COMPUTING ROOTS OF SYSTEMS OF POLYNOMIALS
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MICHAEL BARTON AND BERT JUTTLER

ABSTRACT. We present an algorithm which computes all roots of a giveariate poly-
nomial system within a given rectangular domain. In eacp,stee construct the best
linear approximants with respect to tii€ norm and use them to define planar strips en-
closing the zero sets of the two polynomials. Since both rmiyials are described by
their Bernstein-Bézier representations, the computaticthese strips is computationally
efficient. The two strips lead to a reduced domain, which igiokd by intersecting the
current domain with the smallest axis-aligned bounding &oxosing the intersection of
both strips. It is shown that the sequence of boxes genebgtelde algorithm possesses
convergence rate 2 at single roots. The method can be adagietynomials with interval
coefficients.

1. INTRODUCTION

Systems of polynomial equations appear in the context abuarapplications. They
are ubiquitous in the field of geometric computing and CorepAtded Design [3], where
free-form curves and surfaces are usually described byewise polynomial parametric
representations. In particular, intersection algorittoftsn involve numerical methods for
solving systems of polynomial equations [10]. The probléimwerse kinematics for serial
manipulators in robotics leads to polynomial systems [9heD applications include nu-
merical simulations in computational elastoplasticit§][2vhere a certain bivariate system
has to be solved in each iteration step.

The investigation of numerical algorithms for solving patynial systems has been an
active research area for a long time. Many related refesecae be found in [16].

For instancehomotopy techniqudsrm an important class of algorithms. These tech-
nigues (see, e.g., [11, 23]) start with the solutions of gpémsystem with the same struc-
ture of the set of solutions. This system is then continyoahsformed into the original
system, and the solutions are found by tracing the solutidt@motopy techniques are
particularly well suited fof2 = C™.

Another class of algorithm combindssectionsteps with Descartes’ rule of signs in
order to isolate the roots [2, 15, 20]. Recently, this tegbaihas been adapted to the case
of univariate spline functions [14].

The rich literature on roots of polynomials also containgous results oenclosure®f
polynomials and their roots, e.g., [7, 12, 21]. In particuiechniques of interval and affine
arithmetic have been used to deal with the effects of unicgita and numerical errors.

We will focus on polynomials given in Bernstein—Bézier (B presentation. This
representation forms an essential part of the technologfyde-form curves and surfaces
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in Computer Aided Design [3, 10, 19]. Compared to other regméations, it has two main
advantages.

First, the BB representationiimimerically stablesee [4]. This observation also applies
to evaluation and to the computation of BB representatidtismgspect to subdomains via
de Casteljau’s algorithm or other suitable algorithms[{c3]).

Second, the BB representation provides the convex hull andtion diminution prop-
erties. Consequently, error bounds and bounds on the nuofilyeots can directly be
generated from the coefficients.

Robust algorithms for solving systems of polynomial equagj which are based on the
BB representation, find all roots in a bounded domain [6, 27, When combined with a
local preconditioning step, they achieve second orderemance for single roots [15].

In this paper we describe a new algorithm for computing ats@f a system of polyno-
mials within a given domain. After formulating the problemdeanalyzing the best linear
approximation of bivariate polynomials, we describe thgpdathm and discuss its conver-
gence rate. The theoretical results will then be illustiditg several examples. Finally we
conclude this paper.

2. PRELIMINARIES

2.1. The root-finding problem. We consider a system af polynomial equations im
unknowns. In order to simplify the presentation, we reswoiarselves to the case of two
polynomial equations in two unknowng & 2). All results can be extended to any value
of d. Let

p(z,y) = 0 }

1

@) q(z,y) = 0

be the given system of two polynomial equations. All solgi¢roots) within given domain
(2) D = [a, 8] x [7,4]

are to be found. More precisely, we want to generate a setrobdts of maximum diam-
eter 2 which contain the roots, where the parametspecifies the desired accuracy.

In the remainder of the paper, the notion of domain alwayersab the Cartesian prod-
uct of two intervals, as in (2). We denote with

(3) a=aredD) = (8—-a)(d—7) and h=diamD)= /(5 —a)?+ (J —)?
theareaand thediameterof a domain, respectively.

We assume that boghandq have the bidegregn, n) (or less) with respect to andy.
Consequently, the polynomials belong to the + 1)(n + 1) dimensional linear space
1™ of all polynomials of bidegree less than or equalite, ). As a basis of this space,
we choose the tensor-product of the Bernstein polynomials

m\ (z —a)' (B — )™ <n> (y =) (6 —y)"’
4) U(z)=1| . , VMy) =1 .
@ e =(7) TW=G)T e
with respect to the intervals., 5], [y, ] C R, respectively. Any polynomial € II"™" has
a Bernstein-Bézier (BB) representation

m

(5) p(y) =3 S b Ul @V, oyl € o 8] x [, 4],

i=0 j=0
with respect to the domaila, 3] x [v, d], with certain coefficients;; € R. See [8, 19] for
more information.
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2.2. L? norm and best linear approximation. The spacdl™" will be equipped with
the L2 inner product

B 6
6) vaaf/fwmeMMx

with respect to the domaif» and the norm

™ 1718 = \/t.0)P,

wherea = aredD), induced by it. The factot /a is introduced in order to obtain a
norm which is invariant with respect to affine transformas@f thex andy—axes. More
precisely, for any affine transformation

® ()= ) ) ()

with ugou1; # 0, the norms off with respect to the domaiP and of f o 7—! with respect
to the domainr(D) are identical,

9) 1712 = 11f o 7115,

There exists a unique linear polynomjavhich minimizes||p — p||2. This polynomial
p will be called thebest linear approximandf p with respect to the domaip. It has the
bilinear BB—representation

(10) Pla,y) = > Y cyUl @)V} (y), [w,y] €D,

i=0 j=0
where the coefficients satisfy the constraint

(11) €10 — Coo = C11 — Co1-

Let

(12) B = (bi)k=0.....m,i=0...n € RTVEFD andC = (cxi)r=o,. 1.1=0...1 € R?

be the vectors obtained by collecting the BB—coefficientp aihd p, respectively. We
define theapproximation operator

(13) A:RMADEHD L RE B A(B)

which assigns to each coefficient vecBithe coefficients of the best linear approximant,
C = A(B), which is obtained from Eq. (14). Itis a linear operator eshest approxima-

tion is simply an orthogonal projection ™™ into the subspace of linear polynomials.
Consequently, the coefficients;, ¢, j = 0, 1 can be computed as

(14) Cij = zm:zn:Af}bkl, i,7=0,1,

k=0 1=0

whereby; are the BB—coefficients of The coefficientst?
do not depend op. They satisfy

(15) AR AL = AR AR k=0, ...,m,0=0,...,n,

as the constraint (11) is satisfied for any choicepof 11""". Moreover we have the
following result.

of the approximation operator

Lemma 2.1. The approximation operatad is independent of the domain. More pre-

cisely, the coefficienta!/ in (14) do not depend on, 3,~ and.
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Algorithm 1 BLC(p, q, D) {Bivariate Linear Clipping

1: if diam(D) > ¢ then

2. P, g« bestlinear approximants g ¢ with respect td|.| |2

3 67,67 — bounds orjlp — B %, andlq — 7|2

4. pY —p+6?, p¥ —p—4P {upperand lower bound gr}

5. ¢V «—q+09 g —q—59 {upperand lower bound o}

6: L « parallelogram bounded by th¢ = 0, p* = 0,qY =0,¢* =0
7. R < axis-aligned bounding box containirig
88 D'—DnNR {D' =0ispossiblé
o: if diam(D’) > & diam(D) then

10: subdivide the domain, apply BLC to the subdomains, retuerréisults
11: else

12: return (BLC(p, q, D))

13:  end if

14: else

15:  return (D)

16: end if

Proof. Any two domainsD, D’ are related by a unique orientation-preserving (i.e., sat-
isfying ugp > 0, u;; > 0) affine transformationr, which mapsD bijectively ontoD’.
The BB coefficients op with respect taD the and ofp’ = p o 7~ with respect taD’ are
identical, asr transforms the Bernstein polynomials with respecbtinto the Bernstein
polynomials with respect t&’. Since the norm is invariant under the affine transforma-
tion 7, the BB coefficients of the best linear approximatioof p with respect td|.|| are

the same as the BB coefficients of the best linear approxamatiof p’ with respect to

[.] |2D'. Consequently, the approximation operator is indepenafebt |

Similarly we define thelegree elevation operator

(16) E:R* - RMHDOH . € £(C)

which generates fro@ the BB coefficients of the representationgos a polynomial of
bidegregm, n). It can be represented analogously to Eq. (10). Again itdefiendent of
the domain, see [8, 19].

3. COMPUTING ROOTS VIA BIVARIATE LINEAR CLIPPING

3.1. The algorithm. The new method for computing the roots of a bivariate polyiam
system is described in Algorithm 1, which will be called BLEome steps will be ex-
plained in more detail. See also Figures 1 and 2.

In line 2 we generate the best linear approximahendg of p and ¢ with respect
to the L2 norm on the current domaiP® = [a, 3] x [v,d]. We use the approximation
operatotd and degree elevation operatbin order to generate the BB representation of the
approximants of bidegreen, n). In order to speed up the computations, the coefficients
of the operatorsl and€ are precomputed and stored in a lookup table.

In line 3, we need to find a boun® (and similarly ford?). We use the convex hull
property of BB representations,

(17) 57’:max|bi7j—éi7j|, Z.ZO,...,TTL,jZO,...,’TL7
2¥)
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a) b)
q p

FIGURE 1. One iteration of BLC. a) The polynomial systeft), b)
graph surfaces, ¢) BB representatiorpptl) best linear approximapt

whereb; ; andc; ; are the coefficients of the Bernstein—Bézier represamtsinfp andp
of bidegregm, n). See Fig. 2e.

In line 6 we compute a parallelogram by intersecting 4 lirgese [18, section 7.2] for a
robust technique for intersecting line segments.

If the diameter diariD’) of this domainD’ is sufficiently small, when compared to
the length of the diameter of the previous domainthen BLC is applied to it (line 17).
Otherwise we subdivide the original domdininto four pieces and apply BLC to the four
subdomains (line 10). Here, we request that the diameterkshat least by 50%, but this
is just a heuristic setting.

3.2. Convergence rate.BLC generates sequences of boxes which converge towards the
root(s) of the polynomial system. For each of them, the diamseof the boxes form a
monotonically decreasing sequence. We analyze their cgernee rates, see [5]. First, in
order to make this paper self-contained, the approximatider of the best linear approx-
imant is analyzed.

Lemma 3.1. For any given polynomial with domainD, = [ag, Bo] X [0, do], We consider
a subdomainD = [«a, 3] x [y,6] € Dy. In line 3 of Algorithm we generate a bound
0P = §P(D) as the maximum difference of the BB coefficients with regpd@t see Eq.
(17). There exists a constatt, depending solely opand Dy, but not onD, such that the
bound satisfies

(18) 6P < Cp b2,
whereh = diam(D).
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FIGURE 2. One iteration of BLC (continued): e) computationésf f)
lower and upper bounds” andp?, g) bounding strips for the zero sets
of p andgq, h) the axis-aligned bounding box defines the new donfdin

Proof. For any domairD we consider the maximund{,) norm ||.||§B7OO of the BB coef-
ficients, theL? norm as defined in (7), and the maximuff{) norm

19 |2 = max |r(z,y)l.

(19) 12 = max, Ir(z,y)]
All norms on them—+1)(n+1)—dimensional real linear spati@*™ are equivalent. Hence,
there exist constants; andC; such that for all polynomials € TI"" the inequalities

(20) 7155 00 < Callrll2” and [ir]l5 < Caflr|| 2

are satisfied. All norms are invariant with respect to affra@sformations of the form (8).
Consequently, the constants andC, are independent of the domaih The boundy?
generated in line 3 of the algorithm satisfies

0" = p = BllEp.o0 < Cillp = DIIF < Cillp = T(, lI7 < C1Callp = T, ) IX

(21) 0%p 0%p %p
<1 il Ygr op 2
< 301 max (1(55)(5, 0] + 21 (550 (5,0 + (5 5) (DA,
whereT(pa b) is the linear Taylor polynomial tp at an arbitrary poinfa, b) € D. (]
As the next step we study the limit of the best linear apprexitp. We present a
general result, which does not make any assumptions ab®sttipe of the domain (i.e.,
the ratio of the lengths of the domain boundaries).

Lemma 3.2. Consider a contracting sequence of domajd };°,, i.e.,diam(D;) — 0
asi — oo. We assume that the sequence is nedied; C D,. Let(a,b) be the unique
limit point of this sequence. For any polynomigllet p, be the best linear approximant
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with respect to thé.? norm onD;. Then
(22) Jlim (Vp;)(a,b) = (Vp)(a,b).
Proof. For each domai; = D = [a, (] x [y, 8] we consider the three linear polynomials
Ay(z,y) =7(6 —a)(d —7) = 6(x —a)(6 —7) —6(6 —a)(y —7)
Aale,y) = ~6(0 =) +125—(3 7). Aglwy) = ~6(8— @) + 12— (5~ a)

which are the unique linear polynomials that satisfy the @atigns

(1/a®>){(Ar, )P =1 (1/a®)(Ar,z —a)? =0 (1/a®){A1,y — )P =
(23)  (1/a®)(A2,1)P =0 (1/a*)(Ag,z — )P =1 (1/a®)(Do,y — )"

(1/a*)(A3,1)P =0 (1/a*){Az,2 —a)P? =0 (1/a®)(As,y — )P =
Consequently, they form théual basisof the basis{1,z — a,y — v} of the space of
linear polynomials with respect to the inner prod(cta?)(.,.)” on D. Recall that the
coefficients of the orthogonal projection of a vector intauaspace of a linear space are
the inner products with the dual basis of the basis of thasgate. Therefore, the best

linear approximant of any polynomiale TI™" with respect to the norn.||2 induced by
this inner product is

(24) p(z,y) = (1/a®)(A1, )" + (1/a*)(Aa, )P (x — @) + (1/a®)(A3,p) " (y — 7).
A short computation (evaluation of the integrals and takhmeglimit) confirms that
1

0
0
1.

ghir; a2 <A1ap>D :p(a7’}/)a
(25) 1 £} 1 9
. L D (Y . L D (Y
élg; 2 (82,97 = (-p)(e,7), élg; oz (Ba.p)” = (op) (@),
-7 -7

As h = diam(D) — 0 implies3 — « andd — ~, this completes the proof of (22). O

Remark3.3 Consider a single roafa, b) of the system (1), which is characterized by
two linearly independent gradient¥p)(a, b) and(Vq)(a, b). If the sequence of domains
D; converges to this root, then the best linear approximagnts converge to the tangent
pIanesT&b), T(qmb) of the graphs op andq at the root. Their intersections with the plane
z = 0 converge to the tangents at the root. See Fig. 3.

Theorem 3.4. Consider a single roota, b) of the systenfl) within the given domain
D = [a,0] x [7,4]. BLC generates a sequence of domaif%;);—1,... - converging

convergence rate.

Proof. We denote withy < (0, 7) the angle enclosed by the tangent pla?é;eb) of the

graph ofp at (a, b) and the plane = 0. Let¢; € (0, §) be the angle enclosed by the best
linear approximanp; of p with respect toD; and the plane = 0, see Fig. 3. We have
¢ # 0 as(a, b) is a single root. Due to Lemma 3.2,

(26) i > g, hence cot ¢; < cot %

holds for all but finitely many values of
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a)

FIGURE 3. a) Polynomial system with a single root, b) graptpaind
its tangent plan@(pa b) with slopeg.

We denote withi? the distance of the two parallel ling§ = 0 andp” = 0, which are
constructed in line 6 of the Algorithm BLC, where the domai®i = D;. Due to Lemma
3.1 and to the bound (26) on the slopepfandp”,

(27) d? < 26P cot % < 20,h? cot% = Cphi

with C,, = 2C,, cot %, holds for all but finitely many values of see Fig. 4. Analogously,
we obtain a bound on the distanégof the two parallel lineg” = 0 andq¢” = 0,

(28) d? < Cyh?.

Letw € (0, 5] be te angle enclosed Byp(a, b) andVq(a, b), see Fig. 3a. According to
Remark 3.3, the angle; € (0, 5] enclosed by the lingg; = 0 andg; = 0 satisfies

1

- <=
sinw; ~ sin g

(29) w; > g, hence

for all but finitely many values of, wherep, andg; are the best linear approximants of
p andq with respect to thd.;, norm onD;. Clearly,w; is the angle enclosed by the two
planar strips whose intersection defines the parallelogramline 6 of the algorithm, see
Fig. 5. As the edges of the parallelogrdniave the lengths

d? d?
(30) —— and ——,
SN w; S1n w;
the diameter of_ is bounded by
1

(31)  dian(L) < (df +df)

—— < (& +d!)— < (Cp, + Cy)hi—

. @ w
SN W; S ) Sin )

for all but finitely many values of, see (27) and (28). Finally, the diameter of the next do-
mainD, 1 = D; N R, whereR is the axis—aligned bounding box 6f which is generated
in line 8 of algorithm BLC, satisfies

(32)  hiy =diamD N R) < diamR) < v2diam(L) < v2(C, + Cq)sii — hZ.
2

This completes the proof. O
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pU

3

J ?
24, cot 5

FIGURE 4. The bound on thé”. The figure shows the projection into
the plane perpendicular to= 0 andp. The strip enclosed by = 0
andp” = 0 is shown in grey.

a) b)

FIGURE5. a) Two strips bounded iy = 0, ¢* = 0andp! = 0 define
the parallelograni; the length of the edges can be computed with the
help of the grey triangles. b) The diameterof the parallelogram and
the new domairD; .

4. NUMERICAL EXAMPLES

The computing times were obtained from an implementatio,irunning on a Linux
PC with an Intel(R) Xeon(TM) CPU (2.40GHz) with 1.98GB of RANh order to ob-
tain a measurable quantity of execution time, a loop®@frepetitions was measured and
averaged.
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a) ¥ b)
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0 0.2 04 06 08 1

X

e | 1072 10°* 106 10°8 10710
clipping steps 22 29 34 36 36
subdivision steps 15 15 15 15 15
no root (D' = ) 37 40 40 40 40
all iterations 74 84 89 91 91
no. of roots 9 6 6 6 6

time (ms) 1.97 2.34 2.83 2.92 3.08

FIGURE 6. Example 4.1 Top: a) The zero sets of polynomjaland
q, b) the graphs op andq. Bottom: Computation time and number of
iterations for various values af

Example 4.1. (Single root) We applied algorithm BLC to two polynomialsand ¢ of
bidegreg5, 5) with the BB coefficients

12 -2 -2 -2 -2 —15 (-2 3 3 2 -1 =27
-3 3 3 3 3 3 -3 -3 —110 —15 3
pss_ |5 5 5 5 3 055 — -5 -5 —1 10 —15 3
-5 5 5 5 5 5 | -5 5 5 10 —15 5 |’
~5 —15 —15 —15 —15 5 -5 5 5 10 =15 5
5 5 5 5 5 —15 | -5 -5 2 3 5 5 |

whereD = [0,1] x [0, 1], see Fig. 6. The table reports the number of subdivisiorsstep
(line 10), clipping steps (otherwise), all iterations,etted roots and the computing time
for several values of the prescribed accuracy

Example 4.2. (Transition from two single roots to a double root) In ordedemonstrate
different behaviour of the Algorithm 1 in the double root amehr double root cases, we
consider the sequence of polynomial systems

— 1
(33) 0 = a:2+y12—(1+m),
0 = xy—3
over the domairj—2, 2] x [-2,2], wherek = 0,1, ..., see Fig.7a. The system has four

real roots ovef—2, 2] x [—2, 2] for all k£ and two double roots in the limit case for= oco.
Fig.7b shows the relation between the number of iteratidgnslgorithm 1 with respect
to the prescribed accuracy for different valueskofAs the the value of is increased,
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a b
) ) 3507 no. of iterations

300

7 \ 250 4

k=2 . o ® k=5

150

\ o
-]

FIGURE 7. Example 4.2. a) The system (33) for= 0, 1, 2, b) relation
between the number of iterations and the accueaftyr £ = 0,...,5
andk = oo.

log!

the roots get closer and the roots are separated later. Quarstty, a higher number of
iterations is needed.

Example 4.3. (Self-intersection) In [15], the self intersections of daaal curveC'(u) of
degree 19 are found by solving the system

C(u) x C(v)

u—v

(34) =0, u<v,

wherex is the cross product and the curve is described by homogemeoudinates. This
leads to a polynomial system of bidegrg¥, 37), see Fig. 8. We applied BLC to this
example; the number of iterations and computing times grerted in the table.

In [15], several existing methods are compared:sfer 10~¢. These methods are SBD
(subdivision), RD (reduction with a variant of the the IPBaithm), SBDS (subdivision
with a global preconditioner), RDS (reduction with a vatiahthe IPP algorithm and a
global preconditioner), and RDL (reduction with a variahtiee IPP algorithm and a local
preconditioner). Among these methods, only RDL has the saomeergence rate as BLC
for single roots (2). Though it is difficult to compare difégt implementations running on
different hardware, it can be concluded that the perforraari@LC compares well with
the existing algorithms.

Example 4.4. (Numerical robustness) In order to demonstrate the robastof the method,
we applied it to the system which consists of the two polyradsnf degree 12,

11 11

@) pwy)=[ery- ) ey =[Gty
i=0 =0

19 + 62
26

);
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g AN
0.84
0.6
0.44
0.2
0 0.2;—-0—.4—- 0.6 0.8 1
u
| e [ 1072 [ 10" [ 100° | 10® | 1077 |
clipping steps 28 54 67 71 56
subdivision steps 75 79 79 79 79
no root (' = () 170 225 225 225 225
all iterations 273 358 371 375 383
no. of roots 56 13 13 13 13
time (ms) 139 305 322 330 336

FIGURE 8. Example 4.3. Left: Rational Bézier curve of degt@awith
13 self-intersections. Right: Polynomial system (34). Bel@omput-
ing times and number of iterations for various values.of

TABLE 1. Results of [15] for example 4.3 with= 10-5.

| method|| no. of iterations| subdivision stepéf no. of roots| time (ms)|

SBD 3979 3979 39 3540
RD 560 376 15 537
SBDS 1577 1577 16 1589
RDS 282 63 13 345
RDL 126 36 13 134

| BLC || 282 | 79 | 13 | 322 |

where the domain is the unit square. Similar to the Wilkinpolynomial in the one-
dimensional case, this system is very sensitive with readpguerturbations of the mono-

mial coefficients. The stability is greatly enhanced by gdime tensor-product Bernstein
basis, see Fig. 4.4.

Remark4.5. (Interval input) In all examples above, we considered thpuirdata to be
exact (within the accuracy of the floating point numbers)wieer, the method can easily
be adapted to the case of polynomials with interval coefiisiesimply by adding the
maximum coefficient tolerance W& and? in line 3 of the algorithm. Note that the
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AN
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%
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=
1

0%\ \
T

T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0
x x

¥

monomial noise BB noise
accuracye 10210 [10°[10®[107 ™ [J102[10~* [10° [10* [ 10~ "°
clipping steps 49 102 | 118 | 130 | 134 126 | 236 | 276 | 304 | 318
subdivision steps| 239 | 244 | 244 | 244 | 244 497 | 793 | 793 | 793 793
noroot@ =0) || 612 | 715 | 715 | 715 | 715 || 1076 | 2330 | 2334 | 2334 | 2334
all iterations 900 | 1061 | 1077 | 1089 | 1093 || 1699 | 3359 | 3403 | 3431 | 3445
no. of roots 106 18 18 18 18 416 50 46 46 46
time (ms) 278 | 305 | 317 | 322 | 328 513 | 932 | 954 | 965 | 985

FIGURE 9. Example 4.4. Top: The effect of adding—8% relative
coefficient error to the monomial (left) and BB (right) coeifints of the
two polynomialsin (35). In the latter case, the system resmassentially
the same, while the modification of the monomial coefficidasgls to
dramatic changes of the structure of solutions. Bottom: @atation
time and number of iterations for various values.of

maximum tolerance does not increase during the iteratemthe de Casteljau algorithm
propagates the maximum coefficient error. This simple wageafling with interval input
may be seen as an advantage to the preprocessing based Ridithatgin [15], where
more complicated adaptations appear to be needed.

5. CONCLUDING REMARKS

We presented a new method for computing all roots of a biteapalynomial system
within a given domain. In the case of single roots, the athariconverges quadratically,
similar to the RDL technique in [15]. The method can be gelimd to systems of
equations with variables. Future work will focus on methods providing siipear con-
vergence rates for multiple roots, which extend the resulf$] to the multivariate case.
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