
PARAMETERIZED TELESCOPING PROVES
ALGEBRAIC INDEPENDENCE OF SUMS

CARSTEN SCHNEIDER

Abstract. Usually creative telescoping is used to derive recurrences for sums. In this

article we show that the non-existence of a creative telescoping solution, and more gen-

erally, of a parameterized telescoping solution, proves algebraic independence of certain
types of sums. Combining this fact with summation-theory shows transcendence of whole

classes of sums.

1. Introduction

Telescoping [7] and creative telescoping [25, 15] for hypergeometric terms and its vari-
ations [14, 10, 12, 4] are standard tools in symbolic summation. All these techniques are
covered by the following formulation of the parameterized telescoping problem: Given se-
quences f1(k), . . . , fd(k) over a certain field K, find, if possible, constants c1, . . . , cd ∈ K
and a sequence g(k) such that

g(k + 1)− g(k) = c1f1(k) + · · ·+ cdfd(k). (1)

If one succeeds in this task, one gets, with some mild extra conditions, the sum-relation

g(n + 1)− g(r) = c1

n∑
k=r

f1(k) + · · ·+ cd

n∑
k=r

fd(k) (2)

for some r ∈ N = {0, 1, . . . } big enough. Note that d = 1 gives telescoping. Moreover,
given a bivariate sequence f(m, k), one can set fi(k) := f(m + i − 1, k) which corresponds
to creative telescoping.

Since Karr’s summation algorithm [8] and its extensions [23, 21] can solve the parameter-
ized telescoping problem in the difference field setting of ΠΣ∗-fields, we get a rather flexible
algorithm which is implemented in the package Sigma [19]: the fi(k) can be arbitrarily
nested sums and products; see e.g., [13, 6].

In this article we apply ΠΣ∗-field theory [8, 17] to get new theoretical insight: If there is
no solution to (1) within a given ΠΣ∗-field setting, then the sums in (2) can be represented
in a larger ΠΣ∗-field by transcendental extensions; see Theorem 3.1. Motivated by this fact,
we construct a difference ring monomorphism which links elements from the larger ΠΣ∗-field
to the sums

S1(n) =
n∑

k=r

f1(k), . . . , Sd(n) =
n∑

k=r

fd(k) (3)

in the ring of sequences over K. In particular, this construction transfers the transcendence
properties from the ΠΣ∗-world into the sequence domain. In order to accomplish this task,
we restrict to generalized d’Alembertian extensions, a huge subclass of ΠΣ∗-extensions.

Summarizing, parameterized telescoping in combination with ΠΣ∗-fields gives a criterion
to check algorithmically the transcendence of sums of type (3); see Theorem 4.1. Combining
this criterion with results from summation theory, like [1, 10, 2, 24], shows that whole
classes of sequences are transcendental. E.g., the harmonic numbers {H(i)

n | i ≥ 1} with
H

(i)
n :=

∑n
k=1

1
ki are transcendental over Q(n).

The general structure of this article is as follows. In Section 2 we present the basic notions
of difference fields, and we introduce ΠΣ∗-extensions together with the subclass of general-
ized d’Alembertian extensions. In Section 3 we show the correspondence of parameterized
telescoping and the construction of a certain type of Σ∗-extensions. In Section 4 we con-
struct a difference ring monomorphism that carries over the transcendence properties from
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a given d’Alembertian extension to the ring of sequences. This leads to a transcendence de-
cision criterion of sequences in terms of generalized d’Alembertian extensions. In Section 5
we illustrate our criterion by various examples. Finally, we present the analogous criterion
for products in Section 6.

2. Basic notions: ΠΣ∗-extensions and generalized d’Alembertian extension

Subsequently we introduce the basic concepts of difference fields that shall pop up later.
A difference ring1 (resp. field) (A, σ) is a ring A (resp. field) with a ring automorphism

(resp. field automorphism) σ : A → A. The set of constants constσA = {k ∈ A |σ(k) = k}
forms a subring (resp. subfield) of A. In this article we always assume that constσA is a
field, which we usually denote by K. We call constσA the constant field of (A, σ).

A difference ring homomorphism (resp. monomorphism) τ : A1 → A2 between two differ-
ence rings (A1, σ1) and (A2, σ2) is a ring homomorphism (resp. monomorphism) with the
additional property that τ(σ1(f)) = σ2(τ(f)) for all f ∈ A1.

A difference ring (resp. difference field) (E, σ) is a difference ring extension (resp. dif-
ference field extension) of a difference ring (resp. difference field) (A, σ′) if A is a subring
(resp. subfield) of E and σ′(f) = σ(f) for all f ∈ A; since σ and σ′ agree on A, we do not
distinguish them anymore.

Now we are ready to define ΠΣ∗-extensions and generalized d’Alembertian extensions in
which we will represent our indefinite nested sums and products.

A difference field extension (F(t), σ) of (F, σ) is called a ΠΣ∗-extension if both difference
fields share the same field of constants, t is transcendental over F, and σ(t) = t + a for
some a ∈ F∗ (a sum) or σ(t) = a t for some a ∈ F∗ (a product). If σ(t)/t ∈ F (resp.
σ(t) − t ∈ F), we call the extension also a Π-extension (resp. Σ∗-extension). In short, we
say that (F(t1) . . . (te), σ) is a ΠΣ∗-extension (resp. Π-extension, Σ∗-extension) of (F, σ) if
the extension is given by a tower of ΠΣ∗-extensions (resp. Π-extensions, Σ∗-extensions). A
ΠΣ∗-field (K(t1) . . . (te), σ) over K is a ΠΣ∗-extension of (K, σ) with constant field K.

Example 2.1. Consider the difference field (Q(m)(k)(b)(h), σ) with σ(k) = k + 1, σ(b) =
m−k
k+1 , σ(h) = h + 1

k+1 , and constσQ(m)(k)(b)(h) = Q(m). The extensions k, b, and h form
ΠΣ∗-extensions over the fields below. (Q(m)(k)(b)(h), σ) is a ΠΣ∗-field over Q(m). �

The following theorem tells us how one can check if an extension is a ΠΣ∗-extension.

Theorem 2.1 ([8]). Let (F(t), σ) be a difference field extension of (F, σ) with t 6= 0 and
σ(t) = α t + β where α ∈ F∗ and β ∈ F. Then:
(1) This is a Σ∗-extension iff α = 1 and there is no g ∈ F with σ(g)− g = β.
(2) This is a Π-extension iff β = 0 and there is no n 6= 0 and g ∈ F∗ with σ(g) = αng.

The following remarks are in place:
(1) If (F, σ) is a ΠΣ∗-field, algorithms are available which make Theorem 2.1 completely
constructive; see [8, 23].
(2) We emphasize that we have a first criterion for transcendence in a difference field: if
there is no telescoping solution, then we can adjoin the sum as a transcendental extension
without extending the constant field. This criterion will be generalized to parameterized
telescoping; see Theorem 3.1. For the product case see Theorem 6.1.

Theorem 2.2 states how a solution g of σ(g)− g = f and σ(g) = fg looks like in certain
types of extensions. The first part follows by [8, Sec. 4.1] and the second part follows by [22,
Lemma 6.8]. These results are crucial ingredients to prove Theorems 3.1 and 6.1.

Theorem 2.2. Let (F(t1, . . . , td), σ) be a ΠΣ∗-extension of (F, σ) with constant field K and
σ(ti) = αiti + βi where αi, βi ∈ F. Let f ∈ F and g ∈ F(t1, . . . , td).

1All fields and rings are of characteristic 0 and commutative
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(1) If σ(g)− g = f , then g =
∑d

i=1 ci ti + w with w ∈ F, ci ∈ K; if αi 6= 1, then ci = 0.
(2) If σ(g) = f g, then g = w

∏d
i=1 tci

i with w ∈ F and ci ∈ Z; if βi 6= 0, then ci = 0.

Subsequently, we will restrict to the following type of extensions. A ΠΣ∗-extension
(F(t1) . . . (te), σ) of (F, σ) with σ(ti) = αi ti + βi is called generalized d’Alembertian ex-
tension, in short GA-extension, if αi ∈ F and βi ∈ F[t1, . . . , ti−1] for all 1 ≤ i ≤ e.

Remark 2.1. One can reorder GA-extensions to F(p1) . . . (pu)(s1) . . . (sv) with u, v ≥ 0
where σ(pi)

pi
∈ F for 1 ≤ i ≤ u and σ(si)− si ∈ F[p1, . . . , pu, s1, . . . , si−1] for 1 ≤ i ≤ v. �

It is easy to see that (F[t1, . . . , te], σ) is a difference ring extension of (F, σ). Moreover, if
f ∈ F[t1, . . . , te], then there are no solutions in F(t1, . . . , te) \ F[t1, . . . , te].

Theorem 2.3. Let (F(t1) . . . (te), σ) be a generalized d’Alembertian extension of (F, σ) and
g ∈ F(t1) . . . (te). Then σ(g)− g ∈ F[t1, . . . , te] if and only if g ∈ F[t1, . . . , te].

Proof. The direction from left to right is clear by the definition of GA-extensions. We prove
the other direction by induction on the number of extensions. For e = 0 nothing has to be
shown. Now suppose that the theorem holds for e extensions and consider the GA-extension
(F(t1) . . . (te+1), σ) of (F, σ). By Remark 2.1 we can bring F(t1) . . . (te+1) to a form where
all Σ∗-extensions are on top. Write t := te+1 and let σ(t) = α t + β with α ∈ F∗ and
β ∈ F[t1, . . . , te]. Now suppose that σ(g) − g = f where g ∈ F(t1, . . . , te, t) \ F[t1, . . . , te, t]
and f ∈ F[t1, . . . , te][t]. Note that g ∈ F(t1, . . . , te)[t]; see, e.g., [24, Lemma 3.1]. Hence we
can write g =

∑d
i=0 git

i with gi ∈ F(t1, . . . , te). If e = 0, we are done. Otherwise, suppose
that e > 0 and let j ≥ 0 be maximal such that gj /∈ F(t1, . . . , te) \ F[t1, . . . , te]. Define g′ :=∑j

i=0 git
i ∈ F(t1, . . . , te)[t] and f ′ := f −

(
σ(

∑d
i=j+1 git

i) −
∑d

i=j+1 git
i
)
∈ F[t1, . . . , te][t].

Since σ(g′)− g′ = f ′, deg(f ′) ≤ deg(g′) = j. By coefficient comparison we have

αjσ(gj)− gj = φ ∈ F[t1, . . . , te] (4)

where φ is the jth coefficient in f ′. If α = 1 or j = 0, we can apply the induction assumption
and conclude that gj ∈ F[t1, . . . , te], a contradiction. Otherwise, suppose that 1 6= α and
j ≥ 1. Then by the assumption that all Π-extensions come first, it follows that σ(ti)/ti ∈ F
for all 1 ≤ i ≤ e. Reorder F(t1, . . . , te) such that gj /∈ F(t1, . . . , te−1)[te]. By Bronstein [5,
Cor. 3], see also [18, Cor. 1], we get gj = p

tm
e

for some m > 0 and p ∈ F(t1, . . . , te−1)[te]∗

with te - p. Hence αjσ( p
tm
e

) − p
tm
e

= αjσ(p)−amp
amtm

e
= φ with a := σ(te)

te
∈ F∗. Since te - p, also

a te = σ(te) - σ(p), and thus te - σ(p). Since (4) and m > 0, αjσ(p) − amp = 0, and hence
σ( 1

p tm
e

) = αj 1
p tm

e
; a contradiction to Theorem 2.1.2 and the fact that (F(t1, . . . , te)(t), σ) is

a Π-extension of (F(t1, . . . , te), σ). �

3. Parameterized telescoping, ΠΣ∗-extensions and the ring of sequences

We get the following criterion to check transcendence in a given difference field (F, σ).

Theorem 3.1. Let (F, σ) be a difference field with constant field K and (f1, . . . , fd) ∈ Fd.
The following statements are equivalent.
(1) There do not exist a 0 6= (c1, . . . , cd) ∈ Kd and a g ∈ F with

σ(g)− g = c1f1 + · · ·+ cdfd. (5)

(2) There is a Σ∗-extension (F(t1) . . . (td), σ) of (F, σ) with σ(ti) = ti + fi for 1 ≤ i ≤ d.

Proof. Suppose that (5) holds for some 0 6= (c1, . . . , cd) ∈ Kd and g ∈ F. In addition,
assume that there exists a Σ∗-extension (F(t1, . . . , td), σ) of (F, σ) with σ(ti) = ti +fi. Then
σ(g) − g =

∑d
i=1 ci

(
σ(ti) − ti

)
= σ(

∑d
i=1 ci ti) −

∑d
i=1 ci ti, and thus σ(

∑d
i=1 ci ti − g) =∑d

i=1 ci ti−g. Since constσF(t1, . . . , td) = K, there is a k ∈ K with
∑d

i=1 ci ti−g+k = 0. Thus
there are algebraic relations in the ti, a contradiction to the definition of ΠΣ∗-extensions.
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Contrary, let i be maximal such that (F(t1, . . . , ti), σ) is a Σ∗-extension of (F, σ); suppose
that i < d. Then there is a g ∈ F(t1, . . . , ti) with σ(g)−g = fi+1. By Theorem 2.2.1 there are
cj ∈ K, h ∈ F with g = h+

∑i
j=1 cj tj . This shows that σ(h)−h = fi+1−

∑i
j=1 cj(σ(tj)−tj) =

−c1 f1 − · · · − ci fi + fi+1. Hence we get a solution for (5) with 0 6= (c1, . . . , cd) ∈ Kd. �

Let K be a field with characteristic zero. The set of all sequences KN with elements
(an)∞n=0 = 〈a0, a1, a2, . . . 〉, ai ∈ K, forms a commutative ring by component-wise addition
and multiplication; the field K can be naturally embedded by identifying k ∈ K with the
sequence k := 〈k, k, k, . . . 〉. In order to turn the shift-operation

S : 〈a0, a1, a2, . . . 〉 7→ 〈a1, a2, a3, . . . 〉 (6)

to an automorphism, we follow the construction from [15, Sec. 8.2]: We define an equivalence
relation ∼ on KN with (an)∞n=0 ∼ a(bn)∞n=0 if there exists a δ ≥ 0 such that ak = bk for all
k ≥ δ. The equivalence classes form a ring which is denoted by S(K); the elements of S(K)
will be denoted, as above, by sequence notation. Now it is immediate that S : S(K) → S(K)
with (6) forms a ring automorphism. The difference ring (S(K), S) is called the ring of
K-sequences or in short the ring of sequences.

The main result of our article is that the polynomial ring F[t1, . . . , te] of a generalized
d’Alembertian extension (F(t1) . . . (te), σ) of (F, σ) with constant field K can be embed-
ded in the ring of sequences S(K), provided that (F, σ) can be embedded in S(K). More
precisely, we will construct a difference ring monomorphism τ : F[t1, . . . , te] → S(K) where
the constants k ∈ K are mapped to k = 〈k, k, . . . 〉. We will call such a difference ring
homomorphism (resp. monomorphism) also a K-homomorphism (resp. K-monomorphism).

Then the main consequence is that the transcendence properties of d’Alembertian exten-
sions, in particular Theorem 3.1, can be carried over to S(K); see Theorem 4.1.

4. The monomorphism construction

In the following we will construct the K-monomorphism as mentioned in the end of
Section 3. Here we use the following lemma which is inspired by [9]; the proof is obvious.

Lemma 4.1. Let (A, σ) be a difference ring with constant field K. If τ : A → S(K) is a
K-homomorphism, there is a map ev : A× N → K with

τ(f) = 〈ev(f, 0), ev(f, 1), . . . 〉 (7)

for all f ∈ A which has the following properties: For all c ∈ K there is a δ ≥ 0 with

∀i ≥ δ ev(c, i) = c; (8)

for all f, g ∈ A there is a δ ≥ 0 with

∀i ≥ δ : ev(f g, i) = ev(f, i) ev(g, i), (9)

∀i ≥ δ : ev(f + g, i) = ev(f, i) + ev(g, i); (10)

and for all f ∈ A and j ∈ Z there is a δ ≥ 0 with

∀i ≥ δ ev(σj(f), i) = ev(f, i + j). (11)

Conversely, if we have a map ev : A× N → K with (8), (9), (10) and (11), then τ : A → S(K)
defined by (7) forms a K-homomorphism.

In order to take into account the constructive aspects, we introduce the following functions.

Definition 4.1. Let (A, σ) be a difference ring and τ : A → S(K) be a K-homomorphism
defined by (7). τ is called operation-bounded by L : A → N if for all f ∈ A and j ∈ Z with
δ = δ(f, j) := L(f) + max(0,−j) we have (11) and for all f, g ∈ A with δ = δ(f, g) :=
max(L(f), L(g)) we have (9) and (10); such a function is also called o-function. τ is called
zero-bounded by Z : F → N if for all f ∈ F and all i ≥ Z(f) we have ev(f, i) 6= 0; such a
function is also called z-function.
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Lemma 4.2. Let (A, σ) be a difference field with constant field K. If τ : A → S(K) is a
K-homomorphism with (7), then for all f ∈ A we have ev( 1

f , i) = 1
ev(f,i) for big enough i.

In particular, there is a z-function for τ .

Proof. τ(f−1) is the inverse of τ(f), i.e., τ( 1
f ) = 1

τ(f) . Hence, ev( 1
f , k) = 1

ev(f,k) for all k ≥ δ

for some δ ≥ 0. This implies ev(f, k) 6= 0 for all k ≥ δ. Hence there is a z-function. �

The following lemma is the crucial tool to design step by step a K-monomorphism for a
generalized d’Alembertian extension. This construction we will be used in Theorem 4.1.

Lemma 4.3. Let (F(t1) . . . (te)(t), σ) be a GA-extension of (F, σ) with K := constσF. Let
τ : F[t1] . . . [te] → S(K) be a K-homomorphism (resp. K-monomorphism). Then:

(1) There is a K-homomorphism (resp. K-monomorphism) τ ′ : F[t1] . . . [te][t] → S(K) with
τ ′(f) = τ(f) for all f ∈ F[t1, . . . , te].

(2) If there is an o-function for τ , then there is an o-function for τ ′.
(3) If there is a computable z-function for τ restricted on F and a computable o-function

for τ , then there is a computable o-function for τ ′.

Proof. By Lemma 4.2 there is a z-function Z : F → N for τ restricted on F. Let τ be defined
by (7), denote A := F[t1, . . . , te] and suppose that σ(t) = α t + β with α ∈ F∗ and β ∈ A.
First suppose that α = 1. Then there is a δ ≥ 0 with (11) where f := β. Let r := δ + 1 and
consider the sequence given by

ev(t, k) =
k∑

i=r

ev(β, i− 1) + c for some2c ∈ K. (12)

Let j ≥ 0. Then by construction we have for all k ≥ r:

ev(σj(t), k) = ev(t +
j−1∑
i=0

σi(β), k) = ev(t, k) +
j−1∑
i=0

ev(σi(β), k) + c

= ev(t, k) +
j−1∑
i=0

ev(β, k + i) + c = ev(t, k + j).

Similarly, if j < 0, then ev(t, k + j) = ev(σj(t), k) for all k ≥ r − j. This proves (11) for
f = t and all j ∈ Z with δ = r + max(−j, 0). Now suppose that β = 0. Then there is a
δ ≥ 0 with (11) where f := α. Let r := max(Z(α), δ) + 1 and consider the sequence given
by

ev(t, k) = c
k∏

i=r

ev(α, i− 1) for some c ∈ K∗. (13)

Analogously, it follows that for all j ∈ Z we have ev(t, k + j) = ev(σj(t), k) for all k ≥
r + max(−j, 0). Moreover, since ev(α, i− 1) 6= 0 for all i ≥ r, ev(t, k) 6= 0 for all k ≥ r.
Finally, we extend ev from A to A[t] by

ev′(
n∑

i=0

fit
i, k) =

n∑
i=0

ev(fi, k)ev(t, k)i.

Moreover, if we choose δ ≥ r big enough (depending on the fi), we get (11) for f =
∑n

i=0 fit
i.

Similarly, we can find for all f, g ∈ A[t] a δ ≥ 0 with (9) and (10). Moreover, (8) holds, since
ev′ restricted on A equals ev. Summarizing, if we define τ ′ : A[t] → S(K) following (7), τ ′

forms a K-homomorphism by Lemma 4.1. In particular, if β = 0, then τ ′(t) 6= 0.

2The constant c can be chosen arbitrarily; this gives extra freedom in the design of τ ′.
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Suppose that there is in addition an o-function L : A → N. Then the r from above can be
defined by r := max(Z(α), L(α)) + 1 or r := L(β) + 1, respectively. Define L′ : A[t] → N by

L′(f) =

{
L(f) if f ∈ A,

max(r, L(f1), . . . , L(fn)) if f =
∑n

i=0 fit
i /∈ A.

Then one can check that L′ is an o-function for τ ′. E.g., for f =
∑m

i=0 fit
i, g =

∑n
i=0 git

i:

ev(f g, k) = ev(
m+n∑
j=0

tj
j∑

i=0

figj−i, k) =
m+n∑
j=0

ev(t, k)j
j∑

i=0

ev(figj−i, k)

=
( m∑

i=0

ev(fi, k)ev(t, k)i
)( n∑

j=0

ev(gj , k)ev(t, k)j
)

= ev(f, k)ev(g, k)

for all k ≥ max(r, f0, . . . , fm, g0, . . . , gn) = max(L(f), L(g)). In particular, if L and Z are
computable, then L′ is computable.
Finally, suppose that τ is a K-monomorphism, but the extended K-homomorphism τ ′ is not
injective. Then there is an f ∈ A[t] \ A with τ ′(f) = 0. Take such an f =

∑n
i=0 fit

i where
deg(f) = n > 0 is minimal, and define

h := σ(fn)αn f − fnσ(f) = σ(fn)αn
n∑

i=0

fit
i − fn

n∑
i=0

σ(fi)(α t + β)i ∈ A[t]. (14)

Since 0 = S(0) = S(τ ′(f)) = τ ′(σ(f)), we have τ ′(h) = τ(σ(fn)αn)τ ′(f)− τ(fn)τ ′(σ(f)) =
0. In addition, deg(h) < n by construction. Moreover, we conclude that h /∈ A as follows.
Suppose that h ∈ A. Since τ ′(h) = τ(h) and τ is injective, it follows h = 0. With (14) we get
σ(f)/f ∈ F(t1) . . . (te) with f /∈ F(t1) . . . (te). If t is a Σ∗-extension, we get a contradiction
by Theorem 2.2.1. Otherwise, suppose that t is a Π-extension. Then f = u t with u ∈ F∗ by
Theorem 2.2.2. Hence 0 = τ ′(f) = τ(u) τ ′(t). Since τ(u) 6= 0 (τ is injective and u 6= 0), τ ′(t)
has infinitely many zeros, a contradiction to our construction of τ ′. Summarizing, τ ′(h) = 0
with 0 < deg(h) < deg(f), a contradiction to the minimality of deg(f). �

Theorem 4.1 (Main result). Let (F(t1) . . . (te), σ) be a generalized d’Alembertian-extension
of (F, σ) with K := constσF, and let (f1, . . . , fd) ∈ F[t1, . . . , te]d. If we have given a K-
monomorphism τ ′ : F[t1, . . . , te] → S(K) with (7), then the following is equivalent:
(1) There is no g ∈ F[t1, . . . , te] and 0 6= (c1, . . . , cd) ∈ Kd with (5).
(2) The sequences (S1(n))n, . . . , (Sd(n))n given by

S1(n) :=
n∑

k=r

ev(f1, k), . . . , Sd(n) :=
n∑

k=r

ev(fd, k), (15)

for some r big enough, are transcendental over τ ′(F[t1, . . . , te]).
If τ : F → S(K) is a K-monomorphism, then a K-monomorphism τ ′ with τ ′(f) = τ(f) for
all f ∈ F exits. If τ has a (computable) o- and z-function, τ ′ has a (computable) o-function.

Proof. Denote E := F(t1, . . . , te), suppose there is a K-monomorphism τ ′ : E → S(K), and
let (f1, . . . , fd) ∈ F[t1, . . . , te]d. Now assume that the first statement holds. Thus, by The-
orems 2.3 and 3.1 there is a Σ∗-extension (E(s1, . . . , sd), σ) of (E, σ) with σ(si) = si + fi.
Obviously, (E(s1, . . . , sd), σ) is a GA-extension of (F, σ). Hence we can apply Lemma 4.3 it-
eratively and get a K-monomorphism τ ′′ : K[t1, . . . , te][s1, . . . , sd] → S(K). By the construc-
tion of the monomorphism, see (12) (we choose c = 0), it follows that for each 1 ≤ i ≤ d we
have ev(si, n) = Si(n) for all n ≥ r for some r ≥ 0. Since the si are transcendental over E
and τ ′′ is a K-monomorphism, the second statement follows. Conversely, suppose that the
first statement does not hold. Then we get (1) with g(k) := ev(g, k) and fi(k) := ev(fi, k)
with k big enough, say k ≥ r. Summing this equation over r ≤ k ≤ n gives a relation of the
form (2), i.e., the sums in (3) are algebraic. Thus the second statement does not hold.
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Suppose there is a K-monomorphism τ : F → S(K). By iterative application of Lemma 4.3,
there is a K-monomorphism τ : K[t1, . . . , te] → S(K) with (7) and τ ′(f) = τ(f) for all f ∈ F.
The constructive part claimed in the theorem is an immediate consequence of Lemma 4.3. �

The following remarks are in place.
(1) We are mainly interested in the following application: Given (3), start with an underlying
ΠΣ∗-field (F, σ) and try to construct a d’Alembertian extension (F(t1) . . . (te), σ) of (F, σ)
together with a K-monomorphism such that we have fi ∈ F[t1, . . . , te] and ev(fi, k) = fi(k).
Here one must choose within the monomorphism construction the initial values c in (12)
and (13) accordingly; in the summation package Sigma this is done completely automatically.
Then one can check transcendence of the Si(n) by showing the existence or non-existence of a
parameterized telescoping solution in (F[t1, . . . , te], σ). Here summation packages like Sigma
or additional insight into the structure of the fi might help; see Section 5.
(2) In order to apply Theorem 4.1, we need a K-monomorphism for the underlying ΠΣ∗-field
(F, σ). We give a criterion when this is possible in Theorem 4.2. Applying this result we
get, e.g., K-monomorphisms for the rational case, the q-rational case and the mixed case.

Subsequently, we need the following additional notion for a rational function field F(t): We
say that p

q ∈ F(t) is in reduced representation, if p, q ∈ F[t], gcd(p, q) = 1, and q is monic.

Theorem 4.2. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) with constant field K and let
τ : F[t] → S(K) be a K-homomorphism (resp. K-monomorphism).
(1) There is a z-function for τ iff there is a K-homomorphism (resp. K-monomorphism)

τ ′ : F(t) → S(K).
(2) Let Z and L be z- and o-functions for τ . Then there is a K-homomorphism (resp. K-

monomorphism) τ ′ : F(t) → S(K) with a z-function Z ′ and an o-function L′. If Z and L
are computable, then Z ′ and L′ are computable.

Proof. (1) The direction from right to left follows by Lemma 4.2. Suppose that Z is a
z-function for τ . Let p

q ∈ F(t) be in reduced representation. Then we extend ev to F(t) by

ev(
p

q
, k) =

{
0 if k < Z(q)
ev(p,k)
ev(q,k) if k ≥ Z(q)

.

The properties (8), (9), (10), (11) can be carried over from F[t] to F(t). By Lemma 4.1 we
get a K-homomorphism τ ′ : F(t) → S(K) with (7). Finally, suppose that τ is injective. Take
f = p

q in reduced form such that 0 = τ ′(f) = τ(p)
τ(q) . Since ev(q, k) 6= 0 for all k ≥ Z(q),

τ(p) = 0. As τ is injective, p = 0 and thus f = 0. This proves that τ ′ is injective.
(2) Let L and Z be o- and z-functions for τ , respectively. Then we extend them to F(t) by

Z ′(
p

q
) =

{
Z(p) if q = 1
max(Z(p), Z(q)) if q 6= 1

, L′(
p

q
) =

{
L(p) if q = 1
max(L(p), L(q), Z(q)) if q 6= 1

(16)

where p
q ∈ F(t) is in reduced representation. By construction Z ′ and L′ are z- and o-functions

for τ ′. If L and Z are computable, then Z ′ and L′ are computable. �

Example 4.1. Let (K(n), σ) be the ΠΣ∗-field over K with σ(n) = n + 1. Then by our con-
struction we get a K-monomorphism τ : K(n) → S(K) with computable o- and z-functions
as follows: Start with the K-monomorphism τ : K → S(K) with τ(k) = k = 〈k, k, . . . 〉 and
take the o-function L(k) = 0 and the z-function Z(k) = 0 for all k ∈ K. By Lemma 4.3 we
get the K-monomorphism τ : K[n] → S(K) defined by ev(p, k) = p(k) for all p ∈ K[n] and all
k ≥ 0. The resulting o-function is L(p) = 0 for all p ∈ K[n]. Note that the z-function exists
since p(n) ∈ K[n] can have only finitely many roots. The positive integer roots can be easily
computed; see, e.g., [15, page 80]. Hence by Theorem 4.2 we can lift the K-monomorphism
from K[n] to K(n) together with the o-function L′ and z-function Z ′ given by (16). �
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Lemma 4.4. Let (K(q)(t1) . . . (te)(t), σ) be a ΠΣ∗-field over the rational function field K(q)
where σ(ti) = αiti + βi with αi, βi ∈ K and σ(t) = q t. If there is a K-monomorphism
τ : K(q)(t1) . . . (te) → S(K(q)) with (computable) o- and z-functions, there is a K-monomor-
phism τ : K(q)(t1) . . . (te)(t) → S(K(q)) with (computable) o- and z-functions.

Proof. There is a K-monomorphism τ ′ : K(q)(t1) . . . (te)[t] → S(K(q)) with an o-function L′

by Lemma 4.3; L′ is computable if L is computable. In this construction we can take
ev(t, k) = qk. By [4, Sec. 3.7] there is a Z ′-function for K(q)(t1) . . . (te)[t]; it is computable,
if Z is computable. By Theorem 4.2 we get a K-monomorphism from K(q)(t1) . . . (te)(t) to
S(K(q)) with o- and z-functions; they are computable, if L′, Z ′ are computable. �

By Example 4.1 and iterative application of Lemma 4.4 based on [4] we get the mixed case.

Corollary 4.1. Let (K(n)(t1) . . . (te), σ) be a ΠΣ∗-field over the rational function field K :=
K′(q1) . . . (qe) where σ(n) = n + 1 and σ(ti) = qiti for 1 ≤ i ≤ e. Then there is a K-
monomorphism τ : K(n)(t1) . . . (te) → S(K) with a computable o-function and z-function.

Note that the use of asymptotic arguments might produce K-monomorphisms for more
general ΠΣ∗-fields. An open question is, if any ΠΣ∗-field over K can be embedded in S(K).

5. Applications

We illustrate the application of Theorem 4.1 for various classes of sums. Here the summa-
tion criterion from [1],[10, Prop. 3.3] and its generalization to ΠΣ∗-extensions is substantial.

Theorem 5.1. ([24, Cor. 5.1]) Let (F(t), σ) be a ΠΣ∗-extension of (F, σ) and p
q ∈ F(t) be

in reduced representation with deg(q) > 0 and with the property that either t - q or σ(t)
t /∈ F.

If gcd(σm(q), q) = 1 for all m > 0, then there is no g ∈ F(t) with σ(g)− g = p
q .

5.1. The rational case. Applying Theorem 4.1 together with Example 4.1 gives the fol-
lowing theorem.

Theorem 5.2. Let f1(k), . . . , fd(k) ∈ K(k). If there are no g(k) ∈ K(k) and c1, . . . , cd ∈ K
with (1) then the sequences (3), for some r big enough, are transcendental over K(n), i.e.,
there is no polynomial P (x1, . . . , xd) ∈ K(n)[x1, . . . , xd] with

P (S1(n), . . . , Sd(n)) = 0 ∀n ≥ 0.

Corollary 5.1. Let p1(k), p2(k), . . . ∈ K[k]∗, u1(k), u2, . . . ∈ K[k]∗ and q ∈ K[k]∗ with
deg(q) > 0 and gcd(pi, q) = gcd(ui, q) = 1 for all i ≥ 1; suppose that q(k) 6= 0 for all k ∈ N.

Then the sums
∑n

k=1 u1(k)
(

p1(k)
q(k)

)
,
∑n

k=1 u2(k)
(

p2(k)
q(k)

)2

, . . . are transcendental over K(n).

Proof. Denote fi(k) := ui

(
pi

q

)i and suppose there are g(k) ∈ K(k) and ci ∈ K with (1)
where d ≥ 1 is minimal. Then it follows that

g(k + 1)− g(k) =
c1u1p1q

d−1 + c2u2p2p
d−2 + · · ·+ cdudpd

qd
=:

v

qd
.

Since cd 6= 0, q - cdudpd. Hence gcd(v, qd) = 1. By Theorem 5.1 it follows that such a
g(k) ∈ K(k) cannot exist; a contradiction. Hence the corollary follows by Theorem 5.2. �

Example 5.1. Choosing pi = ui = 1, q = k in Corollary 5.1 proves that the generalized
harmonic numbers Hn,H

(2)
n , . . . are transcendental over K(n). �

Applying Theorem 4.1 together with Corollary 4.1 accordingly produces the q-versions and
the mixed versions of Theorem 5.2 and Corollary 5.1. A typical application is Example 5.2.

Example 5.2. The q-harmonic numbers (and its variations)
∑n

k=1
qk

1−qk ,
∑n

k=1
1

1−qk ,∑n
k=1

q2k

(1−qk)2
,
∑n

k=1
1

(1−qk)2
, . . . are all transcendental over K(qk). �
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Completely analogously to Corollary 5.1 one can show the following corollary

Corollary 5.2. Let p1(k), q1(k), . . . , pd(k), qd(k) ∈ K[k]∗ with deg(qi) > 0 and gcd(pi, qi) =
1. Suppose that qi(k) 6= 0 for all k ∈ N and that gcd(qi(k + r), qj(k)) = 1 for all r ∈ Z and
all 1 ≤ i < j ≤ d. Then the sums

∑n
k=1

p1(k)
q1(k) , . . . ,

∑n
k=1

pd(k)
qd(k) are transcendental over K(n).

5.2. The hypergeometric case. Suppose that f(k) is a hypergeometric term in k, i.e.,
there is an α ∈ K(k) with α(r) := f(r+1)

f(r) for all r big enough; in short we also write

α(k) := f(k+1)
f(k) to define the rational function α ∈ K(k).

By [22, Thm. 5.4] f(k) can be represented by a ΠΣ∗-field (K(k)(t), σ) over K with σ(k) =
k + 1 and σ(t) = α t if and only if there is no r(k) ∈ K(k) and no root of unity γ with
f(k) = γkr(k). Subsequently, we exclude this special case.

Theorem 5.3. (Inspired by [15, Sec. 5.6]) Let f1(k), . . . , fd(k) be hypergeometric terms
with the following properties: (1) There is a ΠΣ∗-field (K(k)(t1) . . . (td), σ) over K with
σ(k) = k + 1 and σ(ti) = αiti with αi := fi(k+1)

fi(k) ∈ K(k). (2) For all 1 ≤ i ≤ d, fi(k) is not
Gosper-summable, i.e., there is no g(k) ∈ K(k) with α g(k + 1)− g(k) = 1.
Then the h1(n), . . . , hd(n) together with (3), r big enough, are transcendental over K(n).

Proof. Denote F := K(k)(t1) . . . (td). Suppose that there are 0 6= (c1, . . . , cd) ∈ Kn and
g ∈ K(k)[t1, . . . , te] with (5) where fi := ti. By [8, Cor. 2] or [20, Cor. 3], g =

∑d
i=1 witi +

u with wi, u ∈ K(n). Plugging g into (5) and doing coefficient comparison (the ti are
transcendental!) shows that σ(witi) − witi = citi for all 1 ≤ i ≤ d. By property (2),
ci = 0 for all i; a contradiction. Applying Theorem 4.1 and choosing an appropriate K-
monomorphism proves the theorem. �

Example 5.3. The sequences n!,
(
n
k

)
, (n + m)!,

∑n
k=1 k!,

∑n
k=1

(
m
k

)
and

∑n
k=1(k + m)! are

transcendental over K(m)(n). �

Theorem 5.4. Let f(k) be a hypergeometric term where f(k) 6= (−1)kr(k) for some r(k) ∈
K(k), and consider the ΠΣ∗-field (K(k)(t), σ) over K with σ(k) = k + 1 and σ(t) = f(k+1)

f(k) t.
Let ri(k) ∈ K(k) for 1 ≤ i ≤ d and set fi := rit ∈ K(k)(t). If there are no ci ∈ K and
g ∈ K(k)(t) with (5), then the following sequences, for r big enough, are transcendental over
K(n):

f(n), S1(n) =
n∑

k=r

r1(k)f(k), . . . , Sd(n) =
b∑

k=r

rd(k)f(k),

i.e., there is no P (x0, x1, . . . , xd) ∈ K(n)[x0, x1, . . . , xd] with

P (f(n), S1(n), . . . , Sd(n)) = 0 ∀n ≥ 0.

Corollary 5.3. Let f(m, k) be a hypergeometric term in m = (m1, . . . ,mu) and in k where
f(m, k) 6= (−1)kr(m, k) for some r(m, k) ∈ K(m, k). Let S = {s1, . . . , sd} ⊆ Zu. Consider
the ΠΣ∗-field (K(m)(k)(t), σ) over K(m) with σ(k) = k + 1 and σ(t) = f(m,k+1)

f(m,k) t, and

define fi := f(m+si,k)
f(m,k) t ∈ K(m)(k)(t). If there are no ci ∈ K(m) and g ∈ K(m)(k)(t)

with (5), then the following sequences, for r big enough, are transcendental over K(m)(n):

S0(n) = f(m, n), S1(n) =
n∑

k=r

f(m + s1, k), . . . , Sd(n) =
b∑

k=r

f(m + sd, k).

Example 5.4. Consider any hypergeometric sum S(m) =
∑m

k=0 f(m, k) with f(m, k) hy-
pergeometric in m and k where f(m, k) 6= (−1)kr(m, k) for some r(m, k) ∈ K(m, k). Define
S(m,n) =

∑n
k=r f(m, k) for some r big enough.

(1) Suppose that Zeilberger’s algorithm (or any other algorithm that can handle creative
telescoping for hypergeometric terms) fails to compute a recurrence for S(m) of order smaller
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or equal than d. Then the sequences f(m,n), S(m,n), S(m + 1, n), . . . , S(m + d, n) in n are
transcendental over K(m)(n). E.g., for the Apéry-sum S(m) =

∑m
k=0

(
m
k

)2(m+k
k

)
, see [16],

one can derive only a recurrences of order 2, but not smaller ones. Hence, the following
sequences in n are transcendental over K(m)(n):(

m

k

)2(
m + k

k

)
,

n∑
k=0

(
m

k

)2(
m + k

k

)
and

n∑
k=0

(
m + 1

k

)2(
m + k + 1

k

)
.

(2) In [2] a criterion is given when Zeilberger’s algorithm fails to find a creative telescoping
solution for a hypergeometric input summand f(m, k). If f(m, k) satisfies this criterion,
then all the sequences h(m,n), S(m,n), S(m + 1, n), . . . are transcendental over K(m). A
typical example is f(m, k) = 1

mk+1 (−1)k
(
m+1

k

)(
2m−2k−1

m−1

)
; see [2, Exp. 2]. �

Note that the the q-hypergeometric case can be handled completely analogously with our
machinery.

5.3. Nested sums. All what has been said in Example 5.4.1 can be carried over to se-
quences in terms of generalized d’Alembertian extensions. E.g., in [13] we derived for the
sum S(m) :=

∑m
k=0(1 + 5Hk(m − 2k)

(
m
k

)5) a recurrence of order 4 with creative telescop-
ing, but failed to find a recurrence of smaller order. Hence Theorem 4.1 tells us that the
sequences ((m

n

))
n≥0

,
(
Hn

)
n≥0

,
(
S(m,n)

)
n≥0

, . . . ,
(
S(m + 3, n))n≥0 (17)

with

S(m,n) :=
n∑

k=0

f(m, k) =
n∑

k=0

(1− 5 k Hk + 5 (m− k)j Hk)
(

m

k

)5

are transcendental over K(m)(n). More precisely, Sigma works as follows: it constructs
the ΠΣ∗-field (F, σ) with F := Q(m)(k)(b)(h) from Example 2.1 and designs the Q(m)-
monomorphism with ev(k, j) = j, ev(b, j) =

∏j
i=1

m+1−i
i =

(
m
j

)
, ev(h, j) =

∑j
i=1

1
k = Hj .

Moreover, Sigma takes f1 = b5(1 + 5h(m − 2k)), f2 = b5(m+1)5(5h(−2k+m+1)+1)
(−k+m+1)5 , f3 =

b5(m+1)5(m+2)5(5h(−2k+m+2)+1)
(−k+m+1)5(−k+m+2)5 , and f4 = b5(m+1)5(m+2)5(m+3)5(5h(−2k+m+3)+1)

(−k+m+1)5(−k+m+2)5(−k+m+3)5 . This is mo-
tivated by the fact

(
m+1

k

)
= m+1

m+1−k

(
m
k

)
which shows that ev(fi, k) = f(m+ i−1, k). Finally,

Sigma proves algorithmically that there are no g ∈ F and ci ∈ Q(m) with (5). Hence the
transcendence of (17) follows by Theorem 4.1.
We emphasize that the sum S(m) = S(m,m) has completely different properties: it satisfies
a recurrence of order two. More precisely, as shown in [13] we get

m∑
j=0

(1 + 5Hj(m− 2k))
(

m

j

)5

= (−1)m
m∑

j=0

(
m

j

)2 (
m + j

j

)
.

6. A transcendence criterion for products

The product version of Theorem 3.1 is Theorem 6.1.

Theorem 6.1. Let (F, σ) be a difference field with constant field K and (f1, . . . , fd) ∈ (F∗)n.
The following statements are equivalent.
(1) There do not exist 0 6= (c1, . . . , cd) ∈ Zd and g ∈ F∗ with

σ(g)
g

= fc1
1 . . . f cd

d . (18)

(2) There is a Π-extension (F(t1, . . . , td), σ) of (F, σ) with σ(ti) = fiti.
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Proof. Suppose that (F(t1, . . . , td), σ) is a Π-extension of (F, σ). Moreover, assume that
there is a g ∈ F∗ and 0 6= (c1, . . . , cd) ∈ Zd with (18). Let j be maximal with cj 6= 0.
Then with w = gt−c1

1 . . . t
−cj−1
j−1 ∈ F(t1, . . . , tj−1)∗ we get σ(w) = f

cj

j w, a contradiction to
Theorem 2.1.2. Conversely, let j be maximal such that (F(t1, . . . , tj), σ) is a Π-extension
of (F, σ); suppose that j < d. By Theorem 2.1.2 there is a g ∈ F(t1, . . . , tj−1)∗ and c ∈ Z
with σ(g) = fc

j g. By Theorem 2.2.2 it follows that g = u tc1
1 . . . t

cj−1
j−1 with ci ∈ Z and u ∈ F;

clearly u 6= 0. Thus, σ(u)
u = f−c1

1 . . . f
−cj−1
j−1 fc

j which proves the theorem. �

Note that the existence of a solution of (18) can be checked by Karr’s algorithm [8] if (F, σ)
is a ΠΣ∗-field over K. The following theorem is immediate.

Theorem 6.2. Let (F, σ) be a difference field with constant field K, let τ : F → S(K) be a K-
monomorphism, and let (f1, . . . , fd) ∈ (F∗)d. Then the following statements are equivalent:
(1) There is no g ∈ F∗ and 0 6= (c1, . . . , cd) ∈ Zd with (18).
(2) The sequences (S1(n))n, . . . , (Sd(n))n given by

S1(n) :=
n∏

k=r

ev(f1, k), . . . , Sd(n) :=
n∏

k=r

ev(fd, k),

for some r big enough, are transcendental over τ(F).

Example 6.1. The sequences 2n, 3n, 5n, 7n, . . . over the prime numbers are all transcendent
over K(n); compare [8, Exp. 7]. �

The following lemma is a direct consequence of [22, Thm. 4.14]; for the rational case see
also [3].

Lemma 6.1. Let (F(t), σ) be a ΠΣ∗-extension of (F, σ). Let p1, . . . , pd, q1, . . . , qd ∈ F[t]∗

where gcd(σl(pi), qj) = 1 for all l ∈ Z and 1 ≤ i < j ≤ d; set fi := pi

qi
. Then there is no

g ∈ F(t)∗ and (c1, . . . , cd) ∈ Zd with (18).

Example 6.2. Let p1(k), q1(k) . . . , pd(k), qd(k) ∈ K[k] with gcd(pi(k + l), qj(k)) = 1 for all
i, j and l ∈ Z. Then the sequences

∏n
k=r

p1(k)
q1(k) , . . . ,

∏n
k=r

pd(k)
qd(k) , for some r big enough, are

transcendental over K(n): �

7. Conclusion

We showed that creative telescoping and, more generally, parameterized telescoping can
be applied to obtain a criterion to check algebraic independence of nested sum expressions.
Here the summation package Sigma can be used to check transcendence with the computer.

Moreover, using results from summation theory one can show that whole classes of sums
are transcendental. Obviously, refinements of summation theory should give also stronger
tools to prove or disprove transcendence of sum expressions. E.g., Peter Paule’s results [11]
enable one to predict the existence of contiguous relations. Using these results might help
to refine, e.g., Theorem 5.3.
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Intelligencer, 1:195–203, 1979.
[17] C. Schneider. Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz, J. Kepler

University, November 2001. PhD Thesis.
[18] C. Schneider. A collection of denominator bounds to solve parameterized linear difference equations in

ΠΣ-extensions. In D. Petcu et al., editor, Proc. SYNASC04, pages 269–282. Mirton Publishing, 2004.
[19] C. Schneider. The summation package Sigma: Underlying principles and a rhombus tiling application.

Discrete Math. Theor. Comput. Sci., 6(2):365–386, 2004.
[20] C. Schneider. Degree bounds to find polynomial solutions of parameterized linear difference equations

in ΠΣ-fields. Appl. Algebra Engrg. Comm. Comput., 16(1):1–32, 2005.
[21] C. Schneider. Finding telescopers with minimal depth for indefinite nested sum and product expressions.

In M. Kauers, editor, Proc. ISSAC’05, pages 285–292. ACM, 2005.
[22] C. Schneider. Product representations in ΠΣ-fields. Annals of Combinatorics, 9(1):75–99, 2005.
[23] C. Schneider. Solving parameterized linear difference equations in terms of indefinite nested sums and

products. J. Differ. Equations Appl., 11(9):799–821, 2005.
[24] C. Schneider. Simplifying sums in ΠΣ∗-extensions. To appear in J. Algebra Appl., 2006.
[25] D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11:195–204, 1991.

Research Institute for Symbolic Computation, J. Kepler University Linz, A-4040 Linz, Austria

E-mail address: Carsten.Schneider@risc.uni-linz.ac.at


