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Abstract. We construct weighted wavelets by combining the lifting scheme with a weighted
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for periodic B-splines. Finally we consider examples for these wavelets and compare them with the
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1. Introduction. Wavelets play a prominent role in different areas of mathe-
matics and scientific computing such as approximation theory, signal processing and
numerical computation. Typical applications of wavelets include hierarchical visual-
izations of geometric objects, data compression and numerical simulation.

In particular, spline wavelets have become a powerful mathematical tool for the
hierarchical representation of geometric objects, combining the properties of splines
and wavelets. Depending on the application, different types of spline wavelets have
been constructed. This includes (compactly supported) spline wavelets on a bounded
interval e.g. [1, 3, 5, 6, 11], spline wavelets with minimal support e.g. [8] and non-
uniform spline wavelets e.g. [9].

In the present paper we construct 1-periodic spline wavelets with the following
properties. The constructed wavelets have a compact support such that analysis and
synthesis can be done in linear time. Moreover these spline wavelets have improved
approximation properties in a certain region of the whole interval, at the expense of
the other parts.

The construction consists of two steps. As first step we construct lazy wavelets
with a small support. In the second step we modify them by increasing the L2-
orthogonality with respect to a weighted inner product. In the wavelet literature,
such products have also been considered in [13, 14]. This modification is achieved by
using the lifting scheme, a method for modifying existing wavelets, cf. [10, 12, 14].
As the result we obtain weighted spline wavelets.

The remainder of this paper is organized as follows. In Section 2 we give a short
outline of the general concept of wavelets. Section 3 describes the construction of
lazy wavelets for periodic B-splines. Section 4 introduces the concept of weighted
wavelets, which are wavelets constructed with the help of lifting and a weighted inner
product. In Section 5 we present examples of weighted wavelets for periodic B-splines
and compare these wavelets with the “standard” lifted wavelets.

2. Preliminaries. In this section we give a short outline of the general concept
of wavelets. We write N for the naturals numbers and N0 for the natural numbers
with 0. We follow the notation in [12].
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Let V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . ⊂ L2([0, 1]) be a nested set of linear function spaces

with finite dimension, such that
⋃∞

j=0 V
j ⊃ L2([0, 1]). Let W 0 ⊂W 1 ⊂W 2 ⊂ . . . be a

sequence of wavelet spaces with finite dimension such that V j+1 = V j⊕W j for all j ∈
N0. We denote the dimension of V j by v(j) and the dimension of W j by w(j).
Furthermore let φj

0, . . . , φ
j

v(j)−1 be a basis of V j and ψj
0, . . . , ψ

j

w(j−1) be a basis of W j .

The functions φj
i are called scaling functions and the functions ψj

i are called wavelets.
For ease of notation we use row vectors of functions as

Φj := [φj
0, . . . , φ

j

v(j)−1] and Ψj := [ψj
0, . . . , ψ

j

w(j)−1].(2.1)

Every function f j of V j and gj of W j can be written as

f j = Φjcj and gj = Ψjdj(2.2)

with the column vectors

cj := [cj0, . . . , c
j

v(j)−1]
T and dj := [dj

0, . . . , d
j

w(j)−1]
T ,(2.3)

respectively. We write (v1, . . . ,vk) for the concatenation of row (column) vectors
v1, . . . ,vk.

Since V j−1 and W j−1 are subsets of V j , there exist constant matrices P j and Qj

such that Φj−1 = ΦjP j and Ψj−1 = ΦjQj . These relations can also be expressed by a
single equation, using block matrix notation [Φj−1|Ψj−1] = Φj[P j |Qj ]. This equation
is referred to as a two-scale relation for scaling functions and wavelets (cf. [12]).

The relation between cj and cj−1, dj−1 is expressed by

cj = [P j |Qj][
cj−1

dj−1
], cj−1 = Ajcj and dj−1 = Bjcj(2.4)

with [Aj

Bj ] = [P j |Qj ]−1. Constructing cj from cj−1 and dj−1 is called synthesis. The
process of splitting the coefficients cj into coefficients cj−1 and dj−1 is called analysis.
The matrices P j , Qj are called synthesis filters, the matrices Aj , Bj are called analysis
filters.

The different types of wavelets (orthogonal, semiorthogonal and biorthogonal)
are distinquished by whether or not scaling functions and wavelets satisfy certain
orthogonality relations. For more detail we refer to [12].

Finally we recall the concept of uniform stability for a wavelet construction e.g.
[2, 6]. We say that {Φj}j∈N0 ({Ψj}j∈N0) is uniformly stable if there exist positive
constants M1,M2 (N1, N2) such that

M1||c||l2 ≤ ||Φjc||L2 ≤M2||c||l2 (N1||d||l2 ≤ ||Ψjd||L2 ≤ N2||d||l2)(2.5)

for all sequences c ∈ R
v(j) (d ∈ R

w(j)) and j ∈ N0.

A stronger condition of stability is Riesz stability, see e.g. [2, 4].

3. Constructing lazy wavelets for periodic B-splines. In this section we
describe a method for constructing biorthogonal wavelets for periodic B-splines. We
will obtain biorthogonal wavelets with banded synthesis matrices P j, Qj and analysis
matrices Aj , Bj . Therefore analysis and synthesis can be done in linear time.
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n columns

Fig. 3.1. PBM(m,n, o, s, [v0, . . . , vl]).

3.1. Periodic B-splines. We consider 1-periodic uniform B-splines of degree
d ∈ N0. Let V j be the space spanned by the 1-periodic B-splines that are constructed
from the knot sequence

(tj0, . . . , t
j

2j(d+1)−1) =
1

2j
(0,

1

d+ 1
,

2

d+ 1
, . . . ,

2j(d+ 1) − 1

d+ 1
).(3.1)

Then we have V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . and dimV j = 2j(d+ 1).
Definition 1. Let m,n, o, s, l ∈ N0 such that m = sn. Let v = [v0, v1, . . . , vl] ∈

R
l+1. We denote by PBM(m,n, o, s, [v0, . . . , vl]) an m × n periodic band matrix

[ai,j ]
j=0,...,n−1
i=0,...,m−1 with offset o, shift s and generic column [v0, . . . , vl] such that

a(o+k·s) mod m,k = v0

a(o+1+k·s) mod m,k = v1

...

a(o+l+k·s) mod m,k = vl

for k ∈ {0, 1, . . . , n−1}, while the remaining matrix entries ai,j vanish, see Figure 3.1.
Example 1.

PBM(6, 3, 1, 2, [1, 2]) =





0 1 2 0 0 0
0 0 0 1 2 0
2 0 0 0 0 1





T

,

PBM(6, 3,−1, 2, [1, 2]) =





2 0 0 0 0 1
0 1 2 0 0 0
0 0 0 1 2 0





T

.
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3.2. Lazy spline wavelets of degree 1. For the case d = 1 one gets a biorthog-
onal wavelet construction by choosing the wavelets ψj−1

i for W j−1 as

ψ
j−1
i := φ

j
2i(3.2)

where {φj
k}

2j(d+1)−1
k=0 is the basis of V j , see [12, 14]. Because the wavelets for W j−1

are only a subset of the functions φj
i for V j and therefore nothing has to be done to

compute them, these wavelets have been called lazy wavelets by Sweldens [14]. The
synthesis filters P j , Qj and the analysis filters Aj , Bj are the periodic band matrices

P j = PBM(2j+1, 2j, 0, 2, [
1

2
, 1,

1

2
]), Qj = PBM(2j+1, 2j, 0, 2, [1]),

Aj = PBM(2j+1, 2j, 1, 2, [1])T , Bj = PBM(2j+1, 2j,−1, 2, [−
1

2
, 1,−

1

2
])T .

Now we extend this construction to higher degrees.

3.3. Lazy spline wavelets of degree d ≥ 1. We have 1-periodic uniform B-
splines of degree d ∈ N0. Let k = d + 1 the order of these B-splines. We use knot
insertion for B-splines (cf. [3]) to get the refinement matrix

P j =
1

2k−1
PBM(2jk, 2j−1k, 0, 2, [

(

k

0

)

,

(

k

1

)

, . . . ,

(

k

k

)

]).

We consider an auxiliary matrix P̄ j which we get from P j by an index shift. In
the first step we construct matrices Q̄j , Āj , B̄j such that Āj · P̄ j = I, Āj · Q̄j = 0,
B̄j · P̄ j = 0 and B̄j · Q̄j = I. In the second step we get the matrices Qj, Aj and Bj

from Q̄j , Āj , B̄j by an index shift.
For our construction we will distinguish two cases:
• case: d is odd.

Let P̄ j = PBM(2jk, 2jk,−1, 1, [1]) · P j,

P̄ j =
1

2k−1
PBM(2jk, 2j−1k,−1, 2, [

(

k

0

)

,

(

k

1

)

, . . . ,

(

k

k

)

]).

We choose

B̄j =
1

2k−1
PBM(2jk, 2j−1k, 0, 2, [

(

k

0

)

,−

(

k

1

)

,

(

k

2

)

, . . . ,

(

k

k

)

])T .

B̄j satisfies B̄j · P̄ j = 0. Now we construct a matrix

Q̄j = PBM(2jk, 2j−1k, 1, 2, [c0, c1, . . . , ck−2]).

Since Q̄j has to satisfy B̄j · Q̄j = I, we compute the coefficients of Q̄j by
solving this system of linear equations. This is equivalent to
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





(3.3)
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(We consider the system which we get by multiplying each row of B̄j with the
first column of Q̄j .) This system of linear equations has a (k − 1) × (k − 1)-
coefficient matrix which is regular. Therefore we get a unique solution ci.
Furthermore we see that the coefficients ci do not depend on j. Now let Āj

be the matrix of the following form:

Āj = PBM(2jk, 2j−1k, 0, 2, [−ck−2, ck−3,−ck−4, . . . , c1,−c0])
T .

Because of this choice of Āj it is assured that Āj · Q̄j = 0.
In addition to Āj ·Q̄j = 0, B̄j ·Q̄j = I and B̄j · P̄ j = 0, the matrix Āj satisfies
Āj · P̄ j = I, which can be simplified to equation (3.3).
Finally we chooseQj = PBM(2jk, 2jk,−1, 1, [1])·Q̄j , Aj = Āj ·PBM(2jk, 2jk,−1, 1, [1])
and Bj = B̄j ·PBM(2jk, 2jk, 1, 1, [1]). This choice guarantees that Aj ·P j = I,
Aj ·Qj = 0, Bj · P j = 0 and Bj ·Qj = I.

• case: d is even.
This case works in a similiar way. Let P̄ j = PBM(2jk, 2jk,−2, 1, [1]) · P j .
Therefore

P̄ j =
1

2k−1
PBM(2jk, 2j−1k,−2, 2, [

(

k

0

)

,

(

k

1

)

, . . . ,

(

k

k

)

]).

We choose B̄j as

B̄j =
1

2k−1
PBM(2jk, 2j−1k, 0, 2, [−

(

k

0

)

,

(

k

1

)

,−

(

k

2

)

, . . . ,

(

k

k

)

])T .

To construct a matrix

Q̄j = PBM(2jk, 2j−1k, 0, 2, [c0, c1, . . . , ck−2]),

we have to solve B̄j · Q̄j = I, which is equivalent to solving the following
system
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(3.4)

(It suffices to consider the system which we get by multiplying each row of B̄j

with the first column of Q̄j.) This system has again a unique solution which
is the same for all levels j. Now let

Āj = PBM(2jk, 2j−1k, 0, 2, [ck−2,−ck−3, ck−4, . . . ,−c0])
T .

Then Āj and B̄j satisfy Āj · Q̄j = 0 and B̄j · P̄ j = 0. Furthermore we have
chosen Q̄j in such a way that B̄j · Q̄j = I. Now it remains to show that
Āj · P̄ j = I which can be simplified to equation (3.4). Finally we choose
Qj = Q̄j and Bj = B̄j . In addition let Aj = Āj · PBM(2jk, 2jk,−2, 1, [1]).

Remark 1. If d is odd, the constructed biorthogonal wavelets are symmetric,
but if d is even, they are non-symmetric.
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Fig. 3.2. 1-periodic uniform B-splines of degree 2: (a) the scaling functions φj
i and (b) the lazy

wavelets ψj
i for j = 1 with control points and control polygon (grey).

Example 2. Let d = 2. Then we get

P j =
1

4
PBM(3 · 2j, 3 · 2j−1, 0, 2, [1, 3, 3, 1]),

Qj =
1

4
PBM(3 · 2j, 3 · 2j−1, 0, 2, [2, 6]),

Aj =
1

4
PBM(3 · 2j, 3 · 2j−1, 2, 2, [6,−2])T ,

Bj =
1

4
PBM(3 · 2j , 3 · 2j−1, 0, 2, [−1, 3,−3, 1])T .

The wavelets and scaling functions are shown in Figure 3.2.

Example 3. For d = 3 we have the following biorthogonal wavelet construction
given by matrices P j , Qj, Aj and Bj :

P j =
1

8
PBM(2j+2, 2j+1, 0, 2, [1, 4, 6, 4, 1]),

Qj =
1

8
PBM(2j+2, 2j+1, 0, 2, [4, 16, 4]),

Aj =
1

8
PBM(2j+2, 2j+1, 1, 2, [−4, 16,−4])T ,

Bj =
1

8
PBM(2j+2, 2j+1,−1, 2, [1,−4, 16,−4, 1])T .

The wavelets and scaling functions are shown in Figure 3.3.
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Fig. 3.3. 1-periodic uniform B-splines of degree 3: (a) the scaling functions φj
i and (b) the lazy

wavelets ψj
i for j = 1 with control points and control polygon (grey).

3.4. Stability of lazy wavelets. For the uniform stability of the lazy wavelets
we get the following proposition.

Proposition 1. Let d ∈ N0 and {Φj}j∈N0 be the 1-periodic uniform B-splines of
degree d. Let {Ψj}j∈N0 be the corresponding lazy wavelets from subsection 3.3. Then
{Φj ∪ Ψj}j∈N0 is uniformly stable.

Proof. The B-splines are uniformly stable. Therefore we have positive constants
M1,M2 such that

M1||c
j ||l2 ≤ ||Φjcj ||L2 ≤M2||c

j ||l2(3.5)

for all sequences cj ∈ R
v(j) and j ∈ N0.

We denote the entries of the matrices P j and Qj by p
j
k,l and q

j
k,l. Let mj

1 :=

min(min
k,l:pj

k,l
6=0 |p

j
k,l|,min

k,l:qj

k,l
6=0 |q

j
k,l|), m

j
2 := max(maxk,l |p

j
k,l|,maxk,l |q

j
k,l|) and

nj := max(bandwidth of P j,bandwidth of Qj). Due to the structure of P j and Qj we
get values mj

1,m
j
2, n

j ∈ R
+ which are independent of the level j. Therefore we use for

further computation the constants m1 = m
j
1,m2 = m

j
2 and n = nj . Now we choose

j ∈ N0 and a sequence (cj ,dj) ∈ R
v(j)+w(j) arbitrary but fixed. Then we have

||Φjcj + Ψjdj ||L2 = ||Φj+1P j+1cj + Φj+1Qj+1dj ||L2

≤ ||Φj+1(P j+1cj +Qj+1dj)||L2

≤M2||P
j+1cj +Qj+1dj ||l2

≤M2m2n||(c
j ,dj)||l2 .

On the other hand,

||Φjcj + Ψjdj ||L2 ≥M1||P
j+1cj +Qj+1dj ||l2 ≥M1m1||(c

j ,dj)||l2 .(3.6)

Therefore we get positive constants S1, S2 with S1 = M1m1 and S2 = M2m2n

such that

S1||(c
j ,dj)||l2 ≤ ||Φjcj + Ψjdj ||L2 ≤ S2||(c

j ,dj)||l2(3.7)

for all sequences (cj ,dj) ∈ R
v(j)+w(j) and for j ∈ N0.

Numerical experiments indicate that Riesz stability for the lazy wavelets is not
to be expected (see the results in Table 3.1 and Remark 2.4 in [2]).
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Table 3.1

Numerical results for ||T j || and ||(T j)−1|| for d = 2, d = 3. (T j is the transformation matrix
that takes d(j) = (c0,d0, . . . ,dj−1) into cj .)

d = 2 d = 3
Level j ||T j|| ||(T j)−1|| ||T j|| ||(T j)−1||

1 2.06532 2.06532 2.61803 2.61803
2 3.19532 3.2996 4.20653 5.28273
3 4.71395 5.29472 6.29703 11.204
4 6.80634 8.409 9.14782 23.2115
5 9.72547 13.3217 13.0304 48.5025

4. Constructing weighted wavelets for periodic B-splines. First we recall
the lifting scheme, which is a general framework for the construction of wavelets
(cf. [10] and [12]). We introduce weighted wavelets which are wavelets constructed
with the help of lifting and a weighted inner product. Furthermore we consider the
construction of weighted wavelets for 1-periodic B-splines.

4.1. Lifting Scheme. In this subsection we use the standard inner product

namely 〈f |g〉 :=
∫ 1

0
f(x) · g(x)dx. Lifting is a method for constructing biorthogonal

wavelets from already existing biorthogonal wavelets defined by matrices P j , Qj, Aj

and Bj . According to Theorem 8 in [14] we get the synthesis and analysis matrices
of the “lifted” wavelets in the following way.

[P j
lift|Q

j
lift] = [P j |Qj − P jSj] and

[
A

j
lift

B
j
lift

] = [
Aj + SjBj

Bj
],

where Sj is v(j − 1) × v(j − 1) matrix.
Depending on the choice of Sj we can construct biorthogonal wavelets with dif-

ferent desirable properties like increased orthogonality, higher vanishing moments etc.
The following example demonstrates a possible application. We assume that we

have a biorthogonal wavelet construction defined by matrices Aj , Bj , P j and Qj. By
choosing the coefficients sj

m,n of the matrix Sj we try to make the decomposition

V j = V j−1 ⊕W j−1 “more orthogonal”. In the ideal case we would have

〈φj−1
i , ψ

j−1
k,lift〉 = 0 for all i, k(4.1)

where Ψj−1
lift = ΦjQ

j
lift. But in the standard case the system of linear equations (4.1) is

over-determined. Instead we find an approximate solution by minimizing the double-
sum of the squared errors 〈φj−1

i , ψ
j−1
k,lift〉

2,

arg min
Sj

v(j−1)−1
∑

i=0

w(j−1)−1
∑

k=0

〈φj−1
i , ψ

j−1
k,lift〉

2.(4.2)

Remark 2.

1. Lifting preserves the class of PBM.
2. If Sj is a band matrix then the values of the coefficients along the diagonals

are equal. Therefore we can solve the following minimization problem

argmin
Sj

w(j−1)−1
∑

k=0

〈φj−1
i , ψ

j−1
k,lift〉

2(4.3)
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Fig. 4.1. Lifted wavelets ψj−1
i for 1-periodic uniform B-splines of (a) degree 2; (b) degree 3,

both for j = 3 with a band matrix Sj with a bandwidth of 2 (black) and 4 (grey).

for a fixed but arbitrarily chosen i ∈ {0, . . . , v(j − 1) − 1} instead of solving
(4.2). Without loss of generality we can choose i = 0.

4.2. Weighted wavelets. For certain applications of wavelets it is desirable
that the (L2-)error of a function f j with the lower resolution version f j−1 is as small
as possible in a certain interval or region. On the other hand the size of the error
for the other parts may be less important. A possible example in 2D or 3D is that
the zero-contour for implicitly defined curves or surfaces is only a small subset of the
domain. In this case we want to have wavelets which act “locally” in the region of
the zero-contour. We will see that we may construct such wavelets with the help of
lifting and by using a weighted inner product. Here we explain the general concept
and algorithm of this method for univariate functions. In the case of multivariate
functions, the method can be generalized by using a tensor-product construction for
the basis functions (cf. [7]).

Let Dj ⊂ [0, 1] be the region of interest and let wj : [0, 1] → R such that

wj(x) :=

{

1 for x ∈ [0, 1] \Dj

u for x ∈ Dj

where u ∈ R and u > 1. For a function w : [0, 1] → R let 〈·|·〉w be the weighted inner

product 〈f |g〉w :=
∫ 1

0 w(x) · f(x) · g(x)dx. We generate the matrix Sj by solving the
following minimization problem

arg min
Sj

v(j−1)−1
∑

i=0

w(j−1)−1
∑

k=0

〈φj−1
i , ψ

j−1
k,lift〉

2
wj .(4.4)

With this construction we try to get wavelets such that the L2-error || f j − f j−1 ||L2

in a certain region is less than by using the “standard” lifted wavelets which are
constructed by using the standard inner product by the lifting process. We call these
wavelets, which are constructed by using a weighted inner product, weighted wavelets.

Remark 3. Since the values of one column of Sj have an effect on exactly one
wavelet ψj−1

k,lift we can also compute the matrix Sj by solving the following minimization
problem

argmin
s

j

k+1

v(j−1)−1
∑

i=0

〈φj−1
i , ψ

j−1
k,lift〉

2
wj(4.5)
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Fig. 4.2. Weighted wavelets ψj−1
i for 1-periodic uniform B-splines of degree 2 for j = 3 with

Dj = [ 3·2
j−1

3·2j , 3·2j−1+1
3·2j ], u = 1 (black), u = 10 (grey), u = 100 (dashed) and a band matrix Sj

with a bandwidth of 2. For u = 10 and u = 100, only ψ2
4(x), ψ2

5(x), ψ2
6(x) and ψ2

7(x) differ from the
“standard” lifted wavelet (u=1). The two dots mark the boundaries of Dj .

for each k ∈ {0, . . . , w(j−1)−1} where sj
k is the k-th column of Sj instead of solving

the larger and more time-consuming problem (4.4). Depending on the choice of the
biorthogonal wavelet construction and the region Dj we get a constant number of
different minimization problems (4.5). Furthermore if the region Dj does not have an
effect on a wavelet then we obtain for this wavelet the “standard” lifted wavelet.

4.3. Weighted spline wavelets. In this subsection we explain our construc-
tion of weighted wavelets for 1-periodic uniform B-splines of degree d and give some
properties of these wavelets.

As we have already explained in the last subsection we construct weighted wavelets
with the help of lifting and a weighted inner product. In the case of 1-periodic uniform
B-splines we use the lazy spline wavelets of degree d from subsection 3.3 as starting
biorthogonal spline wavelet construction. We choose for the region of interest Dj

the union of intervals with the knots tji as endpoints. The best choice for the length



WEIGHTED BIORTHOGONAL SPLINE WAVELETS 11

of the intervals may differ from application to application. In our case (Example 4
and 5) we have chosen the region of interest as union of intervals with a length of

2
(d+1)2j . Furthermore we choose for the weight u a value between 5 and 10. Numerical

experiments have shown that this is a reasonable choice for the weight u. If u is too
high, then analysis may produce additional roots. On the other hand if the weight
u is too low, then the effect of the weighted spline wavelets is small. Moreover we
choose for Sj a band matrix with a bandwidth k ∈ N.

Because of these choices only a small number of different weighted spline wavelets
has to be considered. All other weighted wavelets can be constructed from them with
the help of translation and scaling. A concrete example for weighted spline wavelets
is given in subsection 5.1 (Figure 4.2).

The wavelet transform for weighted wavelets differs from the standard wavelet
transform in one point. In the analysis process, by splitting cj into cj−1 and dj−1 we
have also to store the information about the region of interest in level j. Otherwise a
reconstruction of cj from cj−1 and dj−1 is not possible anymore. The implementation
of these wavelets can be done in the usual way for wavelets but with a pointer to the
region of interest.

Furthermore the computional time for analysis and synthesis is comparable with
the “standard” spline wavelet case. If we have precomputed the analysis and synthe-
sis matrices for the “‘standard” lifted spline wavelets, then we get the analysis and
synthesis matrices for the different weighted spline wavelets by replacing only some
of the columns or rows of the precomputed matrices by corresponding precomputed
columns or rows.

4.4. Stability of weighted spline wavelets. The following proposition shows
that the weighted spline wavelets are uniformly stable.

Proposition 2. Let d ∈ N0, k ∈ N and {Φj}j∈N0 be the 1-periodic uniform B-
splines of degree d. Let {Ψj}j∈N0 be a corresponding weighted spline wavelet construc-
tion with band matrices Sj with a bandwidth of k. Then {Φj ∪ Ψj}j∈N0 is uniformly
stable.

Proof. We denote the entries of the corresponding synthesis matrices P j and
Qj by p

j
k,l and q

j
k,l. Let m1 = minj(min

k,l:pj

k,l
6=0 |p

j
k,l|,min

k,l:qj

k,l
6=0 |q

j
k,l|)), m2 =

maxj(maxk,l |p
j
k,l|,maxk,l |q

j
k,l|)) and n = maxj(bandwidth of P j , bandwidth of Qj).

Then we can show like in the proof of Proposition 1 that {Φj ∪ Ψj}j∈N0 is uniformly
stable for S1 = M1m1 and S2 = M2m2n, where M1,M2 are the constants for the
uniform stability of {Φj}j∈N0 .

But again we cannot expect Riesz stability (see results in Table 4.1 and Remark
2.4 in [2]).

5. Examples. In this section we give concrete examples for weighted wavelets for
1-periodic uniform B-splines. Furthermore we compare the weighted spline wavelets
with the “standard” lifted ones.

5.1. An example. We consider the biorthogonal wavelet construction for 1-
periodic uniform B-splines of degree 2 of Example 2 (lazy wavelets of degree 2). Let

Dj be the interval [3·2
j−1

3·2j , 3·2j−1+1
3·2j ]. We choose Sj as a 3 · 2j−1 × 3 · 2j−1-matrix of
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Table 4.1

Numerical results for ||T j|| and ||(T j)−1|| for weighted spline wavelets of degree d = 2, d =
3, band matrices Sj with a bandwith of 2, a weight u = 100 and weighted intervals Dj =

[ (d+1)·2j−1

(d+1)·2j ,
(d+1)·2j−1+1

(d+1)·2j ] (T j is the transformation matrix that takes d(j) = (c0,d0, . . . ,dj−1)

into cj .)

d = 2 d = 3
Level j ||T j|| ||(T j)−1|| ||T j|| ||(T j)−1||

1 2.22859 2.25028 2.63551 2.69717
2 2.94337 3.16852 3.23709 6.09644
3 4.09352 3.79109 4.44308 12.7002
4 5.76998 4.83886 6.24833 25.0518
5 8.15485 6.14869 8.8217 47.6374

the following form:

Sj =





















s2 s3 0
0 s4 0

0 0
. . . 0

...
...

...
0 0 s3·2j−1

s1 0 s3·2j





















As first we consider the “standard” lifted wavelets. By solving the minimization
problem (4.2) we get the following results for Sj.

S1 = PBM(3, 3,−1, 1, [0.288, 0.788]), Sj = PBM(3 · 2j−1, 3 · 2j−1,−1, 1, [0.769, 0.379])

for j ≥ 2. The obtained wavelets for j = 3 can be seen in Figure 4.1 (a).
Now we consider the construction of weighted wavelets. We get the following

results for Sj .
• Case u = 10

S1 =





0.442 0.393 0
0 0.953 −0.08

0.451 0 0.946



 .

For j ≥ 2 we have Sj = PBM(3 · 2j−1, 3 · 2j−1,−1, 1, [0.769, 0.379]), except
for s3·2j−1−3 = 0.672, s3·2j−1−2 = 0.194, s3·2j−1−1 = 0.562, s3·2j−1 = 1.227,
s3·2j−1+1 = 0.123, s3·2j−1+2 = 0.873, s3·2j−1+3 = 0.284, s3·2j−1+4 = 0.823.

• Case u = 100

S1 =





0.294 0.135 0
0 1.663 −0.062

1.375 0 0.512



 .

For j ≥ 2 we have Sj = PBM(3 · 2j−1, 3 · 2j−1,−1, 1, [0.769, 0.379]), except
for s3·2j−1−3 = 0.778, s3·2j−1−2 = 0.02, s3·2j−1−1 = 1.018, s3·2j−1 = 1.159,
s3·2j−1+1 = 0.061, s3·2j−1+2 = 1.11, s3·2j−1+3 = 0.39, s3·2j−1+4 = 0.972.
The obtained weighted wavelets for j = 3 can be seen in Figure 4.2.
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Table 5.1

The average values of γj =
||fj−fj−1

w ||
L2(Dj )

||fj−f
j−1
st ||

L2(Dj )

and δj =
||fj−fj−1

w ||
L2([0,1])

||fj−f
j−1
st ||

L2([0,1]))

of 1000 randomly

generated functions fj for different levels j and for the different values u.

u = 10
Level j ∅ γj

∅ δj

1 0.653719 1.11533
2 0.392542 1.12419
3 0.389948 1.06255
4 0.402308 1.03186
5 0.401858 1.01657

u = 100
Level j ∅ γj

∅ δj

1 0.426994 1.61962
2 0.274159 1.25497
3 0.275978 1.13164
4 0.274846 1.07235
5 0.272631 1.03637

1

2

−2

f2
st

f2
w

f3

0.5 0.54

f2
st

f2
w

f3

(a) (b)

Fig. 5.1. f2
w (black) and f2

st (grey) for f3 (dashed) in (a) in the whole interval [0, 1] and in (b)
in the weighted interval D3 = [ 1

2
, 13
24

].

5.2. Comparison - L2-error. Now we compare the L2-error ||f j − f j−1|| by
using the different wavelet constructions. By f

j−1
st we denote the resulting function

from f j by applying one analysis step of the “standard” lifted wavelet construction
and by f j−1

w we denote the function which we get from f j by applying one analysis
step of the weighted wavelet construction. Table 5.1 compares the ratios of local (γj)
and global L2-errors (δj) of 1000 randomly generated functions f j. We see that the
L2-error || f j − f j−1

w || on Dj by using weighted wavelets with u = 10 and u = 100
is only 40% and 27.5% of the L2-error || f j − f

j−1
st || on Dj , respectively. But on the

other hand the L2-error on [0, 1] has increased only a little by using weighted wavelets
instead of “standard” lifted wavelets.

Figure 5.1 shows the resulting functions f2
w and f2

st for a concrete function f3 with
coefficients c3 = [5.1,−8.6, 9.1,−4, 8.5,−6.4, 5.4, 2, 7.9,−4.4,−0.4, 2.7, 2.3,−6.4,−7.4,
−8.2,−0.2, 8.3, −6.2, 4.7,−3.9, −8.3,−5.4, 4.2] in the whole interval [0, 1] and in the
weighted interval D3 = [12 ,

13
24 ].

5.3. Comparison - Preserving roots. In this subsection we compare how
roots of a spline function are preserved by using the different wavelet constructions.

Example 4. Let f4 be a quadratic spline function with the coefficients c4 =
[2(16-times),−2(13-times), 2(19-times)]. f4 has two roots x4 = 0.3542 and y4 = 0.625.
We compare now how good these roots are preserved by using weighted wavelets
and by using “standard” lifted wavelets. For constructing the “standard” lifted
wavelets and the weighted wavelets we use the biorthogonal wavelet construction
from Example 2 and a band matrix Sj with a bandwidth of 2 for the lifting pro-
cess. For the weighted wavelets we choose additionally for the weight u = 10 and
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Table 5.2

Comparison of the roots of fj
st and fj

w for the original function f4 with two roots x4 = 0.3542

and y4 = 0.625 in Figure 5.2. ( σj
st = |x4 − x

j
st| + |y4 − y

j
st| and σj

w = | x4 − x
j
w | + |y4 − y

j
w| for

j ∈ {1, 2, 3} )

“Standard” lifted wavelets

Level j x
j
st y

j
st σ

j
st

3 0.35 0.6254 0.0044
2 0.3449 0.6144 0.0201
1 0.3359 0.6378 0.0309

Weighted wavelets
Level j xj

w yj
w σj

w

3 0.3517 0.6252 0.0025
2 0.3529 0.617 0.0095
1 0.3499 0.6248 0.0047

0.2 0.4 0.6 0.8 1

-2

-1

1

2

0.2 0.4 0.6 0.8 1

-2

-1

1

2

3

Level 4 Level 3

0.2 0.4 0.6 0.8 1

-4

-2

2

4

0.2 0.4 0.6 0.8 1

-2

2

4

Level 2 Level 1

Fig. 5.2. (Example 4) Comparing the resulting functions by using weighted wavelets (black)
and by using “standard” lifted wavelets (grey) with the original function f4 (dashed).

the weighted intervals as follows: D4 = [1648 ,
18
48 ] ∪ [ 2948 ,

31
48 ], D3 = [ 8

24 ,
10
24 ] ∪ [ 1424 ,

16
24 ] and

D2 = [ 3
12 ,

5
12 ] ∪ [ 7

12 ,
9
12 ]. The resulting roots xj

st, y
j
st for f j

st and the resulting roots
xj

w, y
j
w for f j

w for j ∈ {1, 2, 3} can be seen in Table 5.2. Furthermore we compute in
Table 5.2 σj

st = |x4 −x
j
st|+ |y4− y

j
st| and σj

w = |x4 −xj
w|+ |y4− yj

w|for j ∈ {1, 2, 3} to
compare the both methods. The resulting functions f j

st, f
j
w and the original function

f4 can be seen in Figure 5.2.

We see that in this example the weighted wavelets preserve the roots of the original
function f4 better than the “standard” lifted wavelets. Furthermore we can see that
the distance σj

w is only 50% or less of the distance σj
st.

Example 5. Let f4 be a quadratic spline function given in Figure 5.3. f4 has
two roots x4 = 0.25 and y4 = 0.5509. We want to do the same comparison like
in Example 4. For this we use the same notations and the same “standard” lifted
wavelets. For constructing the weighted wavelets we choose again for the weight
u = 10 but in difference to Example 4 the weighted intervals in the following way:
D4 = [1148 ,

13
48 ] ∪ [ 2548 ,

27
48 ], D3 = [ 5

24 ,
7
24 ] ∪ [ 1224 ,

14
24 ] and D2 = [ 2

12 ,
4
12 ] ∪ [ 6

12 ,
8
12 ]. The
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Table 5.3

Comparison of the roots of fj
st and f

j
w for the original function f4 with two roots x4 = 0.25

and y4 = 0.5509 in Figure 5.3. ( σj
st = |x4 − x

j
st|+ |y4 − y

j
st| and σj

w = | x4 − x
j
w |+ |y4 − y

j
w| for

j ∈ {1, 2, 3} )

“Standard” lifted wavelets

Level j x
j
st y

j
st σ

j
st

3 0.2485 0.552 0.0026
2 0.2475 0.5694 0.021
1 0.2155 0.5109 0.0745

Weighted wavelets
Level j xj

w yj
w σj

w

3 0.2495 0.5515 0.0011
2 0.2497 0.5652 0.0146
1 0.2418 0.541 0.0181

0.2 0.4 0.6 0.8 1

-4

-2

2

4

6

8

0.2 0.4 0.6 0.8 1

-6
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8

Level 4 Level 3
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Fig. 5.3. (Example 5) Comparison weighted wavelets (black) and “standard” lifted wavelets
(grey) with the original function f4 (dashed).

results can be found in Table 5.3 and in Figure 5.3.

We see again that the weighted wavelets preserve the roots of f4 better than the
“standard” lifted wavelets.

For further examples (e.g. the preservation of implicitly defined algebraic spline
curves) we refer to [7].
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