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Abstract

Since grid computing provides users with more distributed computing and stor-
age resources, it gives us an opportunity to design new efficient and robust solvers
for the numerical solutions of partial differential equations (PDEs). For instance,
large scale problems in computational fluid dynamics (CFD) can be efficiently
simulated under this environment. However, most of the currently developed PDE
solvers using the finite element method (FEM), usually tightcombinations of a
mesh generator and a linear system solver, are not qualified for the grid computing
environment. In this paper, based on principles of grid computing, we present a
grid-enabled Client/Server model for solving the Stokes/(incompressible) Navier-
Stokes system in 3D.

1 Introduction

As we might see today, under the grid environment, the large scale numerical simula-
tions in computational fluid dynamics might be resolved in a more efficient way due to
its huge computational and memory storage resources, cf. [FKT01, FJ03, FK03, CJ03,
PW05, Mic05, Vla05, BS06]. Unfortunately, most of the traditional FEM software
packages [HPF04, MW203, FEM86, DIF], usually a combined model of meshing and
solving parts, do not take into account the strength of the grid computing. In general,
they offer no user friendly interface for grid versions. This restriction leads to loss
of efficiency and opportunity for solving really complicated problems by using these
desktop-based versions. For instance, we have to develop a robust mesh generator to
discretize the computational domain smoothly. This domain, given by CAD geometry
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data [mes], could be so involved that a large amount of mesh data has to be controlled
and shared among grid nodes in a secure and efficient way [Mic05]. On the other
hand, for numerical solutions of the stabilized discretization of PDEs, robust and ad-
vanced solvers are needed as well. The solvers themselves are not able to be directly
applied to different situations. In the case of solving the Stokes/Navier-Stokes system,
we prefer the robust algebraic multigrid method for the numerical solutions of PDEs
[Bra95, Hac85, Kic98, Wab03, Wab06, ZS03, Zul02]. So it is reasonable to separate
both meshing and solving parts into distinct grid nodes. Viathis separating technique,
the meshing and solving parts will mainly concentrate on their own favorite jobs with-
out knowing the details from each other. Among these nodes, one needs to define a
flexible and secure interface for data transfer. Concerningthe nonlinear convection
part of the Navier-Stokes equations, the communication between meshing and solving
nodes is necessary in order to reassemble the linearized system after each outer nonlin-
ear iteration. For the linear iteration part (the main cost of the solver), no extra commu-
nication time is needed. In the next sections, we will first present the solver designing
ideas under the grid environment, data transferring interface on the memory level using
GlobusIO secure channels [FBA03], and the grid-enabled Client/Server model. Con-
sidering its application to the Stokes/Navier-Stokes system by the streamline diffusion
finite element method (SDFEM) [TV96], a very short introduction to this numerical
method is summarized. Afterwards, we can see in detail how this Client/Server model
works under the Austrian grid environment [BGV06]. Finally, based on this separating
technique, several typical test results on different Austrian grid nodes are given.

2 Client/Server Model on the Grid

Because of its own properties distinguished from usual Client/Server models, in this
section, a grid-enabled Client/Server model under the Austrian grid environment is
discussed in detail. The technique of separating meshing and solving parts into distinct
nodes fit well into the Client/Server model.

2.1 The Secure Grid Environment

One important point concerning the grid computing is how to realize secure data trans-
fer among client and server nodes through Internet/Intranet. The Globus Toolkit 4.0.4
includes the open source software MyProxy 3.7 for managing security credentials (cer-
tificates and private keys) [MyP]. One highlight of this package is to combine an
online credential repository with an online certificate authority which allow users to
obtain credentials when and where needed. Under the Austrian grid environment, the
user would usemyproxy-initcommand to upload a credential to the myproxy-server
hydra.gup.uni-linz.ac.atfor later retrievals by Client/Server nodes. The credential is
then delegated to the myproxy-server and stored with the given MyProxy passphrase.
Proxy credentials with default lifetime of 12 hours can thenbe retrieved viamyproxy-
get-delegationwith the MyProxy passphrase. Once the Client/Server nodes obtain the
proxy credentials, the authentication and authorization on the Client/Server are done.
The secure mode is checked via setting GlobusIO secure mode parameters as input
arguments of these functionsglobusio attr set secureauthentication/channelmode.
See Fig. 1.

2



Proxy

hydra.gup.uni−linz.ac.at

myproxy−get−delegation

myproxy−get−delegation

Server Nodes

altix1.jku.austriangrid.at

agrid−01.numa.uni−inz.ac.at
User

Client Nodes

Schafberg.coma.sbg.ac.at

Proxy

Proxymyproxy−server

myproxy−init

Figure 1: MyProxy process on the Austrian grid

2.2 The Separating Model

Using the previous authentication and authorization, a secure channel connecting Client
and Server nodes through the Internet/Intranet is guaranteed. The meshing company
(a client node) generates the system of equations arising from the mesh data it pro-
duces. Only the authorized solving company (a server node) has the right to access the
database through the GlobusIO secure channel. It provides high-performance I/O with
integrated security and a socket-like interface for users [FBA03]. Normal users holding
no powerful machines can also succeed in doing such numerical simulations without
knowing the details of meshing and solving parts on their ownmachines. As shown
in Fig. 2, once their identities are certified by a Certification Authority and recognized
by the requested resources, users can submit the job to nodesand control the data flow
between nodes. For instance,globus-url-copy[Glo], can realize the data files transfer
among nodes, and by RSL (resource specification language) [Glo], users can control
the job running schedule on the nodes. Under the Austrian grid environment, usingglo-
gin, the identified user can realize the interactive usage of grid resources [RK04]. Via
the GlobusIO secure and efficient channel mode, we can separate our meshgenerator
and linear system solver parts into different grid nodes. The communication between
nodes is guaranteed in this channel created by callingglobusio tcp connectprovided
such TCP connecting is not opened and closed frequently.

2.3 The Grid-enabled Client/Server Model

As one can find in Fig. 3, an additional feature compared to standard Client/Server
models on TCP/IP protocols is the authentication part on both client and server nodes
by employing GlobusIO operations. The TCP connecting is mainly implemented via
globusio tcp listen/connect/accept. The server node firstly creates a TCP listener at a
port and keeps listening at this port. Once it gets a notification from the client node,
it will try to establish a TCP connection. If this connectingis successful, they will
continue the next jobs. Otherwise, the server still listensat the opening port until it
gets the next notification from the client. The server node does not start the solver until
it gets the whole system given by the client node. The data transfer between nodes are
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Figure 2: Separating model

hidden in the blocks ofReceive SystemandSend System, which are implemented by
offering a common data transferring interface such that both client and server nodes
can apply it to their transferring processes. Using this friendly interface we defined on
both nodes, the client node will send its linearized system (Oseen equations) [Wab03,
Wab06], to the server node via calling theglobusio read/writepair. Once the server
node obtains the linearized system, it will start the solving procedure for the outer
nonlinear iterations. Due to its nonlinear convection partu · ∇u in the Navier-Stokes
equations [Wab03, Wab06], after each outer nonlinear iteration, the server and client
nodes have to do several communications for the process of reassembling the linearized
system. When the solutions are sufficiently accurate, the server will stop calculations
and send the solutions back to the client node. Finally, all I/O operations and TCP
connections are closed.

2.3.1 Shared Data Transferring Interface

Because of the nonlinear part of the Navier-Stokes equations, the communication of
sending and receiving the linear system between client and server nodes occurs af-
ter every outer nonlinear iteration. In this sense, a secure, stable and efficient data
transferring interface has to be constructed on both clientand server nodes. As we
mentioned before, the GlobusIO offers such desirable operations. By calling the
globusio write/readpair, one can realize the data sending and receiving throughthe
established GlobusIO channel. Usually, hierarchical data structures of matrices and
vectors are used for storing and solving the linear system. The matrix and vector them-
selves could also contain simple data structures. The size of these hierarchical data
structures has to be measured carefully since theglobusio write/readcalling needs to
know the exact block size of the message the nodes would like to send and receive.
We designed small data structures for the entries of matrices and vectors such that the
size of these elementary data structures can be evaluated bycalling thesizeof func-
tion. There may appear different types of matrices with varying entries:MC Matrix1
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Figure 3: Grid-enabled Client/Server model

with small matrix (3 × 3) entries,MC Matrix2 with small vector (3 × 1) entries and
MC Matrix3 with doubleentries. For vectors, there exist two types:MC Vec1with
small vector (3 × 1) entries andMC Vec2with doubleentries respectively. Addition-
ally, the matrix structure has to be decomposed into the vector storage. For instance, the
compressed row structure (CRS) can be applied in order to fit into the vector transfer-
ring interface of theglobusio write/readcalling. In Fig. 4, we show a sample interface

Vector for Storing Entries 

Buffering for Writing and Reading

Globus_IO_Write:  

Globus_IO_Write: 

Globus_IO_Write: 

Globus_IO_Write: 

#of Rows and Entries

Vector for Storing Column Indices of Entries 

Globus_IO_Read:  

Globus_IO_Read: 

Globus_IO_Read: 

Globus_IO_Read: 

gridClientSendMatrix1 gridServerRecvMatrix1

Vector for Storing # of Entries in Each Rows 

Figure 4: Sending and receiving interface on Client/Servernodes

of gridClientSendMatrix1andgridServerRecvMatrix1pair on client and server nodes.
The globusio write/read callings, the matrix decomposition, and the matrix recon-
structure are encapsulated inside. Users only feed in theMC Matrix1 type of matrices
as the input parameters. For the interfaces of the other structures, we implemented it in
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the same way.

2.3.2 Server/Client Configuration Files

Using the high-performance and secure data transferring protocol, GridFTP [GRI], the
executable file can be transferred and installed on the grid nodes. By the configura-
tion files as in Fig. 5, one can specify the node roles: client for the mesh genera-
tor and server for the linear equations solver. We define the configuration file as an

GRIDNODE altix1.jku.austriangrid.at

MESHFILENAME cube_hex_l3.flma.gz

BOUNDARY_CONDITION ....
RHS_FORCE ...

DATAFILENAME data.data

END

END

GridServer.conf File: 

GridClient.conf File:

GRIDTYPE  GServer

GRIDTYPE  GClient

REYNOLDS 100

SOLVER_TYPE

SOLVER_TYPE  

GRIDPORT 40102

GRIDPORT 40102

Figure 5: Configuration files on Client/Server nodes

input parameter for starting the programming on both clientand server nodes. For
the configuration file on the server node, one has to specify the GRIDTYPE=GServer,
GRIDPORT= a ∈ [40000, 45000] (the Globus port range under the Austrian grid envi-
ronment). One can specify the SOLVERTYPE from different types of solvers, We will
discuss them later on. In this part, no mesh data is involved.The solver is independent
of mesh generation by such a separating technique. It offersa more convenient interface
for users on the application level. The client node mainly handles mesh input data and
generates linear system arising from it. In the case of the hybrid mesh [mes], it contains
varying elements: hexahedra, prisms, pyramids and tetrahedra as in Fig. 6. This hybrid

Figure 6: Elements generated by Spider
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mesh requires more advanced and robust solvers to handle thelinear system arising
from the stabilized discretization on it. The client role isspecified by setting GRID-
TYPE=GCLIENT, the connecting server node GRIDNODE=altix1.jku.austriangrid.at,
and the same port number as specified on the server node. Additionally, the client
should also specify the solver type one wants to apply, but only the type name, not the
detailed parameters which are jobs on the server node. This solver type specification
will decide which matrix and vector will be sent to the server. The client only sends
the minimal system information which fulfills the solver requirement.

2.3.3 Nonlinear Solver Interface on the Server Node

We are only interested in the stationary solutions of the Stokes/Navier-Stokes equa-
tions. The solver for these two problems is built into a unified framework. Users are
able to handle these two problems in a convenient way by setting differentReynolds
numbers (Reynolds = 0 will go to the Stokes problem). The solver typeNS CoupledAMG
is the Navier-Stokes solver using the robust algebraic multigrid method (AMG) as a
solver or as a preconditioner of the BiCGstab method [Wab03](stabilized bi-conjugate
gradient method) for solving the nonsymmetric and indefinite system. Thesmoothing-
Typeis used to distinguish solver types for the system because itis an important issue
for the multigrid solvers [Wab03, ZS03, Hac85]. Once the smoothing type is selected
by users, the server node will start to obtain the matrices and vectors from the client
node. Afterwards, the linearized system is solved using thealgebraic multigrid method.
ThegridServerRecvis a friendly data receiving interface as we discussed in theprevi-
ous subsection. Once the stopping criteria (signal) is checked, the server will decide
whether to solve the linearized system once more. See the whole process on the server
node illustrated in Fig. 7. Via thissignal, the client will determine whether it needs to
reassemble the matrices and vectors for the server using thesolutions it obtains. If not
necessary, it only gets the solutions and write them to the local file.

2.3.4 Nonlinear Connecting Interface on the Client Node

On the client node, users only need to feed in matrices and vectors as illustrated in Fig.
8. ThegridClientSendTransferoffers a friendly interface containingglobusio write
operations. This corresponds to thegridServerSendTransferin server nodes. Via the
signal it receives from the server node, the client will determine whether to recon-
struct the system of matrices and vectors from the solutionsU,P it obtains or just write
the stationary solutions to the local file. As you might see here, no details of solver
information are involved.

3 Numerical Approximations and Fast Solvers for the
Stokes and Navier-Stokes Systems

In this section, we first present a short summary of the streamline diffusion finite ele-
ment method (SDFEM) for solving the Stokes/ Navier-Stokes problems [TV96]. Then
the algebraic multigrid method (AMG) for the resulting nonsymmetric and indefinite
system will be discussed in a short way [Wab03, Wab06, ZS03, Zul02].
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SmoothingType

BraSar Additive Schwarz Multiplicative Schwarz

MC_Matrix1 A; MC_Matrix2 B1;

MC_Matrix2 B2;  MC_Matrix3 C;

// local memory storage for matricies and vectors

// Receive matrixies and vectors

// apply solvers on different smoothing types

Signal=1

NO

END
YES

gridSolver(BLOCKSOLVERCLASSNAME*  solver)

NS_CoupledAMG ServerInterface

gridServerSendSignal(0 or 1);  // 1−stop&0−continue
// check stopping criteria and send back solutions

gridServerRecvTransfer(A,B1,B2,C,U,V); 

solver−>AMGSystemSolver(A,B1,B2,C,U,V, smoothingType);

gridServerSendVector(U.velocity); //Velocity Component
gridServerSendVector(U.pressure); //Pressure Component

MC_STOKESVEC U, V; //coupled vectors storaging

Figure 7: Solver interface on server nodes

3.1 The SDFEM for the Stokes and Navier-Stokes equations

We consider the Stokes/Navier-Stokes equations written inthe velocity-pressure for-
mulation for a bounded, connected and polyhedral domainΩ ⊂ R

3:

−∆u+ λu · ∇u+ ∇p = f in Ω

∇ · u = 0 in Ω

B(u, p) = g onΓ

whereλ is the scaled Reynolds number,p the pressure,u the velocity field,B some
types of boundary operators andΓ the boundary of domainΩ. The above system of
equations describes the balance law of momentum and conservation law of mass in
fluid mechanics. The discretization of this system by the SDFEM method leads to the
following discrete variational problem: Find[uh, ph] ∈ Vh × Qh such that, for all
[vh, qh] ∈ Vh ×Qh,

(∇uh,∇vh) + λ(uh · ∇uh, vh) − (ph,∇ · vh)

+ δ
∑

T∈Th

h2

T (λuh · ∇uh + ∇ph, λuh · vh)T

= (f, vh) + δ
∑

T∈Th

h2

T (f, λuh · ∇vh)T
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 const MC_Matrix2& B1,

 const MC_Matrix2& C,

gridConnecting(const MC_Matrix1& A,

 const MC_Matrix2& B2,

NS_CoupledAMG ClientInterface

// send system of matricies and vectors

 // set signal to 0

MC_Index signal=0;

// get signal

gridClientRecvSignal(signal); // 1−stop&0−continue

// get solutions

gridClientRecvTransfer(U,P);

signal=1

NO

const MC_String& datafilename,

 const MC_Vec1& F,  const MC_Vec2& G,

A, B1, B2, C, F, G

YES

END

Reconstruct System

gridClientSendTransfer(A,B1,B2,C,F,G,smoothingtype);

const MC_String& smoothingtype)

WriteData(U, P)

Figure 8: Connecting interface on client nodes

and

(qh,∇ · uh) + δ
∑

T∈Th

h2

T (λuh · ∇uh + ∇ph,∇qh)T

= δ
∑

T∈Th

h2

T (f,∇qh)T ,

whereVh, Qh are some finite element spaces, andδ is a small parameter.
This problem admits at least one solution[uh, ph] under proper assumptions, see

[TV96]. For sufficiently smallλ (scaledReynolds number), the solution of the problem
is unique, see [TV96]. We choose the finite element spacesVh = {v ∈ C0(Ω̄)3 : v|T ∈
P1, for all T ∈ Th} andQh = {q ∈ C(Ω̄) ∩ L2

0
(Ω) : q|T ∈ P1 for all T ∈ Th} and

appropriate bases{φj} for Vh and{ψj} for Qh. Then the approximate solutions can
be represented in the following way:

uh =
∑

j

ujφj , ph =
∑

k

pkψk

leading to the nonlinear system of the form
(

A(u) BT
1

B2 −C

) (

u
p

)

=

(

f
g

)

for the unknown vectorsu = (uj) andp = (pk). This nonlinear system was solved
iteratively by replacingu in the convective part by the previous iterate. So, in each step
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of this inner iteration, a linear problem of the form
(

A(w) BT
1

B2 −C

) (

u
p

)

=

(

f
g

)

(a so-calledOseen problem) has to be solved. For the Stokes problem (λ = 0), we have
B1 = B2 andA a constant matrix.

3.2 Standard Iterative Solvers for the Stokes System

For the Stokes problem (λ = 0), there exist some iterative solvers capable of solving
this saddle point system [Wab03].

3.2.1 Schur(P)CG - (Preconditioned) conjugate gradient method applied to the
Schur Complement

By eliminating the velocity variables, we get a reduced systemSp = BA−1f − g for
the pressure only, whereS = BA−1BT + C, the (negative) Schur complement, is
positive semi-definite and has a one-dimensional kernel. One can apply the standard
(P)CG method, see [Hac94], to it by choosing the initial guess properly. The velocityu
is calculated by applying the algebraic multigrid method (AMG) to the linear equation
Au = f − BT p. In each (P)CG iteration, the multi-grid method has to be applied
once sinceA−1 appears in the Schur complementS and has to be evaluated accurately
enough. This inner iteration is the main cost of this solver.

3.2.2 ZulehnerInexactUzawa - inexact Uzawa method appliedto the whole sys-
tem

It is a preconditioned technique applied to the whole system

L̂−1K

(

u
p

)

= L̂−1

(

f
g

)

, with L̂ =

(

Â 0

B −Ŝ

)

.

One big advantage of this method is, that it does not require the exact inversion ofA but
only of some preconditioner̂A. It leads to an efficient improvement of the performance.
For more details, see [Zul02].

3.3 Algebraic Multigrid Solvers for the Stokes/Navier-Stokes Sys-
tems

To solve the original saddle point problem (nonsymmetric and indefinite), one can ap-
ply the algebraic multigrid method (AMG) to the whole system, see [Wab03]. One
crucial component of a multigrid method is the choice of the smoother. We imple-
ment two different smoothers for the coupled system: theBraessSarazinsmoother, see
[BR97], and theVankasmoother, see [Van86]. The first smoother has a smoothing
property with a rate ofO( 1

m
), wherem is the number of smoothing steps, see [BR97],

[Zul00]. The second smoother is obtained by setting up smallsubproblems cell by cell
(patch by patch), i.e. with one degree of freedom for the pressure and a few degrees
of freedom for the connected velocity unknowns. The solutions of these subproblems
are combined by the multiplicative Schwarz iteration. The smoother for the additive
Schwarz case has a smoothing property with a rate ofO( 1√

m
), see [ZS03]. One can
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use the multigrid method as a solver for the coupled system. If using it as a precondi-
tioner for the system, one can apply the preconditioned stabilized bi-conjugate gradient
method (Pre-BiCGstab) to the coupled system, which will lead to better convergence
performance. One can see this advantage later on.

4 Client/Server Model Applied To the Stokes/Navier-
Stokes System

In this part, we will see how the grid-enabled Client/Servermodel can be applied to the
Stokes/Navier-Stokes system. We are not going to compare the efficiency of different
solvers we have discussed in the previous section, but will only concentrate on how
this model works under the Austrian grid environment.

4.1 Apply the Model to the Stokes System on the Austrian Grid
With Standard Iterative Methods

In order to measure the communication and computing time foreach linearized itera-
tion, we first test the problem on the uniformly refined meshesfor the Stokes system.
The numerical solvers are mesh-independent, i.e. the number of iterations does not
increase when the mesh is refined. We present four levelsL1−L4 of uniformly refined
meshes as shown in TABLE 1. These mesh files are only stored on the client nodes
and will be used to generate the Stokes system locally. We runthe solvers on the server

Table 1: Four Uniformly Refined Levels
Levels L1 L2 L3 L4

#Vertices 125(53) 729(93) 4,913(173) 35,937(333)
#Unknowns 500 2,916 19,652 143,748
Mesh Size(h) 1/4 1/8 1/16 1/32

node by three standard iterative methods. For each of these methods, the iteration num-
bers should stay on the same level. See the test results on theuniformly refined meshes
in TABLE 1. Next, we are going to show some test results under the Austrian grid

Table 2: Mesh-independent Iterations
Methods on Four Levels L1 L2 L3 L4 #It(average)

#It(CG) 26 41 51 49 42
#It(PCG) 13 20 24 25 21

#It(Uzawa) 18 21 21 19 20

environment. All of these examples are tested on mesh levelL3. Time is measured
in seconds. The linear system arising from this level is not so huge since it is only
used to show how the Client/Server model works. We specify both client and server
nodes, let them do their jobs locally, and see how both of themcan cooperate through
shared data transferring interface which we defined before.TABLE 3 contains a list
of nodes connected to the Austrian Grid [BGV06]. The node Agrid-01 is a powerful
desktop located at the Institute of Computational Mathematics, JKU. The node AL-
TIX1 in Linz is a four 16-way SGI Altix 350 system which are configured as a cluster
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Table 3: Grid Nodes Information
Node Site Proc Type Arch. RAM

Agrid-01 Linz AMD Opteron (2) AMD64 4 GB
SCHAFBERG Salzburg Intel Itanium 2 (16) IA64 16 GB

ALTIX1 Linz Intel Itanium 2 (64) IA64 64 GB

and interconnected by an Infiniband fabric. The communication in this node should be
really fast. The node at Salzburg is an one 16-way SGI Altix1 350 system. In our first
trivial test, both client and server are on the local machineAgrid-01. Since no extra
time spent on the Internet for data transfer, the system sending and receiving should run
very fast. On the client node, one can see the time spent in initializing and sending the
Stokes system. On the server node, we record the time for receiving the system and the
iterative numbers for these three iterative solvers. The time spent on system transfer

Table 4: Client/Server Model on Agrid-01
Client Node Server Node

Agrid-01 Agrid-01
System Send Recv Solve

2.5s U(0.8s) U(0.8s) SchurCG SchurPCG Uzawa
C(0.2s) C(0.2s) 119.3s 61.9s 8.4s
P(0.8s) P(0.8s) #It(47) #It(24) #It(21)

for SchurCG method is 0.2s (C(0.2s)). For the other two, additional time is needed
for sending preconditioners, 0.8s for both Uzawa (U(0.8s)) and SchurPCG (P(0.8s))
methods. On the server node, one can see most of the time is spent in solving the
system. For each of these test cases, the cost for generatingthe Stokes system is more
or less the same. As expected, the inexact Uzawa method has better performance than
the other two by comparing the cost in TABLE 4. SchurPCG can speed up the perfor-
mance by half compared to SchurCG method. In the next test in TABLE 5, we utilize
ALTIX1 as a client node which deals with mesh reading, the Stokes system generation
and system sending to the server node SCHAFBERG. Since they are two separated
grid nodes, more time is needed for data transfer. We start fromgrid-proxy-initon the

Table 5: Client/Server Model on Altix1 and Schafberg
Client Node Server Node

ALTIX1 SCHAFBERG
System Send Recv Solve

5.8s U(5.2s) U(5.2s) SchurCG SchurPCG Uzawa
C(3.6s) C(3.6s) 246.1s 132.4s 21.5s
P(4.8s) P(4.8s) #It(47) #It(24) #It(21)

local machine, useglogin to log into altix machines on these nodes, and transfer binary
files and Client/Server configuration files to them byglobus-url-copy. Afterwards, start
the server on the node SCHAFBERG, and then run the client on ALTIX1. We should
mention here, that the mesh file is only transferred to the client node. For solvers on the
server node, we only transfer the executable binary file and the server configuration file
which are sufficient for solving the linear system. Additionally, users who are not able
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to afford the cost for powerful machines would benefit a lot from this model. As we
see here, the mesh generation and solving the linear system are both done on the nodes.
The only requirement for users is to join this grid environment, set the Server/Client
configuration files, run the jobs on the nodes, and afterwardscheck the results from
computing. This is also a big advantage compared to usual PDEsolvers. For testing,
the other possibility is to run the client on a HP laptop with aAMD Athlon mobile
processor and 512 MB memory in Linz. The server is the grid node of SCHAFBERG.
See TABLE 6. Usually, a laptop has less resources compared with grid nodes, which

Table 6: Client/Server Model on HP-Laptop and Schafberg
Client Node Server Node
HP-Laptop SCHAFBERG

System Send Recv Solve
22.7s U(22.4s) U(22.4s) SchurCG SchurPCG Uzawa

C(16.9s) C(16.9s) 267.1s 127.1s 21.6s
P(22.1s) P(22.1s) #It(47) #It(24) #It(21)

leads to the dramatic increase in costs for the Stokes systemsetup. This tells us for
really complicated mesh generation, it would be a good idea to set one powerful node
as a client where we can utilize its resources. However, the solving time is comparable
in these cases since they are always running on the same server node. One can try
to run the solver on more grid nodes under the grid computing environment. As a test
version of the grid-enabled solver for the Stokes system using the separating technique,
it works well under the Austrian grid environment.

4.2 Apply the Model to the Stokes/Navier-Stokes systems on the
Austrian Grid with the Multigrid Methods

In this subsection, we present the multigrid solvers for theStokes/Navier-Stokes prob-
lems. Since the communication time is shown in previous samples, we are not going to
list the communication and computing time in this subsection. One can get the approx-
imate cost of the methods by multiplying the cost in the previous subsection with the
number of nonlinear iterations. For each outer nonlinear iteration, a linear system is
solved. We give the test results using the multigrid method as a solver for the linearized
Oseen equations. See TABLE. 7. If we use the BiCGstab Krylov space method with

Table 7: Nonlinear Iterations of Multigrid Solvers
Number of Nonlinear Iterations

Reynolds (Number of Linear Iterations)
Number(λ) Braess-Sarazin Additive Multiplicative

Schwarz Schwarz
0.0 1 (20) 1 (21) 1 (12)
1.0 4 (20) 4 (22) 4 (12)
50.0 12 (19) 12 (21) 12 (11)
100.0 21 (19) 21 (20) 21 (10)

the multigrid method as a preconditioner for the coupled system, then the number of
linear iterations will decrease efficiently. See TABLE. 8. For the case of the scaled
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Reynolds numberλ = 0.0, we are solving the Stokes problem, and only one nonlinear
iteration is needed. When increasing the value of theReynolds number, we enlarge
the nonlinear convection part which leads to the increase ofnonlinear iterations for the
coupled system. However, we are here not going into details on how to adjust these
parameters for the highReynolds number. The number of linear iterations for each

Table 8: Nonlinear Iterations of BiCGstab
Number of Nonlinear Iterations

Reynolds (Number of Linear Iterations)
Number(λ) Braess-Sarazin Additive Multiplicative

Schwarz Schwarz
0.0 1 (7) 1 (8) 1 (5)
1.0 4 (7) 4 (8) 4 (5)
50.0 12 (6) 12 (10) 12 (5)
100.0 21 (7) 21 (8) 21 (4)

nonlinear iteration is illustrated by the number in the bracket.

5 conclusions

Based on techniques of grid computing and reconsiderationsof PDE solvers using the
finite element method for the Stokes/Navier-Stokes systems, we discussed the sepa-
rating technique which is suitable for the Client/Server model under the grid environ-
ment. We developed a friendly user interface for data transfer. The robust multigrid
PDE solver for the application in the computational fluid dynamics has been developed.
Most of numerical experiments are implemented and tested ondifferent grid nodes.

Acknowledgment

The authors would like to thank Ferdinand Kickinger for providing them with his mesh
files, the foundation work of this solver, and very valuable discussions concerning pro-
gramming techniques. Last, but not least, the authors wouldlike to thank the project
of Austrian Grid (http://www.austriangrid.at) funded by the bm:bwk (Austrian Federal
Ministry for Education, Science and Culture).

References

[BGV06] M. Baumgartner, C. Glasner, and J. Volkert. An Overview of the Aus-
trian Grid Infrastructure. In J. Volkert, T. Fahringer, D. Kranzlmüller, and
W. Schreiner, editors,Proceedings of1st Austrian Grid Symposium, pages
277–286, 2006.

[BR97] D. Braess and R.Sarazin. An efficient smoother for theStokes problem.
Numer. Math., 23:3–20, 1997.

[Bra95] D. Braess. Towards algebraic multigrid for elliptic problems of second or-
der. Computing, 55:379–393, 1995.

14



[BS06] G. Brajesh and L. Shilpa.Grid Revolution: An Introduction to Enterprise
Grid Computing. McGraw-Hill/Osborne Media, 2006.

[CJ03] F. Craig and J. Joshy.Grid Computing. IBM Press, 2003.

[DIF] The Diffpack webside. http://www.diffpack.com/.

[FBA03] L. Ferreira, V. Berstis, and J. Armstrong.Introduction to Grid Computing
with Globus. IBM Corp, 2003.

[FEM86] The FEMLAB webside. http://www.comsol.com/, 1986.

[FJ03] C. Fellenstein and J. Joseph.Grid Computing. Prentice Hall Ptr, 2003.

[FK03] I. Foster and C. Kesselman.Grid 2 Blueprint for a New Computing, vol-
ume 13 ofElsevier Series in Grid Computing. Morgan Kaufmann Pub,
2003.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations.High Performance Computing Applications,
15(3):200–222, 2001.

[Glo] The Globus Toolkit webside. http://www.globus.org/toolkit/.

[GRI] The OpenGridForum webside. http://www.ogf.org/.

[Hac85] W. Hackbusch. Multigrid Methods and Application. Springer Verlag,
Berlin, Heidelberg, New York, 1985.

[Hac94] W. Hackbusch.Iterative Solutions of Large Linear Systems of Equations.
Springer, New York, 1994.

[HPF04] The FEMworks website. http://www.hpfem.jku.at/,2004.

[Kic98] F. Kickinger. Algebraic multigrid for discrete elliptic second-order prob-
lems. In W. Hackbusch, editor,Multigrid Methods V. Proceedings of the
5th European Multigrid conference, volume 3 ofSpringer Lecture Notes in
Computational Science and Engineering, pages 157–172, 1998.

[mes] The Spider Online webside. http://www.meshing.org/.

[Mic05] D.S. Michael.Distributed Data Management for Grid Computing. Wiley-
Interscience, 2005.

[MW203] The AMuSE website. http://www.numa.uni-linz.ac.at/, 2003.

[MyP] The MyProxy webside. http://grid.ncsa.uiuc.edu/myproxy/.

[PW05] P. Plaszczak and R. Wellner.Grid Computing. Morgan Kaufmann Pub,
2005.

[RK04] H. Rosmanith and D. Kranzlmüller. glogin-A Multifunctional, Interac-
tive Tunnel into the Grid. InProceedings of Grid 2004, 5th IEEE/ACM
Intl.Workshop on Grid Computing, pages 266–272, Pittsburgh, PA, USA,
2004. IEEE Computer Society.

15



[TV96] L. Tobiska and R. Verfürth. Analysis of a streamlinediffusion finite element
method for the Stokes and Navier-Stokes equations.Numerical Analysis,
33(1):107–127, 1996.

[Van86] S. Vanka. Block-implicit multigrid calculation oftwo-dimensional recircu-
lating flows.Comp. Mech. Apply. Eng, 59(1):29–48, 1986.

[Vla05] S. Vladimir. Grid Computing for Developers. Charles River Media, 2005.

[Wab03] M. Wabro.Algebraic Multigrid Methods for the Numerical Solution of the
Incompressible Navier-Stokes Equations. PhD thesis, Johannes Kepler Uni-
versity Linz, 2003.

[Wab06] M. Wabro. Amge - coarsening strategies and application to the oseen equa-
tions. SIAM Journal for Scientific Computing, 27:2077–2097, 2006.
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