APERY’S DOUBLE SUM IS PLAIN SAILING INDEED

CARSTEN SCHNEIDER

ABSTRACT. We demonstrate that also the second sum involved in Apéry’s proof of the
irrationality of {(3) becomes trivial by symbolic summation.

In his beautiful survey [4], van der Poorten explained that Apéry’s proof [1] of the irra-
tionality of ((3) relies on the following fact: If
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where H,(f) = ", %3 are the harmonic numbers of order three, then both sums a(n) and
b(n) satisfy the same recurrence relation

(n+1)3A(n) — (2n + 3) (170% + 51n + 39) A(n + 1) + (n + 2)*A(n + 2) = 0. (2)

Van der Poorten points out that Henri Cohen and Don Zagier showed this key ingredient by
“some rather complicated but ingenious explanations” [4, Section 8] based on the creative
telescoping method.

Due to Doron Zeilberger’s algorithmic breakthrough [9], the a(n)-case became a trivial
exercise. Also the b(n)-case can be handled by skillful application of computer algebra: In [10]
Zeilberger was able to generalize the Zagier/Cohen method in the setting of WZ-forms. Later
developments for multiple sums [8, 7] together with holonomic closure properties [5, 3] enable
alternative computer proofs of the b(n)-case; see, e.g., [2].

Nowadays, also the b(n)-case is completely trivialized: Using the summation package
Sigma [6] we get plain sailing — instead of plane sailing, cf. van der Poorten’s statement in [4,
Section 8]. Namely, after loading the package into the computer algebra system Mathematica
In[l:= << Sigma.m

Sigma - A summation package by Carsten Schneider (©) RISC-Linz

we insert our sum mySum = b(n)
n 2 2 k
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and produce the desired recurrence with

In[3]:= GenerateRecurrence[mySum]

out3l= {(n+ 1)°SUM[n] — (2n + 3) (17n® + 51n + 39) SUM[n + 1] + (n + 2)°SUM[n + 2] == 0}
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where SUM[n] = b(n) = mySum. The correctness proof is immediate from the proof certificates
delivered by Sigma.

Proof Set h,(n’ k‘) = (n;rk) (Z‘)’ S(n, kj) = an:l %, and let f(n, k’) be the summand

of (1), i.e., f(n,k) = h(n, k:)Q(Hr(Ls) + s(n, k)). The correctness follows by the relation

s(n+1,k) =s(n, k) — L (=) (3)
T (n+1)3  (n+1)2(n+k+1)h(n, k)
and by the creative telescoping equation
CO(”)f(”? k) + cl(n)f(n + 17 k) + CQ(”)JC(” + 27 k) = g(”ﬂ k+ 1) - g(”? k) (4)

with the proof certificate given by co(n) = (n+1)3, c1(n) = 1702 +51n+39, ca(n) = (n+2)3,
and
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where
po(n, k) =4k*(n 4+ 1)%(n + 2)(2n + 3)(2k* — 3k — 4n* — 12n — 8),
p1(n, k) =4k*(n 4+ 1)%(n + 2)(2n + 3)(2k* — 3k — 4n® — 12n — 8),
po(n, k) =k(k +n+1)(2n + 3)(=8n? + 24kn> — 48n> — 31k*n? + 109kn>
— 104n? + 13K%n — 100k>*n + 159kn — 96n + 21k — 81k? 4 74k — 32).
Relation (3) is straightforward to check: Take its shifted version in k, subtract the original

version, and then verify equality of hypergeometric terms. To conclude that (4) holds for
all 0 < k < n and all n > 0 one proceeds as follows: Express g(n,k + 1) in (4) in terms of

h(n, k) and s(n, k) by using the relations h(n,k+ 1) = %h(n, k) and s(n,k+1) =
—1)k

s(n, k) + m Similarly, express the f(n+1i, k) in (4) in terms of h(n, k) and s(n, k)
by using the relations b(n + 1,k) = Z‘fﬁi}h(n, k) and (3). Then verify (4) by polynomial
arithmetic. Finally, summing (4) over k£ from 0 to n gives Out[3] or (2). O

In conclusion, we remark that the harmonic numbers Hy(lg) in (1) are crucial to obtain the
recurrence relation (2). More precisely, for the input sum
z": (n + k)2<n)2 Zk: (—1)m-1
Ty
k=0 k k m=1 2m3 (nmm) (77711)

Sigma is only able to derive a recurrence relation of order four.
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