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Abstract

In this paper, we present a new method to determine the complete

set of statically balanced planar four-bar mechanisms. We formulate the

kinematic constraints and the static balancing constraints as algebraic

equations over real and complex variables. This leads to the problem of

factorization of Laurent polynomials which can be solved using Newton

polytopes and Minkowski sums. The result of this process is a set of neces-

sary and sufficient conditions for statically balanced four-bar mechanisms.

1 Introduction

A statically balanced mechanism is defined as a mechanism in which the weight
of the links does not produce any torque (or force) at the actuators under
static conditions, for any configuration of the mechanism. This condition is
also referred to as gravity compensation. Many statically balanced mechanisms
based on the use of counterweights, springs and sometimes cams and/or pulleys
have been proposed in the literature (see for instance[4] for a state of the art).

When only counterweights are used, the condition for static balancing is that
the centre of mass of all moving links remains stationary for any motion of the
mechanism. In this case, the forces applied by the mechanism on its base —
also referred to as the shaking forces — will always be zero for any motion of
the mechanism and the latter is said to be force-balanced. Force balancing is
an important property in machine design.

In 1969, Berkof and Lowen[1] showed that it is possible to statically balance
planar four-bar mechanisms without using friction or springs. They derived a set
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of conditions written in terms of the static parameters which, when satisfied,
ensure that the mechanism is statically balanced, i.e., the centre of mass of
the mechanism is fixed for any configuration. Later, Gosselin[3] showed that
these so-called Berkof and Lowen constraints are sufficient but not necessary
conditions. In the latter reference, an example of statically balanced four-bar
linkage that does not satisfy the Berkof and Lowen conditions is given but no
conclusion can be drawn on the existence of other such mechanisms.

In this paper, a new systematic approach is presented to determine the com-
plete set of statically balanced (force-balanced) four-bar mechanisms. In section
2, we introduce Laurent polynomials, Newton polytopes and the Minkowski sum
and we show how they can be used to find all possible factorizations of poly-
nomials. In section 3, we formulate the kinematic constraints and the static
balancing constraints as algebraic equations over real and complex variables.
This leads to the problem of factorization of Laurent polynomials which can be
solved using Newton polytopes and Minkowski sums. Finally, the set of neces-
sary and sufficient conditions for statically balanced four-bar mechanisms are
given.

2 Convex polytopes

Let α = (α1, α2, ..., αn) ∈ Zn. We will write a monomial in the following form:

xα := xα1

1 xα2

2 ...xαn

n (1)

Definition 1 A Laurent polynomial g over a field K is a polynomial ex-
pressed in terms of the variables x1, ..., xn, where the exponents of these vari-
ables are in Z, that is the exponents can be negative integers. They form the
ring of Laurent polynomials K[x±1

1 , x±1
2 , ..., x±1

n ].

Definition 2 The support of a Laurent polynomial g, Supp(g), is the set of
all the monomial exponents α ∈ Zn of g with non-zero coefficients.

Example 1 Let

g = a1 + a2z1 + a3z2 + a4z
−1
1 z2 + a5z

−1
1 + a6z

−1
2 + a7z1z

−1
2

a Laurent polynomial. The support of f is

{(0, 0), (1, 0), (0, 1), (−1, 1), (−1, 0), (0,−1), (1,−1)} (2)

Definition 3 A set S ⊂ Kn is convex if for any two points x, y ∈ A, the
segment joining x and y is contained in A, thus if

(1 − λ)x + λy ∈ A for all x, y ∈ A, 0 ≤ λ ≤ 1 (3)

Definition 4 Let g be a Laurent polynomial in n variables. The Newton poly-

tope Π(g) ⊂ R
n is defined as the convex hull of Supp(g). In other words, it

is the smallest convex polytope that includes all points of the support of g. If
n = 2, a Newton polytope is also called a Newton polygon.

Example 2 The Newton polygon of g (Example 1) is given in Figure 1.
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Figure 1: Newton polygon of g
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Figure 2: Minkowski sum.

We define the Minkowski sum in terms of convex sets, since every Newton
polygon is in fact a convex set.

Definition 5 The Minkowski sum of two convex sets A and B ⊂ Rn is
defined as:

A+B = {a+ b | a ∈ A ∧ b ∈ B} (4)

Note that A+B is also a convex set.

Example 3 Let

f1 = a1z
−1
1 + a2z

−1
2 + a3

f2 = b1z1 + b2z2 + b3

Let A = Π(f1) and B = Π(f2) be the Newton polygons of f1 and f2. The
Minkowski sum A+B can be computed geometrically by moving B on the bound-
ary of A and taking the convex hull as shown in Figure 2.

Theorem 1 Let f, g, two Laurent polynomials, then:

Π(fg) = Π(f) + Π(g) (5)

We refer to Ostrowski[5, 6] for a proof.

Let g be a Laurent polynomial. Using Theorem 1 it is possible to derive neces-
sary conditions for the decomposition of g as the product of several components
by looking only at the Newton polytope of f . Here is an example that will be
useful in Section 4.

Example 4 Let g be the polynomial defined in Example 1. To find all possible
factorizations of g, it suffices to look at the decompositions of its Newton poly-
gon into a Minkoski sum of Newton polygons. The possible decompositions are

3



= + = +

(I) (II)

= + = +

(III) (IV)

= + +

(V)

Table 1: Possible factorizations based on Newton polytopes and Minkowski
sums.

given in Table 1. These components, defined by Newton polygons, can be trans-
lated back to Laurent polynomials since every integral point (point with integer
coordinates) in the Newton polygon corresponds to a monomial. Therefore, we
have the following decompositions of g:

I : (u1 + u2z1 + u3z2)(v1 + v2z
−1
1 + v3z

−1
2 )

II : (u1 + u2z1 + u3z1z
−1
2 + u4z

−1
2 )(v1 + v2z

−1
1 z2)

III : (u1 + u2z2 + u3z1 + u4z1z
−1
2 )(v1 + v2z

−1
1 )

IV : (u1 + u2z
−1
1 z2 + u3z2 + u4z1)(v1 + v2z

−1
2 )

V : (u1 + u2z
−1
2 )(v1 + v2z1)(w1 + w2z

−1
1 z2)

with ui, vi and wi being unknown coefficients depending on the ai (1 ≤ i ≤
7) For more details on convexity, Newton polygons and Minkowski sums, the
reader is referred to Schneider[7].

3 Planar four-bar mechanisms

3.1 Static balancing (force balancing) problem

Formulation

A planar four-bar mechanism is shown in Figure 3. It consists of four links:
the base which is fixed and three links of length l1, l2 and l3. The links are
connected by revolute joints. The orientation of the links with respect to the
fixed base is given respectively by the time variables θ1(t), θ2(t) and θ3(t). Since
the mechanism has only one degree of freedom, there is a relationship between
these angles which will be described below. The mass properties of the base
have no influence on the equations since the base is fixed. For each of the three
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Figure 3: Four-bar mechanism.

Type parameters

Kinematic Position l1, l2, l3, d

Static Mass m1,m2,m3

Centre of mass r1, ψ1, r2, ψ2, r3, ψ3

Table 2: Parameters defining the four-bar mechanisms.

moving links, we can represent the mass properties of each link by a point mass
mi located at the centre of mass of the link, whose position is defined by ri and
ψi. Therefore, the architecture of a planar four-bar mechanism is defined by the
13 parameters given in Table 2.

It is pointed out that the second moments of inertia are omitted here since
we are only interested in the statics and not the dynamics of the mechanism.
The lengths (li), the mass (mi) and the coordinate of the centre of mass (ri) are
non-negative real numbers. The constant angles (ψi) used to locate the centres
of mass are in [0, 2π[.

Before stating the problem, let us compute the expression of the position
vector of the global centre of mass in terms of the time variables and parameters:

c =
1

M

[

m1r1e
iθ1eiψ1 +m2

(

l1e
iθ1 + r2e

iθ2eiψ2

)

+m3

(

d+ r3e
iθ3eiψ3

)]

(6)

In the above expression, c ∈ C since we use a complex representation to
express the x and y components of the position of the centre of mass. The real
part corresponds to the x component and the imaginary part corresponds to
the y component. The expression of the position of the centre of mass given
by equation (6) is written in terms of the joint angles θ1(t), θ2(t), θ3(t). Since
the planar four-bar mechanism has only one degree of freedom, there exists
geometric constraints between the joint angles. The problem consists in finding
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all possible values of the parameters such that the centre of mass expressed in
equation (6) remains constant for any trajectory of the four-bar mechanism.

Eliminating θ2

Assume l2 is strictly positive. The case when l2 = 0 is a degenerated case and
will be considered in Section 4.1. Using the following closure constraint:

l1e
iθ1 + l2e

iθ2 = d+ l3e
iθ3 (7)

θ2 can easily be written in terms of θ1 and θ3:

eiθ2 = G1e
iθ1 +G2e

iθ3 +G3 (8)

where

G1 =
−l1
l2
, G2 =

l3

l2
, G3 =

d

l2
. (9)

Moreover, since θ2 is an angle, the value eiθ2 should lie on the unit circle. Using
the expression eiθ2 given in equation (8), this constraint can be formulated as:

g(θ1, θ3) = 0 (10)

where g(θ1, θ3) is defined as:

g(θ1, θ3) := | eiθ2 | −1 (11)

=
(

G1e
iθ1 +G2e

iθ3 +G3

) (

G1e
−iθ1 +G2e

−iθ3 +G3

)

− 1. (12)

Since G1, G2 and G3 are real, we have G1 = G1, G2 = G2, G3 = G3. Therefore
g(θ1, θ3) can be rewritten as:

g(θ1, θ3) =
(

G1e
iθ1 +G2e

iθ3 +G3

) (

G1e
−iθ1 +G2e

−iθ3 +G3

)

− 1. (13)

Substituting eiθ2 given by equation (8) in the expression for the centre of mass
given by equation (6) yields:

c =
1

M

[

F1e
iθ1 + F2e

iθ3 + F3

]

(14)

where F1, F2, F3 ∈ C and defined as:

F1 = m1r1e
iψ1 +m2l1 +G1m2r2e

iψ2 (15)

F2 = m3r3e
iψ3 +G2m2r2e

iψ2 (16)

F3 = m3d+G3m2r2e
iψ2 . (17)

Since we want the centre of mass to be fixed, we want this expression to be
constant. F3 is already constant for a given mechanism since it does not depend
on the time variables. Let A = cM − F3 be a constant, the condition for the
centre of mass to be fixed can be rewritten as:

f(θ1, θ3) := F1e
iθ1 + F2e

iθ3 = A. (18)
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Complex variable formulation

Now we introduce two new complex variables z1 = eiθ1 and z2 = eiθ3 such that
|z1| = 1 and |z2| = 1. Recall that for any z ∈ C on the unit circle(| z |= 1), we
have z−1 = z. Introducing these new variables z1, z2 in the expression defining
the geometric constraint (equation (13)) gives:

g(z1, z2) = (G1z1 +G2z2 +G3)
(

G1z
−1
1 +G2z

−1
2 +G3

)

− 1 (19)

= G1G2z1z
−1
2 +G2G1z

−1
1 z2 +G1G3z1 +G3G1z

−1
1 (20)

+G2G3z2 +G3G2z
−1
2 + (G1G1 +G2G2 +G3G3 − 1) (21)

where g(z1, z2) is a Laurent polynomial. From equation (14), we obtain:

f1(z1, z2) = F1z1 + F2z2 −A = 0 (22)

f2(z1, z2) = F1z
−1
1 + F2z

−1
2 −A = 0 (23)

since

F1z1 + F2z2 −A = 0 ⇒ F1z1 + F2z2 −A = F1z
−1
1 + F2z

−1
2 −A = 0 (24)

Theorem 2 Let g be an irreducible Laurent polynomial. Let f be a Laurent
polynomial(not necessarily irreducible). Let G ⊆ C∗2 such that g has infinitely
many zeros in G. The following are equivalent:

1. ∀(z1, z2) ∈ G, g(z1, z2) = 0 ⇒ f(z1, z2) = 0

2. ∃ Laurent polynomial k(z1, z2) such that f = g · k

Proof 1 2) =⇒ 1): is straightforward since if there exists k such that f = g · k
and g(z1, z2) = 0, then f(z1, z2) = 0.

1) =⇒ 2): Assume indirectly that f is not a multiple of g in the ring of
Laurent polynomials. Using Bernshtein theorem[2], it follows that the number
of common zeros in C∗2 is at most equal to the normed mixed volume of Π(f)
and Π(g). In particular, there are at most finitely many common zeroes. But
since g has infinitely many zeros in G, this is a contradiction.

Assume that we have a non-constant trajectory given in terms of θ1(t) and
θ3(t) such that the centre of mass is fixed. In other words, we have a set K =
{

(z1, z2) ∈ C2 | g(z1, z2) = 0
}

which represents all the points on the trajectory
and therefore contains infinitely many elements. For this set K, we want the
mechanism to be statically balanced. Therefore, we want:

∀(z1,z2)∈Kg(z1, z2) = 0 ⇒ (f1(z1, z2) = 0 ∧ f2(z1, z2) = 0) (25)

which can be rewritten as:

∀(z1,z2)∈Kg(z1, z2) = 0 ⇒ f1(z1, z2) = 0 (26)

∀(z1,z2)∈Kg(z1, z2) = 0 ⇒ f2(z1, z2) = 0 (27)
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Figure 4: Degenerated case.

4 Classification of four-bar mechanisms

In this section, we derive necessary and sufficient conditions for the static balanc-
ing of planar four-bar mechanisms using the new formulation presented above.
In order to use Theorem 2, g has to be irreducible, which is not necessarily the
case. Therefore, we use case distinctions based on the irreducibility of g. More-
over, we want to consider the degenerated case for which at least one kinematic
parameter is 0. Therefore, we can split the problem in three distinct cases:

1. Degenerated case: At least one kinematic parameter is 0.

2. Irreducible case: The kinematic parameters are all strictly positive and
g is irreducible.

3. Reducible case: The kinematic parameters are all strictly positive and
g is reducible.

4.1 Degenerated case

If one of the li (i=1,2,3) is zero and d 6= 0, clearly the mechanism cannot
move since it has no degree of freedom. Therefore, the only case to consider
is the case when d = 0. If all other lengths are non-zero (i.e. l1 6= 0, l2 6= 0,
l3 6= 0), we obtain a triangle rotating around the origin (see Figure 4). Clearly,
this mechanism is statically balanced if and only if the centre of mass of the
mechanism is at the origin. The same conditions are obtained if d = 0 and one
of the li is also equal to 0. In this case, the mechanism is a pendulum.

4.2 Irreducible case

Assume g is irreducible and the kinematic parameters are all strictly positive.
The Newton polygon corresponding to g, f1 and f2 are shown in Figure 4.2.

Since the kinematic parameters cannot be zero, G1, G2 and G3 are also
different from zero. Therefore, the coefficients of all monomials of g are also
non-zero and the Newton polygon of g cannot be smaller. However, we do not
have such constraints on f1 and f2 since the coefficients F1, F2, F3 could be equal
to 0 (i.e. the Newton polygon Π(fi) for i = 1, 2 could be smaller).

Using Theorem 2, the four-bar mechanism is statically balanced if and only
if there exist Laurent polynomials k1, k2 such that the following two conditions
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Figure 5: Newton polygons.

are fulfilled:

f1 = gk1

f2 = gk2.

Therefore, we can use Theorem 1 to study the Newton polygon representa-
tion of this product as a Minkowski sum:

+= ?

Π(f1) = Π(g) + Π(k1)

+= ?

Π(f2) = Π(g) + Π(k2)

Clearly, such non-zero polynomials k1 and k2 do not exist. Therefore, the
only possibility is to have k1 and k2 be the zero polynomial. Therefore, f1 =
f2 = 0 and:

F1 = m1r1e
iψ1 +m2l1 +G1m2r2e

iψ2 = 0 (28)

F2 = m3r3e
iψ3 +G2m2r2e

iψ2 = 0. (29)

These conditions correspond to the conditions derived by Berkof and Lowen[1].
When g is irreducible, these conditions are sufficient and necessary.

4.3 Reducible case

Assume that g is reducible and that all kinematic parameters are strictly pos-
itive. All possible factorizations of g into irreducible components were derived
in Example 4 and are shown in Table 1.
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4.3.1 Reducible: Case I

Consider the first reducible case and let

g = h1h2 (30)

where

h1 = u1 + u2z1 + u3z2

h2 = v1 + v2z
−1
1 + v3z

−1
2

with h1 and h2 irreducible polynomials and u1, u2, u3, v1, v2, v3 ∈ R unknowns.
We want to determine the values of these unknowns in terms of G1, G2 and
G3. Comparing coefficient in equation (30), we obtain the following system of
equations:

[

z1z
−1
2

]

: G1G2 = u2v3
[

z−1
1 z2

]

: G1G2 = u3v2

[z1] : G1G3 = u2v1
[

z−1
1

]

: G1G3 = u1v2

[z2] : G2G3 = u3v1
[

z−1
2

]

: G2G3 = u1v3

[1] : G1G1 +G2G2 +G3G3 − 1 = u1v1 + u2v2 + u3v3.

This system has no solution. Therefore, this reducible case is not physically
possible.

4.3.2 Reducible: Case II

Let
g = h1h2 (31)

with

h1 = u1 + u2z1 + u3z1z
−1
2 + u4z

−1
2

h2 = v1 + v2z
−1
1 z2

By coefficient comparison, we obtain:
[

z1z
−1
2

]

: G1G2 = u3v1
[

z−1
1 z2

]

: G2G1 = u1v2

[z1] : G1G3 = u2v1
[

z−1
1

]

: G3G1 = u4v2

[z2] : G2G3 = u2v2
[

z−1
2

]

: G3G2 = u4v1

[1] : G1G1 +G2G2 +G3G3 − 1 = u1v1 + u3v2

Solving this system of equations gives the following two constraints:

G2
1 = G2

2 (32)

G2
3 = 1 (33)
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By replacing the value of the Gi given by equation (9), these conditions can be
translated into:

(

(

−l1
l2

)2

=

(

l3

l2

)2
)

∧

(

(

d

l2

)2

= 1

)

. (34)

Since all kinematic parameters are strictly positive, we obtain the following
conditions:

l1 = l3 (35)

l2 = d. (36)

When these geometric constraints are fulfilled, the equation g splits into two
factors h1 and h2, each factor corresponding to a kinematic mode. We need to
investigate these two kinematic modes separately since it might be possible to
find static balancing conditions for one mode which are not valid for the other
mode, or vice versa.

h1 = 0 : For a mechanism in this mode to be statically balanced, the following
conditions should be fulfilled (see equation(26, 27)):

∀(z1,z2)∈Kh1(z1, z2) = 0 ⇒ f1(z1, z2) = 0

∀(z1,z2)∈Kh1(z1, z2) = 0 ⇒ f2(z1, z2) = 0.

Since we assumed h1 is irreducible, from Theorem 2, there must exist Laurent
polynomials k1 and k2 such that:

f1 = h1k1 (37)

f2 = h1k2. (38)

Looking at the corresponding Newton polygons:

@
@@a

Π(f1)

=

=

a

Π(h1)

+

+

?

Π(k1)

@
@@

a

Π(f2)

=

=

a

Π(h1)

+

+

?

Π(k2)

the only solution again is k1 and k2 being zero Laurent polynomials, meaning
that f1 = f2 = 0 and we obtain the same conditions(F1 = F2 = 0) as in the
irreducible case.
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h2 = 0 : The second mode is more interesting. First we obtain the trivial
solution f1 = f2 = 0 as in every cases (F1 = F2 = 0). But we obtain also a
second solution. Using the same approach as before, we see this time that it
is possible to find non-zero k1 and k2 (actually constant Laurent polynomials).
We obtain the following decomposition:

@
@@

Π(f1)

=

=

@
@@

a

Π(h2)

+

+

a

Π(k1)

@
@@

Π(f2)

=

=

@
@@

a

Π(h2)

+

+

a

Π(k2)

where the coefficients F1 and F2 are non zero. Actually, the Newton poly-
gons of f1 and f2 above take into account the fact that F3 (the constant term) is
zero. Hence, we know that it is possible to find a statically balanced mechanism
in this mode. The expression for h2 is:

h2 = v1 + v2z
−1
1 z2

= G1G3 +G2G3z
−1
1 z2

=
−l1
l2

d

l2
+
l3

l2

d

l2
z−1
1 z2

=
−l1
l2

+
l1

l2
z−1
1 z2

=
l1

l2
(−1 + z−1

1 z2).

Therefore, h2 = 0 if and only if z1 = z2 or in other words θ1 = θ3 which
corresponds to the kinematic mode shown in Figure 6.

Figure 6: Kinematic mode h2.
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Figure 7: Kinematic mode h2.

Since l1 = l3 and θ1 = θ3, f can be rewritten as:

f(z1, z2) = F1z1 + F2z2

= (F1 + F2)z1

= (m1r1e
iψ1 +m2l1 +

−l1
l2
m2r2e

iψ2 +m3r3e
iψ3 +

l3

l2
m2r2e

iψ2)z1

= (m1r1e
iψ1 +m2l1 +m3r3e

iψ3)z1

f is constant if and only if the coefficient F1 +F2 = m1r1e
iψ1 +m2l1 +m3r3e

iψ3

is 0 which gives a sufficient and necessary statically balancing constraint for this
kinematic mode. This is the solution that was found by Gosselin[3].

4.3.3 Reducible: Case III

Let
g = h1h2 (39)

where

h1 = u1 + u2z2 + u3z1 + u4z1z
−1
2

h2 = v1 + v2z
−1
1 .

Using coefficient comparison, we obtain the following conditions on the kine-
matic parameters:

l1 = d (40)

l2 = l3. (41)

For the kinematic mode corresponding to h1 = 0, the mechanism can be stat-
ically balanced only if F1 = F2 = 0. However, we can find less restrictive
balancing constraints for the h2 = 0 kinematic mode. It can be shown that
v1 = G2G3 and v2 = G2G1, therefore

h2 = G2G3 +G1G2z
−1
1 =

l1

l2

(

1 − z−1
1

)

. (42)

In other words, h2 = 0 if and only if z1 = eiθ1 = 1 which implies that θ1 = 0.
This kinematic mode is shown in Figure 7.
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Figure 8: Kinematic mode h2.

In this mode, we have

F1e
iθ1 + F2e

iθ2 = F1 + F2e
iθ2 = constant⇔ F2 = 0. (43)

Therefore, we obtain the following unique constraint for the static balancing of
the mechanism when θ1 = 0:

F2 = m3r3e
iψ3 +G2m2r2e

iψ2 = m3r3e
iψ3 +m2r2e

iψ2 = 0. (44)

4.3.4 Reducible: Case IV

This case is symmetric to case III. This reducible case corresponds to the fol-
lowing conditions on the kinematic parameters:

l3 = d (45)

l1 = l2. (46)

We obtain θ3 = π for the kinematic mode related to h2 (see Figure 8).

In this mode, we have

F1e
iθ1 + F2e

iθ2 = F1e
iθ1 − F2 = constant⇔ F1 = 0. (47)

Therefore, we obtain the constraint:

F1 = m1r1e
iψ1 +m2l1 +G1m2r2e

iψ2 = m1r1e
iψ1 +m2l1 −m2r2e

iψ2 = 0. (48)

4.3.5 Reducible: Case V

In this case, we obtain:

l1 = l2 = l3 = d (49)

We get 3 possible modes which corresponds to case 2,3 and 4 mentioned
above. For case 2, l1 = l3 and d = l2. These constraints are obviously also valid
in case V. The same holds for case 3 and 4. Therefore, the 3 kinematic modes
of case V are special cases of case II, III and IV.
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4.4 Summary

All necessary and sufficient conditions for the static balancing of four-bar mech-
anisms are summarized in Table 3.

Geometric constraint Kinematic mode Static constraints

θ1 = θ3
l1 = l3 F1 + F2 = 0

l2 = d

θ1 = 0
l1 = d F2 = 0

l2 = l3

θ3 = π

l1 = l2 F1 = 0

l3 = d

All other cases F1 = F2 = 0

Table 3: Sufficient and necessary conditions for statically balanced planar four-
bar mechanisms
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