions
ṽ defined on [0, t] such that ‖ṽ‖∞ ≤ 1. Then P1[0, t] is the subset of those functions
ṽ ∈ P2[0, t] satisfying that ṽ|[t,t] ≡ 0 if t 6= t and that ṽ|[η,η] ≡ const for all η ∈ (0, t)
with η 6= η.

Since by definition φ is constant and c is linear on all intervalls [η, η], it even follows
that

Jβ(x) t = sup
ṽ∈P2[0,t]

∫ t

0

(
ċ(η)ṽ(η) + βφ̇(η)

√
1− ṽ2(η))

)
dη − Jβ(x)(t− t)

and furthermore with a density argument that

Jβ(x) t = sup
ṽ∈P2[0,t]

∫ t

0

(
ċ(η)ṽ(η) + βφ̇(η)

√
1− ṽ2(η))

)
dη =

∫ t

0

√
β2φ̇2(η) + ċ2(η) dη .

This implies that β2φ̇2 + ċ2 = Jβ(x)2 a.e. Similarly it follows that J0(x) = ‖ċ‖L1 .
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