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Elasto-Plastic Analysis with an Adaptive 
FEM-BEM Coupling Method 

 

Wael Elleithy* 
 

Abstract 

The purpose of this paper is to present an adaptive finite element-boundary 
element coupling method for elasto-plastic analysis. The finite element 
method is utilized in regions where plastic material behavior is expected to 
develop, whereas substantial parts of the bounded/unbounded linear elastic 
body are approximated using the boundary element method. In order to obtain 
a computationally efficient coupling method, considerable attention is devoted 
to the generation and adaption of the finite element and boundary element 
discretizations, according to the state of computation. The proposed method is 
computationally efficient since it employs smaller finite element regions. 
Moreover, the method is practically advantageous. Unlike available coupling 
approaches, the adaptive finite element-boundary element coupling method 
does not demand predefinition and manual localization of the finite element 
and boundary element sub-domains. 
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1. Introduction 

The finite element method (FEM) and the boundary element method (BEM) are 
eminent computational techniques for obtaining approximate solutions to the partial 
differential equations that evolve in scientific and engineering applications. Each 
method has its own range of applications where it is most efficient and neither is 
superlative for all applications. 
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The BEM reduces the dimension and simplifies the modeling considerably because of 
its boundary only approach. It is efficient, accurate and relatively easy to use in 
treatment of bounded/unbounded domains with linear elastic material behavior. The 
approximation of singularities can be handled easily by the BEM. However, the BEM 
is not the preferable approach when inhomogeneities and non-linearities in the analysis 
domains exist. To tackle such problems, the BEM requires special formulations, which 
do not make the method fully general. The FEM is usually the method of choice in 
dealing with problems involving inhomogeneities and non-linearities in bounded 
domains. For these categories of problems, the FEM is a more robust and mature 
technology. Thus, if the problem of interest includes local inhomogeneities and/or non-
linearities only in a portion of the bounded/unbounded domain, the concept of solving it 
in an adjacent sub-domains, employing the most suited solution technique for each of 
them, is, by all means, appropriate. In this way, we are lead to the coupling of FEM and 
BEM (FEM-BEM coupling). Examples include the detailed analysis of stresses in the 
surroundings of pressure holes in an unbounded domain. The FEM can be employed to 
capture the plastic behavior at the vicinity of the opening. The remaining unbounded 
linear elastic region may be best represented by the BEM. The same is true for many 
problems in solid mechanics. 

Among the first authors who started to combine the FEM and BEM are Zienkiewicz, 
Kelly and Bettes [1, 2], signifying a “Marriage a la mode - the best of both worlds”. 
Since then a large number of papers devoted to the topic have appeared, see, e.g. 
references [3-22], not to mention many others. 

The symmetric coupling of BEM and FEM goes back to Costabel [3,4]. With the 
Symmetric Galerkin BEM, FEM-like stiffness matrices can be produced which are 
suitable for FEM-BEM coupling, see, e.g. references [3,4,5,7,12,13,14,20]. Iterative 
substructuring solvers for symmetric coupled boundary and finite element equations 
have been developed by Langer [7], Haase et al. [10], Hsiao et al. [23], and Steinbach 
[24] for elliptic boundary value problems in bounded and unbounded, two and three-
dimensional domains. Parallel implementations showed high performance on several 
platforms [10]. Langer and Steinbach [25] introduced the boundary element tearing and 
interconnecting (BETI) methods as boundary element counterparts of the well-
established finite element tearing and Interconnecting (FETI) methods, see e.g., 
references [26,27] . Langer and Steinbach [15] introduced the coupled finite and 
boundary element tearing and interconnecting methods (FETI/BETI) as a logical 
continuance of the BETI technique. 
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Brink et al. [8] investigated a coupling of mixed finite elements and Galerkin boundary 
elements in linear elasticity, taking into account adaptive mesh refinement based on a 
posteriori error estimators. Carstensen et al. [9] presented an h-adaptive FEM-BEM 
coupling algorithm (mesh refinement of the boundary elements and the finite elements) 
for the solution of viscoplastic and elasto-plastic interface problems. Mund and Stephan 
[11] derived a posteriori error estimate for nonlinear-coupled FEM-BEM equations by 
using hierarchical basis techniques. They presented an algorithm for adaptive error 
control which allows independent refinements of the finite elements and the boundary 
elements. 

In boundary element analysis, Astrinidis et al. [28] presented adaptive discretization 
schemes that are based on a stress smoothing error criterion in the case of two-
dimensional elastic analysis, and on a total strain smoothing error criterion in the case 
of two-dimensional elasto-plasticity. Rebeiro et al. [29] developed a pure BEM 
procedure to automatically generate the internal cells to compute domain integrals in 
the plastic region. The discretization of the internal cells progressively generated only 
in the zones where plasticity occurs. Maischak and Stephan [30] showed convergence 
for the boundary element approximation, obtained by the hp-version, for elastic contact 
problems, and derive a-posteriori error estimates together with error indicators for 
adaptive hp-algorithms. 

Available coupling approaches demand manual localization of the FEM and BEM sub-
domains. The FEM and BEM sub-domains are defined a priori and remain unchanged 
during the computation. Inevitability could do with preliminary expert knowledge 
about the problem at hand. Besides, a predefined FEM sub-domain may result in 
whichever under/overestimation of the nonlinear region where the FEM is employed. In 
the former case, inaccurate solutions is obtained to the problem at hand while for the 
later the computational cost is higher than necessary. 

This paper presents an adaptive FEM-BEM coupling method for solving problems in 
elasto-plasticity. Materials of von-Mises type are considered for this study. The method 
facilitates an automatic generation of the FEM mesh to cover regions where plasticity 
occurs. In order to obtain an initial estimate of the regions sensible for FEM 
discretization, the adaptive coupling method follows a linear hypothetical elastic 
computation. Energetic methods [31-34] are then utilized to account for relaxation and 
redistribution of stresses that occur due to plastic deformation. A final estimate of the 
regions sensible for FEM discretization is then derived. The FEM mesh is 
automatically generated over the estimated regions. Consequently, the BEM mesh is 
generated to best represent the remaining linear elastic region. In order to ensure a 
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compatible coupling between the BEM and FEM, the interface is constructed reflecting 
the current state of computation. A coupled FEM-BEM stress analysis involving elasto-
plastic deformations is then conducted. 

The remainder of this paper is organized as follows. Section 2 shows and briefly 
summarizes the symmetric Galerkin BEM in linear elasticity and FEM in elasto-
plasticity. Next the adopted conventional (direct) FEM-BEM coupling equations are 
described. In the sequence, Section 3 presents the proposed adaptive FEM-BEM 
coupling method for elasto-plastic analysis. In Section 4, we elaborate more on the 
initial and final estimates of the regions sensible for FEM discretization. Finally, two 
numerical examples that highlight the potentialities of the adaptive FEM-BEM 
coupling method are presented in Section 5. 

2. Problem Formulation and Basic Equations 

2.1 Symmetric Galerkin BEM in linear elasticity 

The Galerkin boundary element method for the symmetric formulation of boundary 
integral equations is an efficient and powerful tool to solve boundary value problems in 
linear elasticity see, e.g. references [35-41], not to mention many others. 

Let )32( ,nn =⊂Ω   be a bounded domain with a Lipschitz boundary Ω∂=Γ . We 

consider a mixed boundary value problem in linear elasticity, to determine the 
displacement field )(xu  for Ω⊂x , 
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The stress tensor )(uijσ  is related to the strain tensor )(uklε  by Hooke’s law 

)()( uCu klijklij εσ = . For isotropic elastostatics and assuming a homogeneous material 

behavior with constant parameters (Young modulus E  and Poisson ratio ν ), the 
system of boundary integral equations may be written as follows 
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where V , K , K ′  and D  denote the single layer potential, double layer potential, its 
adjoint and hypersingular integral operators, respectively, defined by: 



 5

.dsyuy,xTTxuD

,dsyty,xUTxtK

,dsyuy,xTxuK

,dsyty,xUxtV

y
*

x

y
*

x

y
*

y
*

∫

∫

∫

∫

Γ

Γ

Γ

Γ

−=

=′

=

=

)()()()(

)()()()(

)()()()(

)()()()(

                (3) 

The definition of all the boundary potential is based on a fundamental solution which is 
given by the Kelvin solution 
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for n,....,j,i 1=  where yxlogy,xZ −−=)(  for 2=n  and 
yx

y,xZ
−

=
1)(  for 3=n . 

The i-th boundary stress vector component is given by the operator 

)()())(( xnx,uxuT jijix σ=  and )()( y,xUTy,xT *
y

* = . 

In order to find the complete Cauchy data [ ]Γt,u , the first integral equation for Dx Γ∈  

and the second one for Nx Γ∈  are rewritten as [35,37,41] 
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The standard Galerkin discretization of (5) and (6) yield the skew symmetric and 
positive definite system of linear equations 
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where the block matrices in (7) result from discretization of the corresponding parts of 
the boundary. 

In typical applications in linear elastostatics, the Dirichlet part DΓ  is often smaller than 

the Neumann part NΓ  where the boundary tractions are prescribed. Therefore, the 

inverse of the discrete single layer potential hV  may be computed using some direct 

method such as a Cholesky decomposition to obtain 
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Inserting (8) into the second of (7) yields the Schur complement system 
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The Schur complement system (9) is symmetric and positive definite and is suitable for 
coupling with FEM. System (9) may be rewritten as 

].[]][[ fuK
BBB =                      (10) 

where the subscript B stand for the BEM sub-domain. 

2.2 FEM in linear elasticity 

Consider the solid, in which the internal stresses σ , the distributed loads/unit volume 
f  and the external applied tractions h  form an equilibrating field, to undergo an 

arbitrary virtual displacement uδ  which results in compatible strains δε  and internal 

displacements dδ . Then the principle of virtual work requires that [42] 
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The normal finite element discretizing procedure leads to the following expressions for 
the displacements and strains within any element 
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where N  and B  are the usual matrix of shape functions and the elastic strain-
displacement matrix, respectively. The element assembly process gives 
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where the volume integration over the solid is the sum of the individual element 
contributions. Since (13) must hold true for any arbitrary uδ  then 
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Substituting for εCσ = , using Equation (14), yields 
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where the stiffness matrix is given by Ω= ∫
Ω

dBCBK
T

. The final system of the 

assembled finite element equations in elasticity may now be written as 

],[]][[ fuK
FFF =                      (16) 

where the subscript F stand for the FEM sub-domain. 

2.3 Coupled FEM-BEM in linear elasticity 

For a numerical representation of an arbitrary domain Ω  with known boundary 
conditions specified at the entire boundary DN Γ∪Γ=Γ  the FEM and BEM are used. 

The domain is decomposed into two sub-domains, namely, ΩF  and ΩB  with the FEM-

BEM coupling interface CΓ . 

The stiffness matrix KB  can be interpreted as the element stiffness matrix of a finite 

macro element, computed by the BEM. Combining Equations (10) and (16) while 
satisfying the continuity conditions along the FEM-BEM interface results in 
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where the subscripts F)(  and B)(  indicate the displacement vectors (force vectors) not 

associated with the FEM and BEM sub-domains interface, respectively. Subscript C)(  

indicates those associated with the interface CΓ . The matrix presented in (17) is 

symmetric and positive definite. 

2.4 FEM in elasto-plasticity 

Some force terms in (14) may be a function of displacement, u, or stress may be a 
nonlinear function of strain, ε , as a result of material non-linearity such as plasticity. In 
all of these cases, a nonlinear solution is required. Equation (14) will not be generally 
satisfied at any stage of computation, and thus the equilibrium equation can be restated 
in the form of a residual (or out-of-balance) force vector, ψ , given by (see references 

[42,43] for further details on computational aspects) 
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If a material nonlinear only analysis is performed, the integrals in the above equation 
are computed with respect to the initial configuration (Lagrangian FEM formulation). 
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For an elasto-plastic situation the material stiffness is continuously varying, and 
instantaneously the incremental stress-strain relationship is given by 

,dεDdσ ep=                       (19) 

where epD  is the elasto-plastic stress-strain matrix. 

Solution procedure involves the incremental form of (18), namely 
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Substituting for σ∆ , using (19), results in 
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where the tangent stiffness matrix is given by Ω= ∫
Ω
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Equation (21) may now be written as 
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For the solution of (22), and for each load increment, the incremental nodal 
displacements and stresses are calculated. The updated stresses are then brought down 
to the yield surface and are used to calculate the equivalent nodal forces. These nodal 
forces can be compared with the externally applied loads to form a system of residual 
forces, which is brought sufficiently close to zero through an iterative process, before 
moving to the next load increment. 

2.5 Coupled FEM-BEM in elasto-plasticity 

In this paper, the symmetric Galerkin boundary element method as summarized in 
Section 2.1 is utilized for the coupling of the FEM and BEM. Elasto-plastic problems 
with limited spread of plastic strains lend themselves to a coupled approach, where the 
FEM is utilized in regions where plastic material behavior is expected to develop, 
whereas the complementary bounded/unbounded linear elastic region is approximated 
using the symmetric Galerkin BEM. Combining Equations (10) and (22) while 
satisfying the continuity conditions along the FEM-BEM interface, results in 
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For each load increment, the global equation systems (23) are solved. 

3. Adaptive FEM-BEM Coupling Method 

As pointed out previously, it is not useful to predefine the FEM and BEM sub-domains 
in an elasto-plastic FEM-BEM coupling analysis. Predefinition of the FEM and BEM 
sub-domains, will result in whichever under/overestimation of the regions where plastic 
material behavior is going to develop (regions where the FEM is employed). In order to 
obtain a computationally efficient coupling method (to avoid inaccurate or costly 
computations), we propose in this section an adaptive FEM-BEM coupling method that 
automatically generate and progressively adapt the finite and boundary element sub-
domains. The section discusses the preliminaries of our coupling method, general 
features of the adaptive concept and the progressive adaption of the FEM and BEM 
sub-domains. 

The basic steps of implementation of our adaptive concept in elasto-plastic FEM-BEM 
coupling analysis are summarized as follows (Figure 1) 

1. Load increment and BEM elastic analysis with an initial BEM discretization 

A hypothetical elastic stress state is determined. 

2. Detection of regions sensible for FEM discretization (Figure 2) 

In order to obtain an initial estimate of the regions sensible for FEM discretization, 
the adaptive coupling method follows the linear elastic computation of step 1. 
Violation to the yield condition provides an initial estimate of the regions sensible 
for discretization by FEM. Simple fast post-calculations based on energetic methods 
are then utilized to account for relaxation and redistribution of stresses that occur 
due to plastic deformation. A final estimate of the regions sensible for FEM 
discretization is then derived. 

3. Automatic generation of FEM discretization (consequently the BEM sub-domain 
discretization) for the current state of computation 

Particular regions that fulfill the proposed criterion are discretized by the FEM. 
Consequently, the BEM mesh is generated so as to best represent the remaining 
bounded/unbounded linear elastic region. In order to ensure the compatible coupling 
between the BEM and FEM sub-domains, the interface is constructed reflecting the 
current situation 

It may be useful to reuse the BEM internal points as finite element nodes for the 
FEM discretization, as they are conveniently distributed in the particular area of 
interest. This will result in a reduction of the complexity of data management and 
ease of the automatic generation and adaption of the FEM sub-domain. 
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4. Coupled FEM-BEM stress analysis involving elasto-plastic deformations is then 
conducted 

5. Next load increment requires a repetition of steps 1-4. 

In our adaptive method, the user needs not to predefine the FEM and BEM sub-
domains. In Section 4, we elaborate more on the initial and final estimates of the 
regions where plastic material behavior is expected to develop (regions where the FEM 
is employed). 

4. Estimate of regions sensible for FEM discretization 

The adaptive FEM-BEM coupling method given in Section 3 follows two criteria for 
indicating regions to be discretized by the FEM. The first criterion is violation to yield 
condition (elastic prediction). It gives an initial estimate of regions sensible for 
discretization by the FEM. A linear elastic analysis is conducted with an initial BEM 
discretization (Figure 2). Hypothetical stress values are computed at predefined points 
inside the BEM sub-domain. If the hypothetical linear stress state violates the yielding 
condition at a particular region, it is estimated (initially) as sensible for discretization 
by the FEM. 

 

 

Data input and initial BEM discretization

Load increment

Last increment

Automatic generation of FEM discretization

Construction of the interface for the coupling of both
FEM and BEM discretizations (consequently BEM sub-

domain discretization)

Coupled FEM-BEM stress analysis
involving elasto-plastic deformations

No

BEM elastic analysis with initial BEM discretization

Detection of regions sensible for FEM discretization

EndYes
 

Figure 1: Adaptive FEM-BEM coupling method for elasto-plastic analysis. 
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Regions sensible for  FEM
discretization (initial estimate based on
BEM hypothetical elastic computations)

Regions sensible for  FEM
discretization (final estimate based on
energetic methods)

P P

BEM node

FEM node

FEM-BEM interface

Internal BEM points

Indicators for regions sensitive
for FEM discretization

FEM-BEM discretization  
Figure 2: Initial and final estimates of the FEM region and FEM-BEM discretization. 

 

The second criterion carries out simple fast post-calculations based on energetic 
methods, e.g., Neuber’s and strain energy density methods. This will account for 
relaxation and redistribution of stresses that occur due to plastic deformation. It gives a 
final estimate of the FEM sub-domains. 

The simplicity of linear elastic analysis and the difficulties associated with non-linear 
elasto-plastic analysis have motivated some researchers to attempt solving elasto-
plastic problems by adapting a modified form of available elastic solutions [31-34]. 
There are variants of this approach with names such as: generalized local stress strain 
[44], iterative elastic [45], pseudo-elastic [31] and elastic compensation [45]. The idea 
is not new. It is mainly utilized in analysis of notches and in limit load analysis for 
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design considerations. Iterative linear elastic analyses are conducted with updated 
material properties at each iteration termed as “effective material properties”. The 
schemes for updating the effective material properties include: projection, arc length, 
and energy methods. It should be mentioned, however, that we are not interested here 
in carrying out an iterative elastic analysis. Our aim is to determine the zones that are 
sensible for FEM discretization. 

Let us consider materials of von-Mises type obeying a bilinear strain hardening rule. 
Neuber’s and strain energy density methods (Figure. 3) are energy equivalence between 
the hypothetical elastic and the elasto-plastic calculations of the same geometry 
submitted to the same loading [31-34]. For uni-dimensional states of stress, it is 
assumed that the product stress x strain in elasticity is locally identical to the same 
product calculated by means of an elasto-plastic analysis. 

For tri-dimensional states of stress, the fundamental hypothesis may be written as [31-
34] 

elastic   hypplasticelasto )()( ijijijij εσεσ =−                 (24) 

where elastic   hyp)(.  corresponds to hypothetical elastic state of stresses. 

The energy density balance, Equation (24), is obtained by using the defined quantities 
appropriately for the actual elasto-plastic stress-strain state and the hypothetical elastic 
stress-strain state. However, a local method leads to a violation of equilibrium. Thus a 
proportionality factor is to be introduced in order to account for the stress relaxation 
and redistribution due to plastic deformations. 

 

σ σ σ

ε ε ε

elasε elasε plasεNeubε

Neubσ
elasσ

plasσ
elasσ

E
effE

E
effE

areas identical areas identical

methoddensity energy Strain method sNeuber'method Projection  
Figure 3: Projection, Neuber’s and strain energy density methods. 
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In this study, we propose a simple, at the same time fast and effective, method for a 
final estimate of regions sensible for FEM discretization. 

From a virtual work principle we may utilize a global formulation 

⋅≅ ∫∫
Ω

−
Ω

elastic   hypplasticelasto )()( dVdV *
ijij

*
ijij εσεσ              (25) 

The total hypothetical elastic strain energy may be written as 

.dVU ijij∫
Ω

= elastic   hypelastic   hyp )( εσ                 (26) 

Next, we define the total strain energy that is vulnerable for redistribution due to plastic 
deformations, distU , as 

∫
Ω

−= ,))(( elastic   hypdist dVU xxyyijij κεσεσ               (27) 

where 1=xκ  if 0))(( elastic   hyp >− xyyijij εσεσ , otherwise 0=xκ  and yσ  is the uniaxial 

yield strength. 

Subsequently, we define a “pseudo” value of the material yield strength, pseudo  yσ . This 

pseudo value is evaluated as follows (see Figure 4) 

,
)(

 pseudo  

elastic   hyp

dist

y

yyc
U

U
σ
σσ −

=                 (28) 

where c  is a constant that depends on the geometry of the stress-strain curve (Figure 
4). Finally, the hypothetical elastic state of stresses is checked against yielding with the 
pseudo value of the yield strength. Regions that violate the modified yielding condition 
are determined. A final estimate of the FEM sub-domain is obtained. It should be noted 
that the pseudo value of yield strength is only utilized for the purpose of obtaining the 
regions sensible for FEM discretization. 

The basic steps of proposed post-calculations are summarized as 
1. compute the total hypothetical elastic strain energy, elastic   hypU , Equation (26) 

2. evaluate the strain energy that is vulnerable for redistribution, distU , Equation (27) 

3. determine a pseudo value of the yielding strength, pseudo  yσ , Equation (28) 

4. check for regions that violate the pseudo yielding condition. A final estimate of the 
FEM sub-domain is obtained. 
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areas identical

ε

σ

Pseudoσ

elasσ

yσ

 
Figure 4: Pseudo material yield strength. 

 

The procedure outlined with its inherent assumptions, provides a simple, at the same 
time fast and effective, method for a final estimate of the FEM and BEM sub-domains. 
A usual FEM-BEM coupling analysis is then conducted (see Section 2.5) while 
utilizing the finally estimated FEM and BEM regions. 

5. Numerical Examples 

In this section we present two numerical examples that highlight the potentialities of 
the adaptive FEM-BEM coupling method presented in Sections 3 and 4. 

The first numerical example (Figure 5) serves as a benchmark problem in 
computational plasticity [46]. The benchmark problem is a stretched steel plate 
(width=height=200 mm) with a circular central hole (radius r=10 mm) under plane 
strain condition. A surface load P  is applied to the plate’s upper and lower edges. The 

applied tractions 2N/mm 100P =  are scaled with the load factor λ . The elastic material 
properties of the plate are described by Young’s modulus ( GPa9206.E = ) and 

Poisson's ratio ( 290.=ν ). Material of von-Mises type is considered ( MPa  450=yσ ), 

with no hardening effect ( .H 0= ), as a yield function and plane strain loading 
conditions. Due to symmetry, only one quarter of the problem is modeled. 

The problem is solved by means of the adaptive coupling method presented in Sections 
3 and 4. The loads are applied incrementally. Figure 6 shows the initial (elastic 
prediction) and final (post calculations based on energetic methods) estimates of the 
regions sensible for discretization by the FEM. Figure 6 further shows the yielded 
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regions obtained using the adaptive coupled FEM-BEM method for the selected values 
of λ . It should be noted that the coupled FEM-BEM solutions are obtained via an 
automatically generated FEM and BEM discretization for the particular values of λ . 
The FEM discretization is generated over the regions that are finally estimated as 
sensible for FEM discretization, while the BEM mesh is generated to represent the 
remaining linear elastic region (Figure 6). The results clearly show that the adaptive 
FEM-BEM coupled method employs smaller FEM sub-domains. Moreover, the method 
is practically advantageous as it does not necessitate a predefined and manually 
localized FEM and BEM sub-domains. 

In the second example we consider an unbounded plate with a rectangular hole 
(width=height=2) under uniform pressure, 100P = . The applied uniform pressure is 
scaled with the load factor λ  which is assumed to be as high as 10. We assume plane 

strain loading conditions with the elastic material parameters 310x 206.9=E  and 

290.=ν . Material of von-Mises type is considered ( 450=yσ ), with no hardening 

effect. Figure 7 shows selected calculation results ( 10 and 8 6, 4,=λ ). Figure 7 gives 

the initial and final estimates of the zones sensible for FEM discretization, and the 
yielded regions obtained using the adaptive FEM-BEM coupling method. The results 
clearly show the advantages of the adaptive coupled FEM-BEM models in terms of 
efficiency. 
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Figure 5: Stretched steel plate with a circular hole in plane strain state. 
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Figure 6: Initial and final estimates of FEM sub-domains and yielded regions (adaptive 
FEM-BEM coupling method) for selected values of the load factor, λ . 

 



 17

 

04.=λ

06.=λ

08.=λ

010.=λ

BEM-FEM Coupled

estimate Final

estimate Initial

 
Figure 7: Initial and final estimates of FEM sub-domains and computed results via an 

adaptive FEM-BEM coupling method (Example 2). 

 

Conclusions 

This paper deals with FEM-BEM coupling for elasto-plastic analysis. The paper 
proposes the use of simple, and at the same time fast, post-calculations, based on 
energetic methods which follow a simple hypothetical elastic boundary element 
computation, in order to give fast and helpful estimation of the FEM and BEM sub-
domains. The FEM mesh is automatically generated over the estimated regions. 
Consequently, the BEM mesh is generated so as to best represent the remaining linear 
elastic region. Furthermore, the FEM and BEM discretization are progressively adapted 
according to the state of computation. The present adaptive coupling method is 
practically advantageous as it does not necessitate predefinition and manual localization 
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of the FEM and BEM sub-domains. Moreover, the method is computationally efficient 
as it substantially decreases the size of FEM meshes, which plainly leads to reduction 
of required system resources and gain in efficiency. The numerical results confirm the 
effectiveness of the proposed method. 
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