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Abstract

Since grid computing provides users with more distributatjguting and stor-
age resources, it gives us an opportunity to design newesifieind robust solvers
for the numerical solutions of partial differential equats (PDEs). For instance,
large scale problems in computational fluid dynamics (CF&) be efficiently
simulated under this environment. However, most of theenily developed PDE
solvers using the finite element method (FEM), usually tighmnbinations of a
mesh generator and a linear system solver, are not qualifietd grid computing
environment. In this paper, based on principles of grid cating, we present a
grid-enabled Client/Server model for solving the Stokast{mpressible) Navier-
Stokes system in 3D.

1 Introduction

As we might see today, under the grid environment, the lacgkesiumerical simula-
tions in computational fluid dynamics might be resolved in@erefficient way due to
its huge computational and memory storage resources,KT.qQE, FJ03, FK03, CJO03,
PWO05, Mic05, VIa05, BS06]. Unfortunately, most of the ttamhal FEM software
packages [HPF04, MW203, FEM86, DIF], usually a combined ehofimeshing and
solving parts, do not take into account the strength of thg @gmputing. In general,
they offer no user friendly interface for grid versions. Jhestriction leads to loss
of efficiency and opportunity for solving really complicdtproblems by using these
desktop-based versions. For instance, we have to developuatrmesh generator to
discretize the computational domain smoothly. This dorgiven by CAD geometry

*This work was partially supported by the Austrian Scienced-(FWF) under the grant SFB F013
"Numerical and Symbolic Scientific Computing”.

fInstitute of Computational Mathematics, Johannes Kepl@ivéisity Linz, huidong@numa.uni-
linz.ac.at

fInstitute of Computational Mathematics, Johannes Kepleivéisity Linz, zulehner@numa.uni-
linz.ac.at

8|nstitute of Computational Mathematics, Johannes Keptevélsity Linz, ulanger@numa.uni-linz.ac.at

Yinstitute of Graphics and Parallel Processing, JohannpgKeniversity Linz, mb@gup.jku.at



data [mes], could be so involved that a large amount of me&htdes to be controlled
and shared among grid nodes in a secure and efficient way f}licOn the other
hand, for numerical solutions of the stabilized discratiwaof PDES, robust and ad-
vanced solvers are needed as well. The solvers themsek@®bable to be directly
applied to different situations. In the case of solving thek8s/Navier-Stokes system,
we prefer the robust algebraic multigrid method for the nrica solutions of PDEs
[Bra95, Hac85, Kic98, Wab03, Wab06, ZS03, Zul02]. So it @s@nable to separate
both meshing and solving parts into distinct grid nodes.tkia separating technique,
the meshing and solving parts will mainly concentrate oir then favorite jobs with-
out knowing the details from each other. Among these nodes,needs to define a
flexible and secure interface for data transfer. Concerttiegnonlinear convection
part of the Navier-Stokes equations, the communicatiowdet meshing and solving
nodes is necessary in order to reassemble the linearizthsadter each outer nonlin-
ear iteration. For the linear iteration part (the main cdshe solver), no extra commu-
nication time is needed. In the next sections, we will firggaent the solver designing
ideas under the grid environment, data transferring iaterbn the memory level using
GlobuslO secure channels [FBAO3], and the grid-enabled Cliem#Semodel. Con-
sidering its application to the Stokes/Navier-Stokesesydby the streamline diffusion
finite element method (SDFEM) [TV96], a very short introdantto this numerical
method is summarized. Afterwards, we can see in detail hsGlient/Server model
works under the Austrian grid environment [BGV06]. Finabgsed on this separating
technique, several typical test results on different Aastgrid nodes are given.

2 Client/Server Model on the Grid

Because of its own properties distinguished from usualn@Berver models, in this
section, a grid-enabled Client/Server model under the rAarsigrid environment is
discussed in detail. The technique of separating meshidgealming parts into distinct
nodes fit well into the Client/Server model.

2.1 The Secure Grid Environment

One important point concerning the grid computing is howetlize secure data trans-
fer among client and server nodes through Internet/Intraftee Globus Toolkit 4.0.4
includes the open source software MyProxy 3.7 for managogrity credentials (cer-
tificates and private keys) [MyP]. One highlight of this pagk is to combine an
online credential repository with an online certificatehauity which allow users to
obtain credentials when and where needed. Under the Aagrid environment, the
user would usenyproxy-initcommand to upload a credential to the myproxy-server
hydra.gup.uni-linz.ac.dor later retrievals by Client/Server nodes. The credéidia
then delegated to the myproxy-server and stored with thengityProxy passphrase.
Proxy credentials with default lifetime of 12 hours can therretrieved vianyproxy-
get-delegatiowith the MyProxy passphrase. Once the Client/Server noblsrothe
proxy credentials, the authentication and authorizatiothe Client/Server are done.
The secure mode is checked via setting Glaliilsecure mode parameters as input
arguments of these functiomggobusio_attr_setsecureauthentication/channghode
See Fig. 1.
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Figure 1: MyProxy process on the Austrian grid

2.2 The Separating Model

Using the previous authentication and authorization, argsthannel connecting Client
and Server nodes through the Internet/Intranet is guagent€he meshing company
(a client node) generates the system of equations arisomg fhe mesh data it pro-
duces. Only the authorized solving company (a server naae)te right to access the
database through the Glohl@ secure channel. It provides high-performance I/O with
integrated security and a socket-like interface for udeB\03]. Normal users holding
no powerful machines can also succeed in doing such nurhsiioalations without
knowing the details of meshing and solving parts on their owachines. As shown
in Fig. 2, once their identities are certified by a CertifioatAuthority and recognized
by the requested resources, users can submit the job to andepntrol the data flow
between nodes. For instanggobus-url-copyGlo], can realize the data files transfer
among nodes, and by RSL (resource specification languade]) [Bers can control
the job running schedule on the nodes. Under the Austrighegriironment, usinglo-
gin, the identified user can realize the interactive usage dfrggources [RKO4]. Via
the GlobuslO secure and efficient channel mode, we can separate ourgeeshator
and linear system solver parts into different grid nodese @mmunication between
nodes is guaranteed in this channel created by cadfiogusio_tcp_connectprovided
such TCP connecting is not opened and closed frequently.

2.3 The Grid-enabled Client/Server Model

As one can find in Fig. 3, an additional feature compared todsted Client/Server
models on TCP/IP protocols is the authentication part oh bliént and server nodes
by employing GlobudO operations. The TCP connecting is mainly implemented via
globusio_tcp_listen/connect/accepThe server node firstly creates a TCP listener at a
port and keeps listening at this port. Once it gets a notitiodrom the client node,

it will try to establish a TCP connection. If this connectiisgsuccessful, they will
continue the next jobs. Otherwise, the server still listanthe opening port until it
gets the next notification from the client. The server nodesdwot start the solver until

it gets the whole system given by the client node. The datstea between nodes are
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Figure 2: Separating model

hidden in the blocks oReceive SysteandSend Systepwhich are implemented by
offering a common data transferring interface such thah letient and server nodes
can apply it to their transferring processes. Using thexflly interface we defined on
both nodes, the client node will send its linearized syst@segén equationgwWab03,
Wab06], to the server node via calling thbusio_read/write pair. Once the server
node obtains the linearized system, it will start the sajvimocedure for the outer
nonlinear iterations. Due to its nonlinear convection parVu in the Navier-Stokes
equations [Wab03, Wab06], after each outer nonlineartimrathe server and client
nodes have to do several communications for the procesasgeenbling the linearized
system. When the solutions are sufficiently accurate, theesavill stop calculations
and send the solutions back to the client node. Finally,/@ldperations and TCP
connections are closed.

2.3.1 Shared Data Transferring Interface

Because of the nonlinear part of the Navier-Stokes equstitie communication of
sending and receiving the linear system between client ancesnodes occurs af-
ter every outer nonlinear iteration. In this sense, a seaiable and efficient data
transferring interface has to be constructed on both client server nodes. As we
mentioned before, the Glohu® offers such desirable operations. By calling the
globusio_write/read pair, one can realize the data sending and receiving thrthegh
established GlobukD channel. Usually, hierarchical data structures of ragiand
vectors are used for storing and solving the linear systdme.matrix and vector them-
selves could also contain simple data structures. The s$iteese hierarchical data
structures has to be measured carefully sincgtbleusio_write/readcalling needs to
know the exact block size of the message the nodes woulddileend and receive.
We designed small data structures for the entries of mateoe vectors such that the
size of these elementary data structures can be evaluatedlling thesizeoffunc-
tion. There may appear different types of matrices with wayentries:MC_Matrix1
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Figure 3: Grid-enabled Client/Server model

with small matrix 8 x 3) entries,MC_Matrix2 with small vector § x 1) entries and
MC_Matrix3 with doubleentries. For vectors, there exist two typ@dC_Veclwith
small vector § x 1) entries andMIC_Vec2with doubleentries respectively. Addition-
ally, the matrix structure has to be decomposed into thevstidrage. For instance, the
compressed row structure (CRS) can be applied in order tatditthe vector transfer-
ring interface of thglobusio_write/readcalling. In Fig. 4, we show a sample interface

gridClientSendMatrix1 . . . gridServerRecvMatrix1
Buffering for Writing and Reading

Globus_|O_Write: 3 #of Rows and Entries | Globus_|O_Read:

Globus_IO_Write: | - __ __ ; Vector for Storing # of Entries in Each Rows _ _ _ _ _ -l Globus_IO_Read:
|

L ! I .
Globus_IO_write: | Vector for Storing Column Indices of Entries Globus_IO_Read:
|
|
|
|

Globus_IO_Write: Globus_IO_Read:

7
|
Vector for Storing Entries !
|

Figure 4: Sending and receiving interface on Client/Seneetes

of gridClientSendMatrixlandgridServerRecvMatrixpair on client and server nodes.
The globusio_write/read callings, the matrix decomposition, and the matrix recon-
structure are encapsulated inside. Users only feed iMthéviatrix1 type of matrices

as the input parameters. For the interfaces of the othestates, we implemented it in



the same way.

2.3.2 Server/Client Configuration Files

Using the high-performance and secure data transferritggol, GridFTP [GRI], the
executable file can be transferred and installed on the grittsr By the configura-
tion files as in Fig. 5, one can specify the node roles: clienttfie mesh genera-
tor and server for the linear equations solver. We define tidiguration file as an

GridClient.conf File:

GRIDTYPE GClient
GRIDNODE altix1.jku.austriangrid.at
GRIDPORT 40102

GridServer.conf File:

MESHFILENAME cube_hex_I3.flma.gz GRIDTYPE GServer

DATAFILENAME data.data
GRIDPORT 40102

REYNOLDS 100 SOLVER_TYPE
BOUNDARY_CONDITION ...
RHS_FORCE ... END

SOLVER_TYPE
END

Figure 5: Configuration files on Client/Server nodes

input parameter for starting the programming on both clemd server nodes. For
the configuration file on the server node, one has to spe@fGRIDTYPE=GServer,
GRIDPORT= «a € [40000, 45000] (the Globus port range under the Austrian grid envi-
ronment). One can specify the SOLVER PE from different types of solvers, We will
discuss them later on. In this part, no mesh data is involVad.solver is independent
of mesh generation by such a separating technique. It affersre convenient interface
for users on the application level. The client node mainkydies mesh input data and
generates linear system arising from it. In the case of theitiynesh [mes], it contains
varying elements: hexahedra, prisms, pyramids and tetrafas in Fig. 6. This hybrid

Figure 6: Elements generated by Spider



mesh requires more advanced and robust solvers to handlimdlae system arising
from the stabilized discretization on it. The client rolesjgecified by setting GRID-
TYPE=GCLIENT, the connecting server node GRIDNODRifix1.jku.austriangrid.at
and the same port number as specified on the server node. ickadly, the client
should also specify the solver type one wants to apply, biytthe type name, not the
detailed parameters which are jobs on the server node. dhisrdype specification
will decide which matrix and vector will be sent to the serv€he client only sends
the minimal system information which fulfills the solver tegement.

2.3.3 Nonlinear Solver Interface on the Server Node

We are only interested in the stationary solutions of the&k&tNavier-Stokes equa-
tions. The solver for these two problems is built into a udifiemework. Users are
able to handle these two problems in a convenient way byngedifferentReynolds
numbers Reynolds = 0 will go to the Stokes problem). The solver tyN& CoupledAMG
is the Navier-Stokes solver using the robust algebraicigridtmethod (AMG) as a
solver or as a preconditioner of the BiCGstab method [Wal&i8pilized bi-conjugate
gradient methoylfor solving the nonsymmetric and indefinite system. Shwothing-
Typeis used to distinguish solver types for the system becauseit important issue
for the multigrid solvers [Wab03, ZS03, Hac85]. Once the sthimg type is selected
by users, the server node will start to obtain the matricesvattors from the client
node. Afterwards, the linearized system is solved usinglipebraic multigrid method.
ThegridServerRecis a friendly data receiving interface as we discussed iptkei-
ous subsection. Once the stopping critesigiial) is checked, the server will decide
whether to solve the linearized system once more. See thieywhacess on the server
node illustrated in Fig. 7. Via thisignal the client will determine whether it needs to
reassemble the matrices and vectors for the server usirgpbhions it obtains. If not
necessary, it only gets the solutions and write them to tbal file.

2.3.4 Nonlinear Connecting Interface on the Client Node

On the client node, users only need to feed in matrices andngeas illustrated in Fig.
8. ThegridClientSendTransfeoffers a friendly interface containingjobusio_write
operations. This corresponds to tipedServerSendTransfén server nodes. Via the
signal it receives from the server node, the client will determingether to recon-
struct the system of matrices and vectors from the solutibRst obtains or just write
the stationary solutions to the local file. As you might seeehao details of solver
information are involved.

3 Numerical Approximations and Fast Solvers for the
Stokes and Navier-Stokes Systems

In this section, we first present a short summary of the stlieardiffusion finite ele-
ment method (SDFEM) for solving the Stokes/ Navier-Stokediems [TV96]. Then
the algebraic multigrid method (AMG) for the resulting ngmsnetric and indefinite
system will be discussed in a short way [Wab03, Wab06, ZSQ®2.



NS_CoupledAMG Serverinterface
gridSolver(BLOCKSOLVERCLASSNAME* solver)|

 — SmoothingType>—"—"—"—"""—

[ BraSar } [ Additive Schwarz} [ Multiplicative Schwa}
\/

I local memory storage for matricies and vectors
MC_Matrix1 A; MC_Matrix2 B1;

MC_Matrix2 B2; MC_Matrix3 C;
MC_STOKESVEC U, V; //coupled vectors storaging

/I Receive matrixies and vectors
gridServerRecvTransfer(A,B1,B2,C,U,V);

/I apply solvers on different smoothing types
solver->AMGSystemSolver(A,B1,B2,C,U,V, smoothingType)
I check stopping criteria and send back solutions
gridServerSendSignal(0 or 1); // 1-stop&0-continue

gridServerSendVector(U.velocity); //Velocity Component
gridServerSendVector(U.pressure); /Pressure Component

YES
END

Figure 7: Solver interface on server nodes

NO

3.1 The SDFEM for the Stokes and Navier-Stokes equations

We consider the Stokes/Navier-Stokes equations writtehérvelocity-pressure for-
mulation for a bounded, connected and polyhedral doftain R3:

—Au+4+Au-Vu+Vp=f in Q
V-u=0 in Q
B(u,p) =g onl’

where ) is the scaled Reynolds numberthe pressurey the velocity field,5 some
types of boundary operators ahidthe boundary of domaif. The above system of
equations describes the balance law of momentum and catigervaw of mass in
fluid mechanics. The discretization of this system by the EMFnethod leads to the
following discrete variational problem: Finfdy, pr] € Vi, x @ such that, for all
[vn, gn) € Vi, X Qn,

(Vuh, V’Uh) + )\(uh . Vuh,vh) — (ph, V- Uh)

+6 ) hi(Aup - Vup + Vpn, Ay, - op)r
TeT,

= (f7 'Uh) +0 Z h%(f, Auy, - V’Uh)T

TeT,



NS_CoupledAMG ClientInterface
gridConnecting(const MC_Matrix1& A, const MC_Matrix2& B1,
const MC_Matrix2& B2, const MC_Matrix2& C,
const MC_Vecl& F, const MC_Vec2& G,
const MC_String& datafilename,
const MC_String& smoothingtype)

/I send system of matricies and vectors
gridClientSendTransfer(A,B1,B2,C,F,G,smoothingtype;
/I set signal to 0
MC_Index signal=0;
/I get signal

gridClientRecvSignal(signal); // 1-stop&0-continue
/I get solutions
gridClientRecvTransfer(U,P);

Reconstruct Syste!

A, B1,B2,C F G
Figure 8: Connecting interface on client nodes

and

(qh, V- uh) +6 Z h%«(x\uh -Vun + Vpn, th)T
TeTh

=0 Z h%(fa th)Tv

TeT),

whereV},, Q5 are some finite element spaces, ansla small parameter.

This problem admits at least one solutien,, p,] under proper assumptions, see
[TV96]. For sufficiently small\ (scaledReynolds numbgrthe solution of the problem
is unique, see [TV96]. We choose the finite element speges {v € Cy(Q)? : v|r €
Py, forall T € 7,} andQp, = {qg € C(Q) N LE(Q) : g|r € P, forall T € 7,,} and
appropriate basep; } for V3, and{¢,} for Q. Then the approximate solutions can
be represented in the following way:

un =Y uidj, ph= Y Ptk
J k

leading to the nonlinear system of the form

(% %)) (7)

By —C p) \y
for the unknown vectors = (u;) andp = (px). This nonlinear system was solved
iteratively by replacing: in the convective part by the previous iterate. So, in eag st



of this inner iteration, a linear problem of the form

s %) ()-(3)

(a so-calledDseen probleiyrhas to be solved. For the Stokes problem 0), we have
B; = B, and A a constant matrix.

3.2 Standard lterative Solvers for the Stokes System

For the Stokes problem\(= 0), there exist some iterative solvers capable of solving
this saddle point system [Wab03].

3.2.1 Schur(P)CG - (Preconditioned) conjugate gradient ntaod applied to the
Schur Complement

By eliminating the velocity variables, we get a reducedesys$p = BA~! f — ¢ for
the pressure only, wher¢ = BA~1BT + C, the (negative) Schur complement, is
positive semi-definite and has a one-dimensional kernek €axm apply the standard
(P)CG method, see [Hac94], to it by choosing the initial gyg®perly. The velocity.

is calculated by applying the algebraic multigrid methodA@) to the linear equation
Au = f — BTp. In each (P)CG iteration, the multi-grid method has to beliagp
once sinced~! appears in the Schur compleméhand has to be evaluated accurately
enough. This inner iteration is the main cost of this solver.

3.2.2 ZulehnerinexactUzawa - inexact Uzawa method applietb the whole sys-
tem

Itis a preconditioned technique applied to the whole system

A—1 U\ A1 f . A A 0
() -0 (), wn eo (3 0

One big advantage of this method is, that it does not recfuérexact inversion ofl but
only of some preconditionet. It leads to an efficientimprovement of the performance.
For more details, see [Zul02].

3.3 Algebraic Multigrid Solvers for the Stokes/Navier-Stkes Sys-
tems

To solve the original saddle point problem (nonsymmetritt imdefinite), one can ap-
ply the algebraic multigrid method (AMG) to the whole systesee [Wab03]. One
crucial component of a multigrid method is the choice of thesther. We imple-
ment two different smoothers for the coupled systemBfaessSarazismoother, see
[BR97], and theVankasmoother, see [Van86]. The first smoother has a smoothing
property with a rate o@(%), wherem is the number of smoothing steps, see [BR97],
[Zul0Q]. The second smoother is obtained by setting up ssudproblems cell by cell
(patch by patch), i.e. with one degree of freedom for thequnesand a few degrees
of freedom for the connected velocity unknowns. The sohgiof these subproblems
are combined by the multiplicative Schwarz iteration. Theether for the additive
Schwarz case has a smoothing property with a ra'(@(o\/i%), see [ZS03]. One can

10



use the multigrid method as a solver for the coupled systénsimg it as a precondi-
tioner for the system, one can apply the preconditionedl&teth bi-conjugate gradient
method (Pre-BiCGstab) to the coupled system, which wildl leabetter convergence
performance. One can see this advantage later on.

4 Client/Server Model Applied To the Stokes/Navier-
Stokes System

In this part, we will see how the grid-enabled Client/Semedel can be applied to the
Stokes/Navier-Stokes system. We are not going to compareftitiency of different
solvers we have discussed in the previous section, but will concentrate on how
this model works under the Austrian grid environment.

4.1 Apply the Model to the Stokes System on the Austrian Grid
With Standard Iterative Methods

In order to measure the communication and computing timedach linearized itera-
tion, we first test the problem on the uniformly refined medoeshe Stokes system.
The numerical solvers are mesh-independent, i.e. the nuofbiterations does not
increase when the mesh is refined. We present four léuelsL 4 of uniformly refined
meshes as shown in TABLE 1. These mesh files are only storedeodient nodes
and will be used to generate the Stokes system locally. Wiheugolvers on the server

Table 1: Four Uniformly Refined Levels
Levels L4 Lo L3 Ly
#Vertices | 125G3) | 72903) | 4,913(7%) | 35,937083%)
#Unknowns 500 2,916 19,652 143,748
Mesh Size(h)| 1/4 1/8 1/16 1/32

node by three standard iterative methods. For each of theenis, the iteration num-
bers should stay on the same level. See the test results anitbemly refined meshes
in TABLE 1. Next, we are going to show some test results underAustrian grid

Table 2: Mesh-independent Iterations

Methods on Four Levels| Ly | Lo | Ls | Ly | #lt(average)
#It(CG) 26 | 41| 51| 49 42
#It(PCG) 13| 20| 24| 25 21
#lt(Uzawa) 18 21|21 19 20

environment. All of these examples are tested on mesh leyelTime is measured
in seconds. The linear system arising from this level is wohsge since it is only
used to show how the Client/Server model works. We specifi bbient and server
nodes, let them do their jobs locally, and see how both of themcooperate through
shared data transferring interface which we defined befofBLE 3 contains a list
of nodes connected to the Austrian Grid [BGV06]. The nodeid@d is a powerful
desktop located at the Institute of Computational Math@saKU. The node AL-
TIX1 in Linz is a four 16-way SGI Altix 350 system which are dgured as a cluster

11



Table 3: Grid Nodes Information

Node Site Proc Type Arch. RAM
Agrid-01 Linz AMD Opteron (2) | AMD64 | 4 GB
SCHAFBERG | Salzburg| Intel Itanium 2 (16)| 1A64 16 GB
ALTIX1 Linz Intel Itanium 2 (64)| |A64 64 GB

and interconnected by an Infiniband fabric. The commurogdti this node should be
really fast. The node at Salzburg is an one 16-way SGI Alti&Q 8ystem. In our first
trivial test, both client and server are on the local maciiged-01. Since no extra
time spent on the Internet for data transfer, the systemisgadd receiving should run
very fast. On the client node, one can see the time spenttialining and sending the
Stokes system. On the server node, we record the time faviegéhe system and the
iterative numbers for these three iterative solvers. Time tspent on system transfer

Table 4: Client/Server Model on Agrid-01

Client Node Server Node
Agrid-01 Agrid-01
System| Send Recv Solve

2.5s | U(0.8s)| U(0.8s)| SchurCG | SchurPCG | Uzawa
C(0.2s)| C(0.2s)| 119.3s 61.9s 8.4s
P(0.8s)| P(0.8s)| #It(47) #1t(24) #lt(21)

for SchurCG method is 0s2(C(0.2s)). For the other two, additional time is needed
for sending preconditioners, G.8or both Uzawa (U(0.8s)) and SchurPCG (P(0.8s))
methods. On the server node, one can see most of the timeris ispgolving the
system. For each of these test cases, the cost for genetadigjokes system is more
or less the same. As expected, the inexact Uzawa method tias ferformance than
the other two by comparing the cost in TABLE 4. SchurPCG caedpp the perfor-
mance by half compared to SchurCG method. In the next teABLIE 5, we utilize
ALTIX1 as a client node which deals with mesh reading, th&&system generation
and system sending to the server node SCHAFBERG. Since teelyva separated
grid nodes, more time is needed for data transfer. We start @irid-proxy-initon the

Table 5: Client/Server Model on Altix1 and Schafberg

Client Node Server Node
ALTIX1 SCHAFBERG
System| Send Recv Solve

5.8s | U(5.2s)| U(5.2s) | SchurCG | SchurPCG | Uzawa
C(3.6s)| C(3.6s)| 246.1s 132.4s 21.5s
P(4.8s)| P(4.8s)| #It(47) #1t(24) #lt(21)

local machine, usgloginto log into altix machines on these nodes, and transfer pinar
files and Client/Server configuration files to themgbybus-url-copy Afterwards, start
the server on the node SCHAFBERG, and then run the client XL We should
mention here, that the mesh file is only transferred to thenthode. For solvers on the
server node, we only transfer the executable binary file b@dérver configuration file
which are sulfficient for solving the linear system. Additidlg, users who are not able

12



to afford the cost for powerful machines would benefit a lonirthis model. As we
see here, the mesh generation and solving the linear systaootih done on the nodes.
The only requirement for users is to join this grid enviromtiset the Server/Client
configuration files, run the jobs on the nodes, and afterwelnésk the results from
computing. This is also a big advantage compared to usual$eiDEers. For testing,
the other possibility is to run the client on a HP laptop witAlD Athlon mobile
processor and 512 MB memory in Linz. The server is the grickeraifdSCHAFBERG.
See TABLE 6. Usually, a laptop has less resources compatbdgwd nodes, which

Table 6: Client/Server Model on HP-Laptop and Schafberg

Client Node Server Node

HP-Laptop SCHAFBERG

System| Send Recv Solve
22.7s | U(22.4s)| U(22.4s)| SchurCG | SchurPCG | Uzawa
C(16.9s)| C(16.9s)| 267.1s 127.1s 21.6s
P(22.1s)| P(22.1s)| #It(47) #t(24) #lt(21)

leads to the dramatic increase in costs for the Stokes systéup. This tells us for
really complicated mesh generation, it would be a good ideset one powerful node
as a client where we can utilize its resources. However,dhving time is comparable
in these cases since they are always running on the same sede One can try
to run the solver on more grid nodes under the grid computing@nment. As a test
version of the grid-enabled solver for the Stokes systemgubie separating technique,
it works well under the Austrian grid environment.

4.2 Apply the Model to the Stokes/Navier-Stokes systems ohe
Austrian Grid with the Multigrid Methods

In this subsection, we present the multigrid solvers forStekes/Navier-Stokes prob-
lems. Since the communication time is shown in previous $asnpe are not going to
list the communication and computing time in this subsect®ne can get the approx-
imate cost of the methods by multiplying the cost in the pyesisubsection with the
number of nonlinear iterations. For each outer nonlinesaatton, a linear system is
solved. We give the test results using the multigrid metteoa solver for the linearized
Oseen equationsSee TABLE. 7. If we use the BiCGstab Krylov space method with

Table 7: Nonlinear Iterations of Multigrid Solvers

Number of Nonlinear Iterations
Reynolds (Number of Linear Iterations)
Number()\) | Braess-Sarazin| Additive | Multiplicative

Schwarz Schwarz

0.0 1 (20) 1(21) 1(12)

1.0 4 (20) 4(22) 4(12)
50.0 12 (19) 12 (21) 12 (11)
100.0 21 (19) 21 (20) 21 (10)

the multigrid method as a preconditioner for the coupledesyisthen the number of
linear iterations will decrease efficiently. See TABLE. 8orkhe case of the scaled
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Reynolds numbex = 0.0, we are solving the Stokes problem, and only one nonlinear
iteration is needed. When increasing the value ofRlegnolds numbeme enlarge
the nonlinear convection part which leads to the increas®plfinear iterations for the
coupled system. However, we are here not going into detailsoov to adjust these
parameters for the higReynolds numberThe number of linear iterations for each

Table 8: Nonlinear Iterations of BiCGstab

Number of Nonlinear Iterations
Reynolds (Number of Linear Iterations)
Number()) | Braess-Sarazin| Additive | Multiplicative
Schwarz Schwarz
0.0 1(7) 1(8) 1(5)
1.0 4(7) 4(8) 4 (5)
50.0 12 (6) 12 (10) 12 (5)
100.0 21 (7) 21 (8) 21 (4)

nonlinear iteration is illustrated by the number in the Bedc

5 conclusions

Based on techniques of grid computing and reconsideratbBBE solvers using the
finite element method for the Stokes/Navier-Stokes systevasdiscussed the sepa-
rating technique which is suitable for the Client/Serveidelainder the grid environ-
ment. We developed a friendly user interface for data teansfhe robust multigrid
PDE solver for the application in the computational fluid dymics has been developed.
Most of numerical experiments are implemented and testetiffament grid nodes.
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