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Abstract

Recently, the metric of Ky Fan was successfully applied to as-
sess uncertainty in linear inverse problems. In this work, we present
an extension of these results to nonlinear problems. More precisely,
we derive results on convergence and convergence rates for Tikhonov
regularization applied to nonlinear stochastic ill-posed problems, and
discuss strategies to extend these local convergence results to global
ones.

1 Introduction

In [6, 10] an approach was presented that allows extension of many results
from the deterministic theory of inverse problems to a stochastic setup. A
main ingredient in the new approach was the metric of Ky Fan, which has
proven to be a powerful concept to quantify convergence and convergence
speeds in stochastic inverse problems. In this work, we extend the results
of [6] and [10] to the nonlinear case.

We consider stochastic nonlinear inverse problems and assume that the
original problem is influenced by some external random parameter ω, element
of a probability space (Ω,A, µ). I.e., for fixed ω we consider the nonlinear
equation

F (x(ω), ω) = y(ω), ω ∈ Ω, (1)
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where x and y are random variables with values in Hilbert spaces X, Y ,
respectively, and all involved operators (e. g., F (·, ω), F ′(·, ω), F ′∗(·, ω), . . . )
are random operators (cf. [11]). Furthermore, we assume that (1) admits
a measurable solution. For possible assumptions on F that guarantee this
condition we refer to [11, Chpt. 1.5] and the references therein.

We consider problems where the solution of (1) does not depend con-
tinuously on the right hand side y(ω). This is, for instance, the case when
for almost all ω the operator F (·, ω) is compact, locally injective, and acts
between infinite dimensional spaces X and Y (cf. [5]). To obtain a stable so-
lution when only noisy data yδ(ω) are given, regularization techniques must
be applied. A well known regularization method for deterministic nonlin-
ear inverse problems is Tikhonov regularization. In this work, we extend the
stochastic convergence rate analysis, introduced in [6, 10] for linear problems,
to Tikhonov regularization for stochastic nonlinear problems.

While for linear problems the metrics of Ky Fan and Prokhorov where
considered, we now focus on the Ky Fan metric only (see [12] for a detailed
comparison of these two metrics). The Prokhorov metric works with distri-
butions, the Ky Fan metric uses random variables to define distances. This
metric is defined as follows.

Definition 1.1 (Ky Fan metric). The distance of two random variables
ξ1, ξ2 in the Ky Fan metric is defined as ([8], also [3])

ρk(ξ1, ξ2) := inf {ε > 0 | µ{ω ∈ Ω | d(ξ1(ω), ξ2(ω)) > ε} < ε} . (2)

Note that the Ky Fan metric represents a quantitative version of con-
vergence in probability and naturally leads to (multi-dimensional) confidence
intervals. For some additional background on the metric of Ky Fan and
connections between the metrics of Ky Fan and Prokhorov see e. g., [3, 12].

2 Deterministic Convergence Results

Let us first of all briefly consider the deterministic theory of nonlinear inverse
problems. We consider problems of the form

F (x) = y , (3)

where F maps between two Hilbert spaces X and Y . For technical reasons, in
the following analysis some weak assumptions on F are needed, in particular
we assume that (cf. [5, 7])

(i). F is continuous,
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(ii). F is weakly closed, i. e., for xn ∈ D(F ), xn ⇀ x and F (xn) ⇀ y imply
F (x) = y and x ∈ D(F ).

For problem (3), we are interested in the x∗-minimum norm solution, where
x∗ represents some initial guess for the solution of (3).

Definition 2.1 (x∗-minimum norm solution). We call x† an x∗-minimum
norm solution of (3) if

F (x†) = y

and ∥∥x† − x∗
∥∥ = min {‖x− x∗‖ | F (x) = y} .

Observe that such a solution needs not exist, and even if it exists, it needs
not be unique.

If the solution of (3) does not depend continuously on the data, it is
necessary to regularize the problem. For nonlinear operators, Tikhonov reg-
ularization is defined via the functional

J(x) :=
∥∥F (x)− yδ

∥∥ 2 + α ‖x− x∗‖ 2 , x ∈ D (F ) . (4)

A minimizer1 of this functional is called a regularized solution xδ
α. As for

linear problems, one now investigates convergence of regularized solutions
as the noise level δ, ‖y − yδ‖ ≤ δ, tends to 0. In contrast to linear inverse
problems (cf. [5, Theorem 5.2]), at first convergence of subsequences only
can be obtained. This is due to the fact that the x∗-minimum norm solution
need not be unique (cf. also Example 3.3). The following theorem is derived
in [19] (see also [7],[5, Theorem 10.3]).

Theorem 2.2 (Convergence). Let yδ ∈ Y , ‖y − yδ‖ ≤ δ and α(δ) be
such that α(δ) → 0 and δ2/α(δ) → 0 as δ → 0. Let xδk

αk
denote a sequence

of minimizers of (4). Then xδk
αk

has a convergent subsequence; the limit of
every convergent subsequence is a x∗-minimum norm solution of (3). If fur-
thermore the x∗-minimum norm solution x† is unique, the original sequence
converges and

lim xδk
αk

= x† .

As in the linear case, source conditions are needed to obtain convergence
rates. These conditions are phrased in terms of derivatives2 of F at the
solution x†, and also involve the initial guess x∗.

1Note that for nonlinear problems the minimizer of (4) need not be unique.
2For some problems also derivative free source conditions and methods are known [16].
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Definition 2.3 (Source Condition). We say that x† satisfies a (Hölder-)
source condition with parameter ν if there exists a v ∈ Y such that

x† − x∗ = (F ′(x†)∗F ′(x†))νv . (5)

Under such a source condition, and the additional assumption that the
source element v is sufficiently small, one obtains a convergence rate results.
First of all we consider the case where (5) is satisfied with ν = 1/2. The-
orem 5.1 treats the case of arbitrary 0 < ν ≤ 1/2. The following result is
derived in [7] (see also [5, Theorem 10.4]).

Theorem 2.4 (Convergence Rates). Let D(F ) be convex, yδ ∈ Y such
that ‖yδ − y‖ ≤ δ and x† denote an x∗-minimum norm solution of (3).
Furthermore let the following conditions hold.

(i). F is Frechet-differentiable.

(ii). There exists γ ≥ 0 such that ‖F ′(x†)− F ′(x)‖ ≤ γ‖x† − x‖ in a suffi-
ciently large ball Bϑ(x†) ∩ D(F ).

(iii). x†−x∗ satisfies the source condition x†−x∗ = F ′(x†)∗v for some v ∈ Y .

(iv). The source element satisfies γ‖v‖ < 1.

Then for the choice α = cδ with some fixed c > 0, we obtain∥∥x† − xδ
α

∥∥ ≤ δ + α‖v‖
√

α
√

1− γ‖v‖
= O

(√
δ
)

and
∥∥F (xδ

α)− yδ
∥∥ = O (δ) .

In the theorem above, it is required that condition (ii) is satisfied in a
sufficiently large ball Bϑ(x†). In general, ϑ > 2‖x† − x∗‖ is needed, never-
theless if the solution x† is unique, this may as well be relaxed to any ϑ > 0
(cf. [5]).

In Theorem 4.1 we present a stochastic version of the above theorem,
where conditions (ii), (iii) and (iv) are coupled with probabilities. So while
e. g., F ′(·, ω) will have to satisfy (ii) around x†(ω), the corresponding con-
stant γ(ω) need not be bounded uniformly with respect to ω. These relax-
ations of the deterministic conditions will lead to different convergence rate
results.
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3 Convergence and Non-Convergence

In this section we transfer the deterministic convergence result of Theorem 2.2
to the stochastic problem (1) and demonstrate with a counter example that
non-unique solutions can lead to non-convergence.

In the following, suppose that for almost all ω ∈ Ω the operator F (·, ω)
satisfies conditions (i) and (ii) in section 2. For equation (1), we define the
Tikhonov functional as∥∥F (x(ω), ω)− yδ(ω)

∥∥ 2 + α ‖x(ω)− x∗(ω)‖ 2, x(ω) ∈ D (F (·, ω)) .

We call any minimizer of this functional a regularized solution and denote it
by xδ

α(ω). Observe that we consider pointwise minimizers here (i.e. for each
xδ

α(ω) only one realization of yδ is needed), and not a minimizer in the Ky
Fan metric (i. e., not a minimizer of a functional of the form ρk(F (x), yδ) +
αρk(x, x∗), which can only be computed if the whole random variable yδ is
available).

The first theorem shows (local) convergence of Tikhonov regularization in
the Ky Fan metric. In [6, 10] it was possible to derive stochastic convergence
rates from deterministic results via a lifting technique. Nevertheless, for the
following result some more effort is necessary, since such a lifting is possible
only when a quantitative bound on ‖x†(ω)−xδ

α(ω)‖ is available. Theorem 2.2
gives only the qualitative information that xδ

α(ω) converges to x†, but no
information about the speed3.

In contrast to Theorem 2.2, we require uniqueness of the x∗-minimum
norm solution; Example 3.3 shows the necessity of this assumption.

Theorem 3.1 (Convergence). Let yδ be such that ρk(y, yδ) ≤ δ. Let α(δ)
satisfy α(δ) → 0 and δ2/α(δ) → 0 as δ → 0. Furthermore, let the x∗-
minimum norm solution x† be unique for almost all ω. Then

lim
δ→0

ρk(x
†, xδ

α(δ)) = 0.

Proof. Consider a sequence yδk with ρk(y, yδk) ≤ δk and δk → 0. Let η :=
lim sup ρk(x

†, xδk

α(δk)). (Note that 0 ≤ η ≤ 1 due to properties of the Ky Fan

metric.) We show in the following that for arbitrary ε > 0, we have η/2 ≤ ε
and consequently lim sup ρk(x

†, xδk

α(δk)) = lim ρk(x
†, xδk

α(δk)) = 0.

As a first step, we pick a “worst case” subsequence of yδk , a subsequence
where the corresponding solutions satisfy ρk(x

†, xδk

α(δk)) ≥ η/2 and therefore

lim inf ρk(x
†, xδk

α(δk)) ≥ η/2 (without loss of generality we may choose the

3It is well-known that it cannot give more, cf. Proposition 3.11 in [5].

5



sequence itself). We now show that even from this “worst case” sequence we

can pick a subsequence with lim sup ρk(x
†, x

δ
kj

α(δ
kj )) ≤ ε.

Let ε > 0. Convergence in the Ky Fan metric implies pointwise con-
vergence of subsequences [3, 4]. Moreover, by the quantitative statement
in [12, Proposition 2.2], we can pick a subsequence yδ

kj and a set Ωε with
µ(Ωε) ≥ 1− ε

2
as well as ‖yδ

kj (ω)− y(ω)‖ ≤ 2δkj on Ωε. For all ω ∈ Ωε, the
noise level δkj tends to zero. Therefore, Theorem 2.2 implies convergence4 of

x
δ
kj

α (ω) to the unique solution x†(ω) for δkj → 0 and ω ∈ Ωε. This conver-
gence need not be uniform in ω; nevertheless, pointwise convergence implies
uniform convergence when sets of small measure are omitted (Egoroff’s theo-
rem on almost uniform convergence; see e. g., [2, 3]). Thus for δkj sufficiently
small

µ
(
ω ∈ Ωε |

∥∥∥xδ
kj

α (ω)− x†(ω)
∥∥∥ > ε

)
≤ ε/2 .

So in total, we have shown existence of a subsequence δkj such that

µ
(
ω ∈ Ω |

∥∥∥xδ
kj

α (ω)− x†(ω)
∥∥∥ > ε

)
≤ ε

for δkj sufficiently small. Rewriting this probability estimate using the Ky

Fan metric, we obtain lim supj→∞ ρk(x
δ
kj

α , x†) ≤ ε. On the other hand, the

original sequence satisfied lim infk→∞ ρk(x
†, xδk

α(δk)) ≥ η/2.

Since lim infk→∞ ρk(x
δk
α , x†) ≤ lim supj→∞ ρk(x

δ
kj

α , x†), we obtain η/2 ≤ ε.
Because ε > 0 was arbitrary, η = 0, which concludes the proof.

Remark 3.2. As opposed to Theorem 2.2, we assumed (local) uniqueness
of the x∗(ω)-minimum-norm solutions x†(ω) to deduce convergence in Theo-
rem 3.1. In the deterministic theorem—even without assuming uniqueness—
at least the convergence of subsequences can be shown. Nevertheless, this
convergence of subsequences cannot be lifted to a stochastic setting with-
out additional assumptions on x†, since the subsequences (the corresponding
enumerations) for different ω do not have to be related. As soon as Ω is not
finite, also diagonalization arguments fail.

In the following we construct a (counter-)example, where the noise tends
to 0 in the Ky Fan metric, but xδ

α(ω) has no convergent subsequence. The
main ingredients for this construction are a non-unique x∗-minimum norm
solution and an uncountable probability space Ω.

4Uniqueness of x†(ω) is needed for this step; otherwise we find only convergent subse-
quences, and cannot perform the subsequent lifting argument.

6



yδ4
1 yδ4

2 yδ4
1 yδ4

2
· · ·

yδ3
1 yδ3

2 yδ3
1 yδ3

2

yδ2
1 yδ2

2

yδ1
1yδ1(ω) =

yδ2(ω) =

yδ3(ω) =

yδ4(ω) =

Figure 1: Construction of a sequence yδk(ω) with ρk(y, yδk) ≤ δk and
ρk(x

†, xδ
k) ≥ 1/2.

Example 3.3 (Non-convergence). Consider an equation F (x) = y with
two solutions x†1, x†2, and suppose that for some sequence δk → 0 we can
construct yδk

1 , yδk
2 , with the following properties

• ‖yδk
i − y‖ ≤ δk for i = 1, 2 and

• the regularized solutions xδk
α,i obtained from the sequence yδk

i converge

to the solution x†i as δk → 0.

For the sake of simplicity, we suppose that ‖x†1 − x†2‖ ≥ 1, and that the
regularized solutions are sufficiently close to their limits, such that always
‖xδi

α,1−x
δj

α,2‖ ≥ 1/2. (An inverse problem that exhibits these characteristics is
presented in Example 3.4 below.) Under these assumptions we can construct
a sequence of noisy data yδk(ω) that converges to y(ω) = y in the Ky Fan
metric, but where the corresponding solutions obtained via Tikhonov regu-
larization do not.

In Figure 1, we consider Ω = [0, 1], and show an appropriate construction
of noisy data yδk . For k = 1 we pick yδ1(ω) such that all regularized solutions
are close to x†1; for k = 2, xδ2

α (ω) is close to x†1 when ω ∈ [0, 1
2
], and close to

x†2 when ω ∈ (1
2
, 1]; for k = 3 the domain is split into 4 sub-domains and so

forth. According to the assumptions above, this situation happens for noisy
data of the form

yδ1(ω) = yδ1
1

yδ2(ω) = yδ2
1 χ[0, 1

2
](ω) + yδ2

2 χ( 1
2
,1](ω)

yδ3(ω) = yδ3
1

(
χ[0, 1

4
](ω) + χ( 1

2
, 3
4
](ω)

)
+ yδ3

2

(
χ( 1

4
, 1
2
](ω) + χ( 3

4
,1](ω)

)
...
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Figure 2: The two components f1 (left) and f2 (right) of the function f
defined in Example 3.4.

Now clearly, yδk tends to y in the Ky Fan metric, since with probability 1 we
have ‖yδk(ω)− y‖ ≤ δk, so

ρk(y
δk , y) ≤ δk .

To estimate the distance between the regularized solutions, we observe that
under the assumptions above for any i 6= j, on a set of measure 1/2, xδi

α (ω)

is close to x†1, while x
δj
α (ω) is close to x†2. This implies

ρk(x
δi
α , xδj

α ) ≥ 1

2
∀i 6= j .

The corresponding sequence of solutions has no convergent subsequence.

Example 3.4 (Multiple Solutions). Let the nonlinear function f : R →
R2 be defined as

f(x) = (f1(x), f2(x)) ,

with

f1(x) = |x| and f2(x) =


x + 1 x ≤ −1

0 −1 < x < 1

x− 1 1 ≤ x.

The graph of this function is shown in Figure 2. Observe that for any y ∈ R2

of the form y = (y1, 0) with 0 < y1 ≤ 1 there are two solutions for the
equation f(x) = y, namely x1 = y1 and x2 = −y1. As soon as |y1| > 1 the
solutions become unique, due to the influence of the second component of f .
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Figure 3: The Tikhonov functional for Example 3.4 with α = 0.2 and the
cases d = −0.2 (left) and d = +0.2 (right).

Suppose that the exact data for the equation f(x) = y is given by y =
(1, 0), which yields the solutions x†1 = −1 and x†2 = 1. Suppose further that
the noisy data yδ are given as

yδ = (1 + |d|, d)
∥∥y − yδ

∥∥ =
√

2|d| =: δ , d ∈ R.

For arbitrarily small noise level δ =
√

2|d|, the sign of d decides whether the
regularized solution is close to x†1 or close to x†2 (cf. Figure 3): When α is
chosen as α = |d| = δ/

√
2, the regularized solutions are

xδ
α = sign (d)

(
1 +

|d|
2 + |d|

)
.

In particular |xδ
α| > 1, so for arbitrarily small noise level |xδ

α − x−δ
α | ≥ 2; the

obtained construction satisfies the assumptions in Example 3.3 above.

So as we have seen, if no additional restrictions on solutions of (1) are
imposed, even a convergent subsequence of regularized solutions need not
exist. These problems disappear as soon as source conditions are assumed,
because these ensure local uniqueness of solutions.

4 Convergence Rates

The next theorem gives a result on convergence rates. As in the linear case
(see [6]), source conditions are needed to obtain rates. These conditions
are typically of the form x† ∈ R((F ′(x†)∗F ′(x†))ν), which is an abstract
smoothness requirement on the true solution x†.

The major difference in the results for linear and nonlinear problems is
that we must require conditions on the smallness of the corresponding source
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element. A discussion of two possibilities to handle this issue is given in
section 5.

In the following theorem, we treat the case ν = 1/2. Some of the con-
ditions in Theorem 2.4 are required to be satisfied almost surely; others are
required with a certain probability only.

Theorem 4.1 (Convergence Rate). Let D(F ) be convex, let yδ be such
that ρk(y, yδ) ≤ δ and let x†(ω) be an x∗-minimum norm solution for almost
all ω. Moreover, let the following conditions hold

(i). F (·, ω) is Frechet-differentiable for almost all ω.

(ii). F ′(·, ω) satisfies∥∥F ′(x†(ω), ω)− F ′(x, ω)
∥∥ ≤ γ(ω)

∥∥x†(ω)− x
∥∥

in a ball Bϑ(x†(ω)) with ϑ ≥ 2‖x†(ω) − x∗(ω)‖ + ε and ε > 0 (cf.
Remark 4.2).

(iii). (source condition) µ(Ωsc) = 1 where

Ωsc :=
{
ω | ∃v(ω), x†(ω)− x∗(ω) = F ′(x†(ω), ω)∗v(ω)

}
.

(iv). (closedness condition) With γ(ω) as in (ii) and v(ω) as in (iii),

µ (ω ∈ Ωsc | γ(ω) ‖v(ω)‖ > ξ) < ϕcl(ξ), lim
ξ→1−

ϕcl(ξ) = 0 .

(v). (decay condition) With v(ω) as in (iii),

µ (ω ∈ Ωsc | ‖v(ω)‖ > τ) < ϕde(τ), lim
τ→∞

ϕde(τ) = 0 .

Then for α with α → 0 and δ2/α → 0 sufficiently small,

ρk(x
†, xδ

α) ≤ inf
τ<∞

ξ∈(0,1)

max

{
δ + ϕcl(ξ) + ϕde(τ),

δ + ατ√
α
√

1− ξ

}
.

In particular, for the choice α(δ) ∼ δ we obtain5

ρk(x
†, xδ

α(δ)) ≤ inf
τ<∞

ξ∈(0,1)

max

{
δ + ϕcl(ξ) + ϕde(τ),

√
δ
O(1 + τ)√

1− ξ

}
. (6)

5For an alternative parameter selection method α = α(δ, ϕde(·)) cf. Remark 4.3.
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Proof. Since Definition 1.1 of the Ky Fan metric involves an infimum, we
must for technical reasons first of all suppose that δ > ρk(y, yδ). With
probability 1− δ the noise level can be estimated by ‖y − yδ‖ ≤ δ. Now fix
δ and choose ξ < 1 and 0 < τ < ∞. With probability 1 − (ϕcl(ξ) + ϕde(τ))
conditions (iv) and (v) are satisfied for these values of ξ and τ . For the
corresponding values of ω we apply Theorem 2.4 and obtain the estimate∥∥x†(ω)− xδ

α(δ)(ω)
∥∥ ≤ δ + ατ√

α
√

1− ξ
,

when δ2/α ≤ ε, with ε as in (ii) (cf. the proof in [5, Thm. 10.4]). Fixing the
parameter choice α ∼ δ,∥∥x†(ω)− xδ

α(δ)(ω)
∥∥ ≤ √

δ
c(1 + τ)√

1− ξ
.

This estimate holds on a set with measure greater or equal to 1−(δ+ϕcl(ξ)+
ϕde(τ)), the Ky Fan metric can therefore be bounded as

ρk(x
†, xδ

α(δ)) ≤ max

{
δ + ϕcl(ξ) + ϕde(τ),

δ + ατ√
α
√

1− ξ

}
.

This estimate is valid for arbitrary choices of ξ and τ above, therefore we
may bound the Ky Fan distance of x† and xδ

α(δ) by taking the infimum with
respect to ξ and τ . Since all functions involving δ are continuous from the
right, we obtain the same estimate also for δ = ρk(y, yδ)

Remark 4.2. In the theorem above we assumed that F ′(·, ω) satisfies con-
dition (ii) in a sufficiently large ball. In the deterministic Theorem 2.4, there
was a distinction whether the solution is unique or not; for unique solutions
the condition could be relaxed to any ball around x†. In contrast to the
deterministic theory, here the condition cannot be relaxed even for unique
solutions. In the deterministic setting the fact was used that after a certain,
but finite fade-in phase the proposed rate is obtained. In the stochastic set-
ting, this phase may have different lengths for different realizations of x†(ω);
therefore such an argument fails.

We now consider some special cases for the form of ϕcl(·) and ϕde(·) above.
An additional discussion of the smallness condition is given in section 5.2.

Remark 4.3. In the first two cases the operator is assumed to be determin-
istic, i. e., F (·, ω) = F (·), with γ(ω) = γ = 1.
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First of all suppose ‖v‖ ∈ U [0, 1], i. e., it is uniformly distributed on the
interval [0, 1]. We therefore have ϕcl(ξ) = 1 − ξ, as well as ϕde(τ) = 0 for
τ > 1. Thus Theorem 4.1 implies

ρk(x
†, xδ

α(δ)) ≤ inf
0<α<∞

inf
ξ∈(0,1)

max

{
δ + 1− ξ,

δ + α√
α
√

1− ξ

}
.

Neglecting the δ-term in the first part we obtain 1−ξ = (δ + α)/(
√

α
√

1− ξ),
which gives for α ∼ δ

ρk(x
†, xδ

α(δ)) = O
(
δ1/3
)

.

Observe that in this case α ∼ δ is the optimal choice, independent of the
structure of ϕcl(ξ), since

δ + α√
α
√

1− ξ
=

√
δ√

1− ξ

(√
δ

α
+

√
α

δ

)
shows the optimal rate when the two terms in parentheses are balanced.

For the second case suppose ϕde(τ) = cτ−e (cf. [6, Remark 3.4]). Since
ϕcl(ξ) 9 0, but ϕcl(ξ) ≥ c we obtain

ρk(x
†, xδ

α(δ)) ≤ inf
0<α<∞

inf
τ<∞

ξ∈(0,1)

max

{
c + cτ−e,

δ + τα√
α
√

1− ξ

}
.

The right hand side does not tend to zero, we do not get any convergence
rate (nevertheless, the method still converges according to Theorem 3.1).

Finally, consider the case when both (iv) and (v) influence the convergence
behavior, because F is stochastic with varying γ(ω). For instance in the case
that for some ω ∈ U [0, 1] we have x†(ω) = ωx† and γ(ω) = 1−ω, we find that
ϕcl(ξ) = 1 − ξ and ϕde(τ) = c/(1 + τ) are compatible realizations of ϕcl(·)
and ϕde(·). To get the infimal bound for the Ky Fan distance, we clearly
need ϕcl(ξ) ∼ ϕde(τ). This allows us to eliminate ξ and yields

c̃

1 + τ
=

δ + ατ
√

α
√

c/(1 + τ)
=

√
1 + τ

c

√
δ

(√
δ

α
+

√
α

δ
τ

)
The term in parentheses is balanced when δ/α ∼ τ . Since for convergence
we need τ →∞ we can replace 1+τ by τ , and obtain τ ∼ δ−1/4. Altogether,
this implies the rate

ρk(x
†, xδ

α(δ)) = O
(
δ

1
4

)
,

under the parameter choice α = α(δ, ϕde(·)) ∼ δ5/4.
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Remark 4.4. In the remark above, we considered the case where γ(ω)
can be arbitrarily small. Observe that, when γ(ω) is bounded from be-
low, condition (iv) implies (v). In this case all realizations of x†(ω) and
x∗(ω) satisfy a source condition with a similar source element (namely with
‖v(ω)‖ ≤ 1/ min γ < ∞). The resulting convergence rate is (besides the
influence of ξ) the same as in the deterministic case.

Condition (v) in Theorem 4.1 seems more natural than condition (iv):
While the first one ensures that all possible solutions carry some common
smoothness (e. g., are twice differentiable), the latter one also requires quan-
titative bounds on this smoothness (e. g., the H2-norm of x†(ω) is less than 1
a. s.). This is certainly a strong requirement. In the next section, we present
two possibilities how to alter the assumptions of Theorem 4.1 to avoid con-
dition (iv).

5 Globalization of Convergence

In nonlinear regularization theory, convergence of the approximate solution
is in general only obtained in a neighborhood of the exact solution. Even for
the deterministic theory, convergence results usually require some smallness
condition (for instance the source element v or x† − x∗ has to be sufficiently
small). Although this is somehow unsatisfactory, it cannot be avoided due
to the nonlinearity of the problem.

However, in this section we want to discuss remedies for this situation.
There are at least two approaches possible: Since the difficulty arises from
the nonlinearity of the operator one idea to get rid of the smallness conditions
is to impose additional conditions on the nonlinear operator to obtain better
estimates. This idea is exposed in section 5.1.

On the other hand if additional conditions are not possible for the problem
of interest one can think of means to find a good (i. e., sufficiently close)
initial guess for the cost of an additional effort. This concept is discussed in
section 5.2 for some realistic examples.

Two additional approaches, leading to logarithmic convergence rates are
given in [11, Ch.4.3].

5.1 Nonlinearity Condition

To obtain convergence rates for an iterative regularization method, in addi-
tion to a source condition, a so-called nonlinearity condition on the operator
is needed. Such conditions are well known; popular choices are for instance a
tangential cone condition for Landweber iteration [9], or a range invariance
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condition for Gauss-Newton-type iterations [15]. For Tikhonov regulariza-
tion similar conditions were used, e. g., in [14]. A discussion of several kinds
of nonlinearity conditions can be found, e. g., in [13, 18].

In this section, we prove convergence rate estimates for Tikhonov regu-
larization under a source condition on the initial guess and a nonlinearity
condition on the operator, but without a smallness condition.

At first, we establish estimates for the deterministic case similar to The-
orem 2.4. Instead of condition (iv) in Theorem 2.4, we require the following
tangential cone condition for all z ∈ D(F ):∥∥F (z)− F (x†)− F ′(x†)(z − x†)

∥∥ ≤ C
∥∥F (z)− F (x†)

∥∥ . (iv’)

Here, C is some constant independent of x† and z. With this condition, we
obtain the following theorem.

Theorem 5.1 (Deterministic Convergence Rate). Let D(F ) be convex,
yδ ∈ Y such that ‖yδ− y‖ ≤ δ, and x† denote an x∗-minimum norm solution
of (3). If F is Frechet-differentiable, where (iv’) holds and a source condition
(5) is satisfied with ν ≤ 1

2
, we have the estimate∥∥xδ

α − x†
∥∥ ≤ 2

√
2

δ√
α

+ 2(1 + C)2ν ‖v‖αν , (7)

where xδ
α is a minimizer of (4).

Proof. For the residual and the error we use the abbreviations

rδ
α :=

∥∥F (xδ
α)− F (x†)

∥∥ and eδ
α :=

∥∥xδ
α − x†

∥∥ .

Starting with the well-known estimate (see [5, Thm.10.4])∥∥F (xδ
α)− yδ

∥∥ 2 + α
∥∥xδ

α − x†
∥∥ 2 ≤ δ2 + 2α

〈
xδ

α − x†, x∗ − x†
〉

,

expansion of the square and use of the source condition lead to

rδ
α

2
+αeδ

α

2 ≤ −2
〈
rδ
α, yδ − y

〉
+2δ2 +2α

〈
(F ′(x†)

∗
F ′(x†))ν(xδ

α − x†), v
〉

.

An interpolation inequality [5, (2.49)] gives (with β := 2ν)∥∥∥F ′(x†)
∗
F ′(x†))ν(xδ

α − x†)
∥∥∥ ≤ ∥∥xδ

α − x†
∥∥ 1−β

∥∥F ′(x†)(xδ
α − x†)

∥∥ β.

From the nonlinearity condition (iv’) we conclude that∥∥F ′(x†)(xδ
α − x†)

∥∥ ≤ (1 + C)rδ
α.
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These inequalities together with the Cauchy- and the Young-inequality6 give

rδ
α

2
+ αeδ

α

2 ≤ 1

2
rδ
α

2
+ 4δ2 + 2 ‖v‖ (1 + C)βαeδ

α

1−β
rδ
α

β
.

For any positive numbers ε1, ε2, we can rewrite the factor in the last term as

αeδ
α

1−β
rδ
α

β
= (ε

2−2β
1+β

1 ε
2β

1+β

2 α)
1+β

2 (

√
αeδ

α

ε1

)1−β(
rδ
α

ε2

)β,

and apply the following Young’s inequality:

xyz ≤ 1

γ1

xγ1 +
1

γ2

xγ2 +
1

γ3

xγ3 if x, y, z ≥ 0, and
3∑

i=1

1

γi

= 1

(this follows from the convexity of the exponential function). With

γ1 = 2, γ2 =
2

1− β
, γ3 =

2

β
,

this leads to

rδ
α

2
+ αeδ

α

2 ≤ 1

2
rδ
α

2
+ 4δ2

+2(1 + C)β ‖v‖

(
1

2

(
ε

2−2β
1+β

1 ε
2β

1+β

2 α

)(1+β)

+
1

γ2ε2
1

αeδ
α

2
+

1

γ3ε2
2

rδ
α

2

)
.

We choose

ε2
1 = 2(1− β)(1 + C)β ‖v‖ , ε2

2 = 2β(1 + C)β ‖v‖

to get

α

2
eδ

α

2 ≤ 4δ2 + 2
(
(1 + C)β ‖v‖

)2
α1+βββ(1− β)1−β

Since ββ(1−β)1−β ≤ 1 and
√

x2 + y2 ≤ |x|+ |y|, we obtain the assertion.

With this global convergence rate result, we are able to derive a conver-
gence rate result similar to Theorem 4.1, but without a smallness condition.
As a by-product of the nonlinearity condition, we can establish rates under
more general stochastic source conditions of Hölder type.

62|ab| ≤ 1
2a2 + 2b2
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Theorem 5.2 (Stochastic Convergence Rate). Let D(F ) be convex,
yδ(ω) ∈ Y such that ρk(y

δ, y) ≤ δ and x†(ω) be an x∗-minimum norm so-
lution of (3) for almost all ω. Furthermore, let for some 0 < ν ≤ 1/2 the
following conditions hold.

(i). F (·, ω) is Frechet-differentiable for almost all ω.

(ii). ∀z ∈ D(F ), F (·, ω) satisfies∥∥F (z, ω)− F (x†, ω)− F ′(x†, ω)(z − x†)
∥∥ ≤ C(ω)

∥∥F (z, ω)− F (x†, ω)
∥∥

(iii). (source condition) µ(Ωsc,ν) = 1 where

Ωsc,ν :=
{
ω | ∃v(ω), x†(ω)− x∗(ω) = (F ′(x†(ω), ω)∗F ′(x†(ω), ω))νv(ω)

}
.

(iv). (decay condition)

µ
(
ω ∈ Ωsc,ν | (1 + C(ω))2ν ‖v(ω)‖ > τ

)
< ϕde(τ), lim

τ→∞
ϕde(τ) = 0 .

Then for any α > 0 we can estimate

ρk(x
†, xδ

α) ≤ inf
τ<∞

max

{
δ + ϕde(τ), 2

√
2

δ√
α

+ 2ταν

}
.

Proof. If the decay condition and the nonlinearity condition holds, we may
conclude as in the proof of Theorem 4.1 for δ > ρk(y

δ, y) with (7) that∥∥x†(ω)− xδ
α(ω)

∥∥ ≤ 2
√

2
δ√
α

+ 2ταν

with probability larger than 1 − (δ + ϕde(τ)). By definition of the Ky-Fan
metric the assertion follows with technical arguments as in the proof of The-
orem 4.1.

The previous theorem establishes convergence rates as in Theorem 4.1
under more general source conditions. Note that as in section 4, with an
appropriate parameter choice rule of α we get convergence rates for the error
in terms of the Ky-Fan metric. Moreover, the estimates in Theorem 5.1 are
of similar order in terms of α as for the linear case (compare [5]), and hence
can be expected to be order optimal.

Of course, the nonlinearity conditions in this sections are only one possi-
bility, other ones are conceivable as well. The aim of the previous theorem is
mainly to exemplify that such conditions give way to stochastic convergence
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rates without closeness restrictions on the initial guess x∗(ω) such as (iv) in
Theorem 4.1; similar results under alternative conditions are certainly possi-
ble and can be derived as above once the deterministic rates are established.

Admittedly, in applications nonlinearity conditions are hard to verify and
for many interesting inverse problems this task is still an open problem.
However, it should be noted, that there are numerical examples where local
convergence can be observed, even though the nonlinearity condition cannot
be proven.

In some cases, it might be unrealistic to assume that nonlinearity con-
ditions holds, in such a situation a good initial guess is vital. In the next
section, we discuss this case in certain applications.

5.2 Increasing the Effort to generate an Initial Guess

In this section, we present a second approach to circumvent the smallness
condition (iv) of Theorem 4.1. Instead of imposing additional assumptions
on the operator F , we replace condition (iv) by a more applicable condition.
We do not assume that the norm of the source element v(ω) is uniformly
bounded, but introduce an additional parameter, that represents the effort
to obtain a good initial guess (and consequently a small source element v(ω)).
The new condition can be formulated as

µ{ω ∈ Ω | γ(ω) ‖v(ω)‖ > c} < ϕcl(c, κ), κ ∈ K . (iv”)

Using this assumption, (6) turns, for fixed c < 1, into

ρk(x
†, xδ

α(δ)) ≤ inf
τ<∞

max
{

δ + ϕcl(c, κ) + ϕde(τ),O
(√

δ(1 + τ)
)}

. (6”)

In the following, we demonstrate that this approach is well applicable to
problems, where accurate direct measurements are in principle possible but
too expensive in one or another sense. Such a situation occurs in many
applied inverse problems.

Example 5.3. An important class of inverse problems arises in the deter-
mination of atmospheric parameters, which are necessary to predict e. g.,
weather and climate. Such quantities are for instance the temperature, the
humidity or the concentration of gases such as ozone and carbon dioxide in
dependence of the altitude.

In principle many of these values could be measured directly using weather
balloons giving high resolution with respect to the altitude and accurate
measurements.
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An alternative approach is to use indirect measuring techniques. Instead
of observing the parameters directly, some derived quantity is measured: For
instance the satellite TES7 observes radiation, which is emitted by the earth’s
surface at various frequencies; afterwards, by solving a nonlinear integral
equation, the concentration of ozone in dependence of the altitude can be
recovered. Given such a satellite, a vast number of measurements can be
taken. The disadvantage of this technique is of course that a nonlinear and
ill-posed problem (see e. g., [1]) must be solved.

Let us now turn to the discussion of the source-conditions (iii) and (iv) in
Theorem 4.1. It is clear that there is no possibility to influence the smooth-
ness of the solution (e. g., the distribution of ozone as a function of the
altitude). Thus, if (iii) is not satisfied with probability 1, we would have to
use a setup as in Theorem 5.2, and choose the exponent ν in condition (iii)
sufficiently small to guarantee that this condition is fulfilled for the problem
under consideration. (If this is not possible, still an interpolation approach
as in [11, Ch. 4.3] may be applicable.)

In contrast, we do have a possibility to influence condition (iv). As initial
guess x∗ in the nonlinear problem we will of course use the available data,
obtained by the traditional direct method involving the weather balloons.
The accuracy of this initial guess depends on

• the distance ∆x between the region the satellite is observing and the
point where the measurement with the balloon was made, and

• the time ∆t that has elapsed since the balloon has made its observation
and in particular also on the weather conditions since then.

In particular we cannot guarantee that x∗ at a given point is sufficiently good
(‖x† − x∗‖ ≤ c), but we have only a probability of the form

P
(∥∥x† − x∗

∥∥ > c
)

< ϕcl(c, ∆t, ∆x) ,

where ∆t and ∆x denote the distance in time and space respectively. These
two parameters play the role of κ in (iv”). By performing more balloon starts
at more locations the probability that the distance of x∗ and x† is sufficiently
small can be increased, but of course at the same time the cost κ of the initial
guess rises. As described above, in this example there is a tradeoff between
quality of the initial guess and effort for obtaining it.

Example 5.4. Not only direct measurements may be used as initial guess.
It may even happen that another indirect method yields reliable results, but
is replaced by a “cheaper” one:

7“Tropospheric Emission Spectrometer”, homepage at http://tes.jpl.nasa.gov/.
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Computerized tomography has been applied for decades in medical imag-
ing, but since the patient is exposed to X-ray radiation, there are certain
restrictions on how often this reliable diagnosis tool can be used. Alternative
methods such as e. g. SPECT (see e. g. [17]) are less harming to the patient,
but lead to nonlinear problems, with lower resolution. Of course available
CT-images will serve as valuable initial guess for resulting reconstructions.
The parameter κ in (iv”) again corresponds to this possibility of improving
the initial guess by paying some additional price (e. g., by exposing the pa-
tient to X-rays more frequently). Increasing the cost κ, we can increase the
probability that the initial guess is sufficiently good.

Observe that the second term in the maximum in (6”) does not depend
on κ. This essentially means that κ has to increase fast enough, to not dimin-
ish the convergence rate O(δ2ν/(2ν+1)). In contrast to e. g., the parameters ξ
and τ in Theorem 4.1, there is no danger of letting κ grow too fast.
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