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Abstract

In this paper we consider a (one-shot) multigrid strategy for solving
the discretized optimality system (KKT system) of a PDE-constrained op-
timization problem. In particular, we discuss the construction of an addi-
tive Schwarz-type smoother for a certain class of optimal control problems.
A rigorous multigrid convergence analysis is presented. Numerical experi-
ments are shown which confirm the theoretical results.
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1 Introduction

In this paper we discuss multigrid methods for solving large-scale systems of dis-
cretized mixed variational problems. The main applications considered here are
optimization problems in function spaces with constraints in form of partial dif-
ferential equations (PDEs). The necessary (and for the problems considered here
also sufficient) first-order optimality conditions on a solution of such a problem
can be written as a mixed variational problem, usually called the optimality system
or Karush-Kuhn-Tucker (KKT) system.

In particular, we will consider elliptic optimal control problems, see, e.g., [13],
[17]. In such problems the primal unknown, sagonsists of two parts: a function
y, the so-called state, and a functgrthe so-called control. The problem is to find
x = (y,u) from appropriate function spaces that minimizes a given cost functional
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subject to a constraint, the so-called state equation, which, for each conisol

an elliptic boundary value problem jn The corresponding KKT system involves
another (dual) unknown, sgy (the Lagrangian multiplier or the adjoint state),

and consists of three components: the state equation (see above), the adjoint state
equation, which, for each stayeis an elliptic boundary value problem m and

the control equation, which is typically an algebraic relation betweand p.

In principle, there are two different approaches for mixed problems, such as
KKT systems, to take advantage of the multigrid idea. One way is to use an outer
iteration, typically a preconditioned Richardson method (possibly accelerated by
a Krylov subspace method), applied to the discretized mixed problem. For typi-
cal preconditioners of KKT systems in elliptic optimal control, see, e.qg., [2], [3],
[4], [12] and the references cited there. These preconditioners usually rely on ef-
ficient solvers or preconditioners for the state equation (as a PBand the
adjoint state equation (as a PDEphand on the construction of a good precondi-
tioner for the corresponding Schur complement of the KKT system, which is the
reduced Hessian of the Lagrangian. A preconditioner based on a different Schur
complement is proposed in [15]. Multigrid techniques (as an inner iteration or
approximation) can be used for (some or all of) these components, see, e.g., [10],
[91, [15].

The other way is to use multigrid methods directly applied to the (discretized)
mixed problem as an outer iteration based on appropriate smoothers (as a sort
of inner iteration). For PDE-constrained optimization problems this approach is
also known as one-shot multigrid strategy, see [16]. One of the most important
ingredients of such a multigrid method is an appropriate smoother.

A first approach for constructing such smoothers is to combine standard
smoothers applied to the components elliptic state and adjoint equations com-
plemented with a special relaxation method for the control equation, see, e.g.,
[1].

A second class of smoothers are point smoothers, where the variablg, here
andp, are grouped pointwise (with respect to the points (nodes) of the underlying
mesh) and one or several sweeps of point-block Jacobi or point-block Gaul3-Seidel
sweeps with respect to this grouping are performed, see, e.qg, [5].

A natural extension of point smoothers are patch smoothers: The computa-
tional domain is divided into small (overlapping or non-overlapping) patches. One
iteration step of the smoothing process consists of solving local mixed problems
on each patch one-by-one either in a Jacobi-type or Gauss-Seidel-type manner.
This results in an additive or multiplicative Schwarz-type smoother. The tech-
nique was successfully used for the Navier-Stokes equations, see [18]. The gen-
eral construction and the analysis of patch smoothers for mixed problems was
discussed in [14], where a particular patch smoother was proposed for the Stokes
problem. An essential feature exploited in the multigrid convergence analysis of
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the Stokes problem was (in the terminology introduced here) that the adjoint state
equation is an elliptic problem iy where in elliptic optimal control problems the
adjoint state equation is typically elliptic imbut not necessarily ig. Therefore,

a straight forward application of this construction to KKT systems for elliptic op-
timal control problems fails.

Another well-known class of smoothers for mixed problems are Braess-Sara-
zin smoothers, see, [6], [21], which are well suited for Stokes-like problems but
are too expensive if applied to KKT systems of elliptic optimal control problems.

A last approach discussed here for constructing smoothers for mixed problems
leads to so-called transforming smoothers, see [19], [20], which were successfully
analyzed for the Stokes problem and the Navier-Stokes problem. They still lack
a rigorous analysis for more general mixed problems like the KKT systems of
elliptic optimal control problems.

So far, the multigrid convergence analysis for KKT systems of PDE-con-
strained optimization problems is not as developed as for elliptic PDEs. One line
of argument exploits the fact that the KKT system reducegdand p by eliminat-
ing u using the control equation is a compact perturbation of an elliptic problem.
This guarantees the convergence of the multigrid method if the coarse grid is suf-
ficiently fine, see [5]. A second strategy is based on a Fourier analysis, which,
strictly speaking, covers only the case of uniform meshes with special boundary
conditions (and small perturbations of this situation), see, e.g., [5], [1].

The aim of this paper is to contribute to the one-shot multigrid approach for
KKT systems. We will modify the construction of the patch smoother discussed in
[14] for KKT systems of elliptic optimal control problems and present a rigorous
convergence analysis of the corresponding multigrid method.

In order to keep the notations simple and the strategy transparent the material
is presented for a model problem in optimal control only. However, since the
construction of the method does not rely on structural information of some Schur
complement, the method is easily applicable to more general problems.

The paper is organized as follows: In Section 2 the class of problems, the
multigrid method and the Schwarz-type smoother are introduced. Section 3 con-
tains the roadmap to prove the multigrid convergence in an abstract setting. The
main part of the paper is the application to PDE-constrained optimization prob-
lems in Section 4, the proof of the approximation property in Section 5, and the
proof of the smoothing property in Section 6, which completes the multigrid con-
vergence analysis. Finally, in Section 7 some numerical results are presented,
followed by some concluding remarks on the extension to more general mixed
problems.



2 The framework

Here we follow mainly the notations introduced in [7] and [14] and give a short
review of the general results on Schwarz-type smoothers from [14]:

Let X andQ be real Hilbert spaces, X x X — R, b: XxQ — R, c: Qx
Q — R continuous bilinear forms, and: X — R, G: Q — R continuous
linear functionals.

We consider the following mixed variational problem: Fixg X andp € Q
such that

a(x,w)+b(w,p) = (F,w) forallwe X,
b(x,q) —c(p,q) = (G,q) forallge Q.

Here, (F,w) ((G,q)) denotes the evaluation of the linear functioRa(G) at the
pointw (Q).

The mixed variational problem can also be written as a variational problem on
X x Q: Find (x, p) € X x Q such that

B((xp),(w,q)) = (F,(wq)) forall (w,q)eXxQ 1)

with the bilinear form

B((%,p), (W,q)) = a(x,w) + b(w, p) +b(x,d) — c(p,q)

and the linear functional
(F,(w,q)) = (F,w) +(G,q).

It is assumed tha andc are symmetric and non-negative and théts stable on
X x Q.

Typical examples of this type of problems are the Stokes problem, various
problems from linear elasticity, mixed formulations of boundary value problems
for second order elliptic equations, see e.g. Brezzi, Fortin [8], and, in particular,
PDE-constrained optimization problems, see Section 4.

The Hilbert spaceX andQ are typically subspaces of Sobolev spaces on some
domainQ. Then, for discretizing the continuous problem (1), a sequence of finite
element spaces, andQy, symmetric bilinear forms3y and linear functionals?,
on Xy x Q are chosen for each level=1,2,. .., corresponding to a hierarchy of
increasingly finer meshes @n

These spaces, linear and bilinear forms determine discrete problems at each
levelk: Find (X, pk) € Xk X Qk such that

Bi((%; P), (W, q)) = (Fk, (w,q)) for all (w,q) € X¢ x Q. (2)
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A class of efficient solvers of these discrete problems are multigrid algorithms:
We additionally need coarse-to-fine inter-grid transfer operdﬁg{s X1 X Q-1
— Xk X Qk. Then one iteration step for solving (2) at lekak given in the fol-
lowing form:

Let (xl((o), pf(O)) € Xk x Qx be a given approximation of the exact solut{ag pk)
€ Xk x Qx to (2). Then the iteration proceeds in two stages:

1. Smoothing: Foj =0,1,.... m—1 compute(xl((Hl), pl((Hl)) € Vi x Qy by

an iterative procedure of the form

06 ) = A B,
2. Coarse grid correction: Set
(Fi1, () = (Fio 11w ) — 2 (4, ™) 1 2 (W)

for (w,q) € Xc_1 x Qx_1 and let(&-1,fk-1) € Vk_1 x Qx_1 satisfy

Br1((&-1,Fc1), (V) = (Fi_1, (w,q))  for all (w,q) € Xe_1 X Q1.
(3)

If k=1, compute the exact solution of (3) and &gt 1,rk_1) = (&-_1,7k_1)-

If k> 1, compute approximationSg_1,rk_1) by applyingu > 2 iteration
steps of the multigrid algorithm applied to (3) on lekel 1 with zero start-
ing values.
Set (m)
m+
(X
Next we will describe the smoothing procedure in detail. For this it will be
more convenient to use matrix-vector notation: ket X, andq € Q. Then
w € R andqg € R™ denote their vector representations (i.e. the vectors of coeffi-
cients relative to some basesdpandQy). Furthermore, we introduce the matrix
representation of the bilinear forms by

(m+1)

NOSOES (X|(<m)a p;im)) + ||I<(71(Sk—1; Me—1)-

Br((s,1),(W,0)) = (AS,W) g2 + (B, 1) 2 + (BkS, 9) 2 — (Cir', G) g2,
and the vector representation of the linear forms
<ﬁka (W7 q)> = (in)KZ + <9k79)f2'

Here(.,.),2 denotes the Euclidean scalar product, whose associated vector norm
and matrix norm will both be denoted K| 2.
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In matrix-vector notation the discrete problem (2) can be written as:

X f - Ax BT)
i ==k th = K.
“ (Ek> (Qk) w “ (Bk —Cx

Here,BI denotes the transpose of the matjix We assume tha, andCy are
symmetric positive semi-definite matrices, and théatis a nonsingular matrix.

Since the smoothing procedure involves only one I&vet the hierarchy of
spaces, we will simplify the notation for the rest of this section by dropping the
subscriptk and, additionally, omitting underlining the vectors. So, from now on,
we discuss iterative methods (as smoothers) for linear systems of equations of the

form . .
A (:) — <g> with ¢ = (g E;c) , (4)

wherex € R", p € R™, under the assumption thatis a symmetric positive semi-
definiten x n matrix, B is anm x n matrix, andC is a symmetric positive semi-
definitem x m matrix, and that#” is nonsingular.

For setting up local sub-problems a set of linear operators is introduced:

P:RY —R" Q:R™ —R"™ fori=1,...,N,

where the dimensiong andm; are typically much smaller than the dimensions
andm of the original spaces, respectively. The operaBendQ; are interpreted
as prolongation operators with associated restriction oper&Fonamd QiT. We
assume that

N N
QQ/ isnonsingular and § RRT =1, (5)
2,0 2

wherel denotes the identity matrix. These conditions guarantee that we have
complete space decompositions

R" = .iP,(R”i) and R™= _iQi (R™),

and that, additionally, the prolongatioRsdetermine a special partition of unity:
For eachu € R" we have

N N
u= le'ui with u=PR'u and |Ju%= ZlHRuiH?z.
= &

For each index€ 1,...,N, local matricesh, B; and§ of sizen; x nj, m x nj and
my X my, respectively, have to be chosen, which determine local matri¢es the

form . T
> (A B
A= <Bi BIA'BS —3> '
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We assume that the local matricd®sare related to the (global) matr& by the
following commutativity condition

Q'B=BR" foralli=1,2,...,N. (6)

A similar condition is peeded for the local matricAs We assume that there
exists a (global) matriA (typically not equal tA) such that:

PTA=APR"T foralli=1,2,...,N. (7)

From the local matrice§ the following (global) matrxSis constructed:

N 1
- (_;Q@Qr) . ®

With the help of the local saddle point matricﬁ%the following iterative method
is constructed: Starting from some approximatigrisandp(}) of the exact solu-
tionsx andp of (4) we consider iterative methods of form:

XU — -+ZP§ pl*Y = +ZQ.,

Where(g(j),ri(j)) e R"M x R™ solves a local saddle point problem of the form

(i) T [ _ Ax() —BTpl)
FARNE i p A%_ Bp_} foralli=1,...,N.

r Qr [g—Bx(l)-l-Cp(l)}
That means, that the residuals of the approximations are first restricted to the
smaller spaces, then a series of small saddle point problems must be solved, and,
finally, the solutions are prolongated and determine the next iterate. This process
can be viewed as an additive Schwarz method.

It was shown in [14] that, under the assumptions (5), (6) and (7) and with the

construction (8), this iterative method can be written equivalently as the following
preconditioned Richardson method:

I+ Z x4 o) pl+) Z ) gD, ©)

wheres\), r(i) solve the equation

~ S(J) f x(1) . ~ A BT
()= (o) (o) v =6 aaierg) w0
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So the additive Schwarz-type iterative method can be represented as an symmetric
inexact Uzawa method. Le# denote the associated iteration matrix, given by

M=—HTH,

which controls the error propagation for the iterative method.

In the next theorem an important estimate is formulated which is needed in the
forthcoming multigrid convergence analysis. Here and in the sequel the following
notations are usedyl < N (N > M) iff N— M is positive definite, and/l < N
(N > M) iff N— M is positive semi-definite, for symmetric matricksand N.
Furthermore, for a symmetric and positive definite ma&ithe normg|v||s and
|IM||s of a vectorv and a matrixM (as a representation of a bilinear form) are
given by ' o

Mv, W) 2
IVl[s=1/(SwV)z and [M]|s v,?/vl:é% VIsTWs
Theorem 1. Let A be a symmetric and positive semi-definitemmatrix, B an
m x n matrix, and C be a symmetric and positive semi-definitermmatrix. Let
Abe a symmetric and positive definitexm matrix, andS a symmetric positive
definite mx m matrix, satisfying

A>A and S>C+BA 1B,

Then
| ™| 2 < no(m) [|2]] 2,

where. % is given by (4),%; is given by (10),2 is given by

A—A 0
2= ( 0 é—C—BA‘lBT>’

£ is an arbitrary symmetric and positive definite matrix, and

2
—— forevenm
_ 1 (m-1 (m—1) |
i = s () < /%

m

for odd m
Here (E) denotes the binomial coefficient aixfidenotes the largest integer smaller
than or equal to ¢ R.

Proof. For the special case of the Euclidean nor# € |) see [14], the proof for
more general norms is completely analogous. O



3 Multigrid convergence analysis

A classical technique for analyzing the convergence of multigrid methods relies
on two properties: the approximation property and the smoothing property, see
Hackbusch [11], which will be discussed in this section.

First we need an appropriate?like) mesh-dependent norii(w,q)||ox on
Xk x Qk. We introduce a second discrete normXanx Qy by

B((s,1), (W,
IsNllx= sup 1ZLED W)
0 N V1

Now, we can formulate the approximation property and the smoothing property:
Consider the two-grid algorithm (i.e. exact solution of the coarse grid correction
equation (3) at levek — 1). The approximation property measures the effect of
the coarse grid correction: It is assumed that there is a corwtavttich is inde-
pendent ok such that

12l O™ = xe, o™ = p)llox < Call ™ =%, o™ = Pl (11)

where the nornj| %o of the bilinear form% is given by

|%k(<sv r)v (V\I, q))‘

Pillox = sup '
ez ok Il (W, a)1l|o.k

OA(s,r),(W,0) €Xi x Qi Il(s,r)

The remaining part to complete the proof of the two-grid convergence is the
smoothing property, which measures the effect of the smoothing procedure: It
is assumed that

0 0
O™ = x4, ™ — Pz < 1) (1Bl o () = i B — P ok

for some functiom (m) which is independent &, and
n(m)—0 form— co.

The convergence of the two-grid method for a sufficiently large number
smoothing steps easily follows by combining the approximation property and the
smoothing property. From this the convergence of the multigrid method can be
derived by standard arguments, see, e.g., Hackbusch [11].

Let %4 be the symmetric and positive definite matrix Bf x R™ which
represents the mesh dependent ngju, q) [0 k:

osater=((4(3)-(3)),) = 1(3)

9
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for w e X, g € Qx with vector representationg c R, g ¢ R,
It easily follows that the smoothing property translates to the following condi-
tion in matrix-notation:

[ At 5, < M () (| Ak 4, (13)

Comparing with Theorem 1 it is immediately clear that the smoothing property
(13) is satisfied for the additive Schwarz-type method introduced in the previous
section, if the local problems are constructed in such a way that the associated
global matriced, By andS,, see (7), (6) and (8), satisfy the conditions

Ac>Ac and &>C+BA B! (14)

and if, additionally, the following scaling condition holds:

. A — A 0
|25 < call g, win g= (MR s o G i) a9

for some constantr independent ok. The smoothing rate is then given by
n(m) = crno(m) = O(1//m).

In [14] this strategy was successfully applied to the Stokes problem, dis-
cretized by the Taylor-Hood mixed finite element method. For the global matrix
A, at levelk, required in Condition (7), a constant multiple of diagwas cho-
sen. Special local matrices were constructed and all requirements of the analysis
could be verified. In particular, the scaling condition (15) could be shown. In the
next section the application to a typical class of problems from optimal control is
discussed. For this class, the same choicé\fas a constant multiple of didy
leads to a violation of the scaling condition (15). It will be shown how the con-
struction must be modified to keep the right scaling without losing any of the other
requirements.

4 Application to an optimal control problem

Let Q be a bounded convex polygonal domainRA. Let L2(Q) andH!(Q)

denote the usual Lebesgue space and Sobolev space, respectively. We consider
the following elliptic optimal control problem: Find the statee H'(Q) and the
controlu € L?(Q) such that

J(y,u) = min J(z,v
(:u) (zv)eH1(Q)xL2(Q) (zV)
with cost functional
1 %
J(Z,V) = EHZ_deEZ(Q) + EHVHEZ(Q)
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subject to the state equations

—-Ay+y = u in Q,

dy

= r

I 0 onl,

wherel” denotes the boundary 6f, y4 € L?(Q) is the desired state and> 0 is

the weight of the cost of the control (or simply a regularization parameter).
By introducing the adjoint statp € H'(Q) we get the following optimality

system, see e.g., [17]:

1. The adjoint state equation:

—-Ap+p= —(Yy—VYa) INQ,
16
8_p = 0 onl. (16)
an

2. The control equation:
vu—p= 0 inQ. (17)

3. The state equation:
—Ay+y = u inQ,

18
a_y: 0 onl. (18)
an

The weak formulation of this problem leads to a mixed variational problem: Find
x=(y,u) € X =Y xU with Y = H}(Q), U = L?(Q) andp € Q = H(Q) such
that

a(x,w) +b(w, p)

b(x,q)

(F,w)  forallwe X,

19
0 forallge Q (19)

with

ax,w) = (¥.2)i2q)+ V(U V)2q),
b(Wv CI) = (Zv q)Hl(Q) - (V7 q) L2(Q)»
(Fw) = (Ya,2)12(0),
wherew = (z,v) with ze Y, ve U, and(.,.)y is the standard scalar product in a
Hilbert spaceH, whose norm is denoted Hly||H.

The mixed variational problem can also be written as a variational problem on
X x Q: Find (x, p) € X x Q such that

B((x,p),(W,q)) = (F,(w,q)) forall (w,q) € XxQ
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with the bilinear form
B((Xp),(W,q)) = a(x,w) +b(w, p) +b(x,q)

and the linear functional
(F(w,q)) = (F,w).

It is trivial that.# is a bounded and linear functional &nx Q. The next lemma
guarantees that the problem is well-posed:

Lemma 1. The bilinear form# is stable and bounded on XQ, i.e., there are
positive constants ¢ and C such that

B((s,1),
clsnlxos sup 2USD)

(w,a))
<C|I(s,1)|Ixx
oLmgexxq |(Wa)llxxq 1(s,7)lIxxQ

for all (s,r) € X x Q, where the norm on X Q is given by
1w, 0) 1% xq = IIWII + llallg
with
W% = 1Z125q) + V2 forw=(zv) and |dllq = lallna).

Proof. Boundedness follows easily from Cauchy’s inequality, the stability from
Brezzi's Theorem, see [8], if the bilinear forais coercive on the set

kerB= {we X :b(w,q) =0 for allq € Q},
l.e.: there exists a constaat> 0 such that
a(w,w) > o ||\w||§ for all w e kerB, (20)

and the inf-sup condition fdv is satisfied, i.e.: there exists a const@nt 0 such

that b
sup b(w.q) > PBllallo forallqe Q. (21)
0AweX HWHX

To show (20) lew = (z,v) € kerB. Then, in particular, we havgw,z) =0, i.e.
(z, Z)Hl(Q) = (v, Z)LZ(Q)v
which implies
||Z|||?:|l(Q) < IVl 12l2i@) < [IVllz(q) [1ZlHi(q)-
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Hence:||Zl|,y1(q) < [IVl[L2(q)- Then
AW W) = [|2IFzq) + v IVIIE2 ) > 1ZlE2) + V Izl ) = v 12l

which proves (20) withe = v.
Next we have

bw.q) _ b((9,0).9) _ (a,9)

sup = 114||0,
oS Twix = T@0lx ~ Tdlg Ml
which shows (21) with8 = 1. O

Let () be a sequence of triangulations Qf where 7 ; is obtained by
dividing each triangle into four smaller triangles by connecting the midpoints of
the edges of the triangles ifi. The quantity magdiamT : T € %} is denoted
by hy.

We consider the following discretization by continuous and piecewise linear
finite elements:

Xk:kaUk_{(zv)eC(Q)xC( Q) :Zlt,v|r € P, forall T € %},
Q={geC(Q):qrePforal T € %},

whereP; denotes the polynomials of total degree less or equal to 1. Then we
obtain the following discrete variational problem: Fixde Xy and px € Qx such

that
a(xq, W) +b(wi, p) = (F,we)  forall wy € X,

b(Xc, Ok) =0 for all gk € Q-

The discrete mixed variational problem can also be written as a discrete variational
problem onX, x Qx: Find (X, pk) € Xk x Qk such that

B (X, Pr)> (Wi, O)) = (F, (Wi, 0))  for all (wi, ) € Xk x Q. (23)

With exactly the same arguments as above the boundedness and stability of the
discrete mixed problem can be shown with constarasdC independent ok:

(22)

Lemma 2. The bilinear form# is uniformly stable and bounded op XQy, i.e.,
there are positive constants ¢ and C such that

B((s,1), (W,
CH(Sar)HXXQ < sup (( ) ( q)) < CH(S r)HXXQ
O (W,01) €Xi X Qi [ (W, 0)[|xxq

forall (s,r) € Xk x Qx and all k.
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By introducing the standard nodal basis, we finally obtain the following saddle
point problem in matrix-vector notation:

X\ _[(f : (A« Bl
() = (g) v = (5 %)

M 0
Ak:(ok ka> and Bc= (K« —My),

where

HereMy denotes the mass matrix representingltf@) scalar product o, and
Ky denotes the stiffness matrix representing¢Q) scalar product oi.

5 Approximation property

Here we follow the general technique presented in [7] for proving the approxima-
tion property (11) for the special mesh dependent norrKan Qy, given by

1/2
w0 ok = hu (112l z + B2 1wl + 1l 2) ™ (24)

with w = (z,v) € Xx andq € Qx and their vector representations/ anda.

Nine assumptions (A.1) - (A.9) are formulated in [7] which imply the ap-
proximation property. Assumptions (A.1), (A.2), (A.4) and (A.5) are the (uni-
form) boundedness and stability of the continuous and discrete variational prob-
lem which were already shown in Lemma 1 and Lemma 2.

The verification of Assumption (A.3) is the content of the next lemma:

Lemma 3. For all f,g € L2(Q) the variational problem
’%((Xv p)7 (\N7 q)) = (faz)Lz(Q) + (g> q)LZ(Q) (25)

forallw=(zv) € X=Y x U, g€ Q, has a solution x (y,u) € H?(Q) x H}(Q)
and ge H?(Q). There exists a constant C such that

IYllhz) + Ullhag) + Plkz@) < CUI fllL2q) + 19llL2(q))-

forall f,gec L?(Q).

Proof. From (25) withv = 0 andg = 0 we obtain the elliptic variational problem
for p:

(P D) = (f,2120) — V. D2(q) forallze HY(Q).
Then elliptic regularity and Lemma 1 imply

IPllhz(@) < ClIfll2@) + IYllz) < ClITllz@) + I9ll2@)-
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(Througout this proofC denotes a generic constant.) From (25) wath 0 and
v = 0 we obtain the elliptic variational problem fgr

(Y, Dz = (9, A)2q) + (U,Q) 2y forallge HY(Q).

Then elliptic regularity and Lemma 1 imply

IYllnz) < C(llglliz(q) + ulliziq)) < C[fllz@) + l9lliz@))-
From (25) withz = 0 andq = 0 we obtain
vu=np.

Then Lemma 1 implies

1
[UllQ) = v IPlH1@) < CIfllz@) + 19llL2@))-
[

Assumption (A.6) requires the standardestimate of the approximation error
of the finite element space, which is, of course, satisfied.

Assumption (A.7) requires ah? discretization error estimate for problem
(25), which easily follows from (A.1) - (A.6) by standard arguments (Aubin-
Nitsche duality trick), since the introduced finite element discretization is a con-
forming method.

Assumption (A.8) requires the equivalence of the mesh-dependent norm with
anlL? norm:

12
o~ (I12122(0) + PRIVIZ ) + il ) Withw=(zV).

Il (w; )

(The symbok denotes the equivalence of norms.) This is easy to see by standard
scaling arguments.

Finally Assumption (A.9) on the inter-grid transfer operators is trivial since
the subspaces are nested.

So, in summary, we have:

Theorem 2. The approximation property (11) is satisfied for the mesh-dependent
norm, given by (24).

15



6 Smoothing property

For the smoothing procedure we have to define appropriate local sub-problems
at grid levelk. So the prolongation operators and the matrices of the local sub-
problems must be specified for the optimal control problem.

Let Nk be the number of nodes of the triangulatigf Then we havey = 2N
degrees of freedom for the primal variabile= (yk, Ux) € Xk andmy = Ny degrees
of freedom for the dual variablpy € Q.

We will now define a space decomposition®t x R™ into Nk subspaces:
For eachi € {1,...,N¢} representing a node of the triangulation, Jéf; be the
set of all indices consisting ofand the indices of all neighboring nodes (all nodes
which are connected to the node with indely an edge of the triangulation).
Then, for each € {1,...,N¢}, the associated local patch consists of all unknowns
of yx anduy which are associated to nodes with indices fraify and the unknown
of px which is associated to the node with indesee Figure 1 for an illustration
of a local patch. The corresponding prolongations are the canonical embeddings
into R andR™ and are denoted b% andQy;, respectively.

KR H

Figure 1. Local patches

Observe that all entries iﬁq andQy; are either 0 or 1. A single component
of px belongs to exactly one patch, while a single componegt of uy belongs,
in general, to more than one patch. It is easy to see that

Ny Ny o
QiQri =1 and AR = %,
i; e i; i

(D O
@k_<o Dk>

with the Ny x N diagonal matrixDy, whose diagonal entried, j are the local
overlap depth at the node with indgxi.e., the number of all indicdswith j €
A, for j=1,...,Ng. Observe that

where

1< dej <dmax forallj=1,...,Ng (26)

with a constantlyax independent of the grid levél

16



In order to guarantee Condition (5), we have to scale the prolongaﬁgns

accordingly:
-1/2 5

R = % -
Next we have to choose a matd, needed on the left-hand side in Condition 7.
It seems to be natural to choose

~ 1. 1 /diagM 0
A= g diaghc= = ( 0 v diang) (27)

with a suitable parameter > O as it was done in [14] for the Stokes problem. But
in order to prove the smoothing property, we have to check, if the estimate (15) is
fulfilled. This is not the case with this definition 8§ for parameters = O(1).

Instead we choose: 1 /di 0
Ao 1 [diagK
A= ( 0 v diang> (28)

with o small enough to ensure
Ac > A

SinceKy > My and the maximal number of non-zero entries per romjnand
Kk is bounded by a constant, sapz, independently ok, it suffices to choose
o = 1/nnz. Here we use the estimatd < nnzZM) diagM for all symmetric
and positive definite matricéd, wherennZ M) denotes the maximum number of
non-zero entries per row .

For the local sub-problems we choose just the restrictiofdb those com-
ponents of, whose indices are inf:

Ai = BGAKRG. (29)

Since the matrice8y andAkJ are diagonal the condition (7) is satisfied.
The other matrices of the local sub-problems are specified similarly: For

Bii = QI,in.@&/ 2 i (30)

one can verify the relation (6), since

1/2

BriP = QkiBkZ, Y2

ARG 2
and thei-th component oByv depends only on the degrees of freedom on the
surrounding triangles, whose indices are collected in the/ggt On this index
setB, ;P/; acts like the identity.

Finally, we set
A 1

Si= = Bk,iA;ZilBI,i
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with 7 small enough to guarantee
S> B A By (31)
Using (29), (30), and (26), we get

~ 1 1/2
Si = QI,in-@k/

and with (8)

o 1 .
Ak 1@3/281Qk,i Z ’_C QI,inAk 1B-|£ij

&> % diag BA, 'B]). (32)

So, in order to guarantee (31) it suffices to choosech that

% diag(B,A B} ) > BA 1BJ.

Since the maximal number of non-zero entries per roBkiﬁleI is bounded by
a constant, sagnz,, independent ok it suffices to choose = 1/nnz,.
The matrix.Z representing the mesh-dependent ndjtiity « is given by

| 0 O
Z=h10 Rl o).
0 0 |

The last missing part for the smoothing property (13) is the estimate (15),
which will be shown in the next lemma:

Lemma 4. With the setting from above there is a constagtiodependent of k,
such that

. A — A 0
< b — ~ A~ .
|25 < crll g, with 2= (MM G L)
Proof. Since
A — A 0 ) (Ak 0)
0< 9 = A ~ < ~
= =k ( 0 &-BAB)-\0 &
we have

A, 0
aa|(3 8)|
H k||fk 0 S P

Using the block diagonal form o and.% we obtain

A O 1 1, . 1% , A
H(o S‘)Hg _ h—ﬁmax<gHdlagKkHﬁaG—hﬁ||d'angH£2,||S<||eZ .
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It follows from (26) that

1/2

L1 d
Si= - QUB A2 "Bl Qu < T QUBA B ki

and, therefore,

S < ™ diag B A, 8.

Using this estimate and the simple general estimatiagM || ,2 < ||[M|| 2 for any
matrix M and|[M||,2 < |IN]|,2 for symmetric matrice$4, N with 0 <M < N we
obtain

IG5 2,

1 d
gﬁmax(—HKngz, thl\/lkHez, maXHBkAle ng).

Furthermore,
" . - o . -
IBA B2 = |oKy(diagKy) 1Kk+;Mk(dlaQMk) Myl 2
. - c . _
< o||Kg(diagKy) 1Kk||gz+—||Mk(d|ang) M| 2
Gnn&
< onnk||Ky|| 2+ [ Ml| 2

1
HKkHeZJF;HMkHeZ < (1+3) Kl

Summarizing the estimates from above we obtain

1941, = 15 m( Kl Il

with cr = max(1/0,(1+ 1/v)dmax/T). Finally, using the fact that the spectral
norm of a block matrix is greater or equal to the spectral norm of each of its
sub-blocks, it follows that

1 1%
1801 o mex( Kz Ml ).
k k

which completes the proof. m
So, in summary, we have

Theorem 3. For the additive Schwarz smoother constructed in this section the
smoothing property (13) holds with a smoothing rgten) = O(1/\/m).
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7 Numerical Experiments

Next we present some numerical results for the dongaia (0,1) x (0,1) and
homogeneous datg = 0. The initial grid consists of two triangles by connecting
the nodeq0,0) and(1,1). For the first series of experiments the regularization
parameten was set equal to 1. The dependence of the convergence rate on the
regularization parameterwas investigated subsequently.

Randomly chosen starting values té?) and pl((o) for the exact solutiomy, =
0 and px = 0 were used. The discretized problem was solved by a multigrid
iteration with a W-cycle g = 2) andm/2 pre- andm/2 post-smoothing steps.
The multigrid iteration was performed until the Euclidean norm of the solution
was reduced by a facter= 108,

Table 1 contains the total number of unknownst my, the number of iter-
ationsit and the (average) convergence rajegepending on the levéd and the
numberm of smoothing steps. It shows a typical multigrid convergence behavior,
namely the independence of the grid level and the expected improvement of the
rates with an increasing number of smoothing steps.

Table 1: Convergence rates for the additive Schwarz smoother
smoothing steps

level | me+m¢| 5+5 || 7+7 | 10+10 | 15+15 |
5 3267| 50| 0.70| 35| 0.59| 24| 0.46| 16| 0.31
12675 53| 0.71|| 37| 0.61| 26| 0.49| 18 | 0.35
49923| 54| 0.71| 38| 0.61| 27| 0.50| 18| 0.36
198 147| 54| 0.71| 38| 0.61| 27 | 0.50| 18| 0.36
789507|| 54| 0.71| 38| 0.61|| 27| 0.50| 18| 0.36

6
7
8
9

Table 2 shows the convergence rates with the multiplicative version of the
smoother. As expected, the rates are significantly better than the rates for the
additive smoother. The number of smoothing steps which are necessary to achieve
convergence on all levels is much smaller than in the additive version.

For comparison, convergence rates are shown for the additive Schwarz smooth-
er based on (27) instead of (28) in Table 3. There is a significant increase in the
number of iterations and there is no clear indication of level-independent conver-
gence rates. This underlines the significance of the modification in the construc-
tion of the smoother compared to the original construction in [14].

All numerical experiments shown so far were performed for the regularization
parametew = 1. Observe that the analysis presented here does not predict con-
vergence rates that are robustvin And indeed, numerical experiments indicate
a mild dependence of the convergence rate on the regularization paramster
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Table 2: Convergence rates for the multiplicative Schwarz smoother

smoothing steps

level

Nk + My

5+5

H

7+7 | 10+10 | 15+15 |

5

6
.
8
9

3 267
12675
49 923

198 147
789 507

34
40
40
41
41

0.57
0.62
0.63
0.64
0.64

26
29
29
28
28

0.49| 15| 0.28| 12| 0.19
0.52| 16| 0.30| 12| 0.20
0.52|16|0.31| 12| 0.21
0.5116|0.31| 12| 0.21
0.51|16]0.31|| 12| 0.21

Table 3: Convergence rates for the unmodified additive Schwarz smoother

smoothing steps

level

Nk + My

5+5

H

7+7 | 10+10 [ 15+15 |

5

6
7
8
9

3 267
12 675
49 923

198 147
789 507

84
105
119
133
139

0.80
0.83
0.85
0.86
0.87

60
75
84
91
96

0.73| 41| 0.63| 29| 0.52
0.77{ 52| 0.70| 35| 0.58
0.80| 58| 0.72|| 38| 0.60
0.81| 62| 0.73| 41| 0.63
0.82| 66| 0.75| 43| 0.65

Table 4. The results were obtained at grid level 9 with 10+10 smoothing steps.

Table 4: Dependence on the regularization parameter
v |it] g |

1
102
104

27
33
40

0.50
0.57
0.63

In summary, the numerical experiments confirm the theoretical results of a
level-independent convergence rate for the multigrid method with the additive
Schwarz smoother. The multiplicative smoother leads to better rates, however, a
theoretical analysis for the convergence and smoothing properties is still missing.
The modification of the local problems compared to previous work, see [14], leads
to a significant improvement. The convergence rates depend only mildly on the
regularization parameter.

8 Concluding remarks

The basic idea of constructing a Schwarz-type smoother carries over to a much
wider class of mixed variational problems: An essential step in the construction of
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the local problems is the choice of the matix Instead of using fof, a multiple

of the diagonal part of the discretization matAx corresponding to the bilinear
forma: X x X — R one should choose the diagonal part of the discretization ma-
trix corresponding to a positive bilinear form &which is coercive and bounded
on the whole spacX instead. For the Stokes problem the bilinear farns al-
ready positive, coercive and boundedXnso the diagonal ofy will do the job.

For the presented optimal control problem the bilinear faris coercive only on
kerB, therefore A, was chosen differently.

The local matrices are then constructed by restricting the global matrices to the
local patches. The requirements of the analysis in terms of certain commutativity
relations of the involved global and local matrices determine the size of the patches
and the overlap. Additionally, an appropriate scaling is required which takes into
account the local overlap depth of the components of the primal variables.
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