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1. Introduction

In quantum field theory the perturbative calculation of aegiscattering amplitude or cross
section requires the evaluation of Feynman diagrams. Edlyeat higher orders this is a difficult
task and over the last years, a large variety of methods tesd®yised to deal with the problem of
calculating Feynman integrals, see e.g. [1] and referetiesin. The necessary integration over
the propagators of the virtual or unobserved particlesyguiedlly carried out in momentum space
and divergent integrals are regularized dimensionallyHifisg from 4 toD = 4 — 2¢ dimensions
of space-time. For a given Feynman integral the main tagleis the derivation of an analytical ex-
pression in terms of known functions with well-defined pmies, which at the same time permits
a Laurent expansion in the small parameter (D —4)/2.

In these proceedings we want to focus on particular progressis direction through the
systematic and efficient approach to solve difference émpmt To that end, we start by briefly
stating the physics case and present the necessary maitandefinitions. Then we provide
explicit examples from recent higher order perturbatieldations in Quantum Chromodynamics
(QCD) and finish with a summary and an outlook.

1.1 Setting the stage

For a given scattering process the Feynman integrals assifodal by the number of external
legs f-point functions), by the number of independent lobpad by the topology of the associated
graph. Initially, the Feynman integrals will appear as tenstegralsl ¥ where p; denote
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Lorentz indices. Subsequently tensor integrals can be ethfip scalar integrals by numerous
methods, thus we are dealing with expressions

1
I(D;vl,...,v):/del...de| , (1.1)
" (PF—mg)vs ... (P2 —mi)%
where the momenta, i =1+ 1,...,n, are related by energy-momentum conservatpnr=

f(p1,...,m), andm denote the masses of the associated particles. The powéns piropa-
gators arev; andD is the (complex) space-time dimension. In the most genersé ¢eynman
integrals such as in Eq. (1.1) may depend on multiple sciesnstance the masses but also
the non-vanishing scalar products of external momenta.

In the following, we will focus on perturbative calculat®io higher orders in massless QCD
for single-particle inclusive observables. These depend single scaling variable only, with
x € [0,1]. Prominent examples are structure functions in deep4tielacattering (DIS), fragmen-
tation functions in electron-positroe’(e~) annihilation or the total cross sections for the Drell-Yan
process or Higgs production at hadron colliders. All thasangjties can be solved directly and sys-
tematically in MellinN-space, an approach that has been used in the past withiratheviork of
the operator product expansion (and exploiting the optleadrem) in DIS [2, 3]. More recently,
also innovative extensions to other kinematics have bensidered [4]. For a generic observable
0 (X), we can write

ﬁ(N):/Oldxwlﬁ(x)
1
:/ dxi“*l/dPS‘)m)\M({in} - {out})|25(x— )
—/dpsm [M(fin} — {outh)*— S (1.2)

where the first line defines the Mellin transform. Subseduent expres®’(x) through the square
of the scattering amplitud®! ({in} — {out}) for a given set of incoming and outgoing particles
and dP$" denotes the integration measure of the Lorentz invariaas@lspace. The invariafit
depends on internal and external momenta and introducédelia-N dependence. As an upshot,
the observables are mapped to a discrete set of variablsipanteger MellinN).

Once the steps in Eq. (1.2) are accomplished, the scalgratéecan be reduced algebraically
to so-called master integrals. The reduction algorithnes lErsed on integration-by-parts, see

e.g. [1l,

0 1 1
0—/de b , (1.3)
t ( Hopl ) (P)V ... (PR TN

wherep; andp; denote any of the loop momenta and the MeNirdependence is implicit through
the invariantf, cf. Eqg. (1.2). Upon resolving the constraints frdimthe reductions in Mellin
space act on monomials like@?)~"*N and give rise to systems of linear equations which can be
solved in terms of a (small) set of master integrals. Thip seautomatized by using suitable
(customized) computer algebra programs although in pedimitations arise at higher orders
through the excessively large size of the systems of lingaations which need to be considered.
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Due to the explicit dependence on the Mellin variaNl¢he master integrals themselves are
functions ofN. Their functional dependence dhis completely determined by the difference
equations they satisfy. These difference equatior$ are obtained as well from the solutions to
the integration-by-parts reductions and they are the aktupic of the present proceedings.

With the help of Eg. (1.2) and the solutions to the integratiy-parts reductions, we are thus
in a position to express a given Feynman integ(hl) in Mellin space in a recursive manner,

ag(N)I(N)+a1(N)I(N—=1)+---+a(N)I(N—k) = X(N), (1.4)

which defines a difference equation of ordtesith the parametric dependence oheing implicit

in Eq. (1.4). The functions;(N) are polynomials ilN (and€), sometimes they factorize linearly

in terms of the typeN + m+ ne with integerm,n. X(N) denotes the inhomogeneous part which
collects the simpler integrals and in a Laurent seriesitris typically composed of harmonic sums

Sy (M= my,...,m) of weightw = |my|+ --- 4+ |m| and, possibly, in combination with values of

the {-function and powers df.

From a practical view-point in quantum field theory, an ajpiolike Eq. (1.4) allows for easy
checking at fixed values of the Mellin momeNt The analytical solution to Eq. (1.4) requires
concepts and algorithms of symbolic summation (discussgdre[5]) and has been possible in all
cases we have encountered in QCD calculations [6—9]. Hawiheerecurrence relations can also
be embedded in a mathematical framework, to which we wili tarthe following.

2. Solving recurrence relations in difference fields

The Mellin space approach to Feynman integrals at higheersrdshich we have briefly
sketched above leads us to the following key problem:

Given sequencesgy(k),...,am(k) and f1(k),..., fg(k), find all constants, ..., cq, free ofk,
and allg(k) such that the parameterized linear difference equation

am(K)g(k+m) +am-1(K)g(k+m—1)+---+ao(kK)g(k) = c1 fi(K) +---+-cafa(k)  (2.1)

holds.

Note that this problem covers various prominent subproble8pecializing tal = 1, this is
nothing else than recurrence solving, i.e. we are back t¢IE4). Takingm= 1 withag= —1 and
a; = 1 we get parameterized telescoping; in particular, giveivariate sequencé(n, k), one can
set fi(k) := f(n+i— 1,k) which corresponds in the hypergeometric case to Zeilbsrgezative
telescoping [10]. Finally, choosindj= m= 1 withag = —1, a; = 1, we arrive at telescoping; for
more details and applications of these summation pringipée [11].

The algorithmic solution of Egs. (1.4) or (2.1) requiresaaithms for symbolic summa-
tion which are typically implemented in computer algebratsgns likeMaple, Mathematica or
Form [12], the latter being most advantageous if large exprassise involved. Specific imple-
mentations that deal with symbolic summation are ésgmmer [13] or the recent summation
packageSigma [14], which can handle problem (2.1), and therefore telpisay creative telescop-
ing and recurrence solving, if they,...,ay and fq, ..., fq are given by expressions in terms of
indefinite nested sums and products. More precisilyma translates such sum—product expres-
sions into difference fields, the so-callBd*-fields, and solves the given problem (2.1) there.
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2.1 The construction of difference fields

Given an equation of the form (2.1), one can represent thifideats a; and the inhomoge-
neous partd; in the so-called1z*-fields [15].

Definition. LetF be a field with characteristic 0 and letbe a field automorphism @. Then(F, o)
is called a difference field; the constant fieldlbfs defined by constf = {f e F|o(f) = f}. A
difference field(IF, o) with constant fieldK is called alZ*-field if F = K(ty,...,te) where for all
1<i<eeachF; =K(t,...,t) is a transcendental field extensiord &f_1 = K(ty,... 1) ando
has the property that(tj) = at; or o(tj) =t + afor somea € [Fj_.

Remark. In order to transform, e.g., nested sums in sOidi-fields, one exploits the following
important fact. Suppose we are given a stlifm) = yp_; F(k— 1) where we have represented
F(n) in aNx*-field (F,o) with f € F. Then, one can either expre$gn) in F by solving the
telescoping problem:Find g € F with

o(g)-g=1. (2.2)

Namely, if we find such @, we can rephrasgé(n) byt := g+ c for somec € consyF, in particular,
the shift behavioS(n+ 1) = S(n) + f(n) is reflected byo(t) =t + f.

Otherwise, if we fail to find such @ we adjoin the sum in form of the transcendental field extansi
F(t) where the field automorphism is extended frénto F(t) by the shift behaviow (t) =t +

f. Then by Karr's remarkable result [15] it follows that thenstant field is not enlarged, i.e.,
constIF(t) = constF. In other words(FF(t), o) is again d1z*-field.

In a nutshell, one either can represent a given sum in thadreonstructed fieldd by solving
the telescoping problem (2.2), or otherwise, one can adf@nsum in form of a transcendental
extension; for products we refer to [16]. Finally, we empbaghat this construction process is
completely algorithmically, see Sec. 2.2 and therefordréeslation mechanism can be carried out
automatically, e.g. in th®lathematica packageSigma.

2.2 Solving linear difference equations in the ground field

Suppose we are given Eq. (2.1) and we have rephrasegy the,a, and fy,..., fgin alx*-
field F = K(ty,...,te); in short we call such a difference field also the coefficiegitifiof Eq. (2.1).
Then problem (2.1) can be rephrased as follows:

Find all cy,...,¢cq € K andg € F such that

am0(Q) +am-10™ () + -+ +aog=C1f1 + - +Cqyfa. (2.3)

Remark. Eq. (2.3) can be solved ifi by solving several such problems in the subfiéld=
K(ts,...,te_1). Namely, we arrive at the following reduction [17]; we set te, i.e.,F = G(t):
Reduction | (denominator bounding). Compute a nonzero polynomial G[t] such that for all
¢ € Kandg € G(t) with Eq. (2.3) we havelg € G[t]. Then it follows that

am
o™(d)

2 o) = cuf e+ Caf (2.4)

IWe setfy = K.
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for g € G[t] if and only if Eq. (2.3) withg = g¢'/d.

Reduction Il (degree bounding). Given such a denominator bound, it ssffio look only for

¢ € K and polynomial solutiong € G|t] with Eq. (2.3). Next, we compute a degree botnd Ny

for these polynomial solutions

Reduction lll (polynomial degree reduction). Given such a degree boundamks forc, € K and

g € G such that Eq. (2.3) holds fa = zibzogiti. This can be achieved as follows. First derive
the possible leading coefficiengs by solving a specific parameterized linear difference e@gnat
given inG, then plug its solutions into Eq. (2.3) and recursively Idokthe remaining solutions
g= zibgol git'. Thus one can derive the solutions of Eq. (2.3) givef®{h) by solving several such
parameterized linear difference equations given in thempdieldG.

Together with results from [15, 18-20] it has been shown if] fhat this reduction leads to
a complete algorithm for problem (2.3) with= 1; as result we obtain a streamlined and simpli-
fied version of Karr’s algorithm [15] whose main interestassblve the telescoping problem (2.2).
Moreover, it is shown that this reduction also delivers ahmaétthat eventually produces all solu-
tions for recurrences of higher order> 2.

2.3 d’Alembertian solution

Now suppose that we have rephrased Eq. (2.1) in the form {@3) particular coefficient
field F. ThenF is usually too small to find all the required solutions. Tlere, the following
more general approach is helpful:

Find all solutions of the form

Ks-1

n ko
h(n) 3 ba(ka) > ba(kz)... H bs(ks) (2.5)
Ki=o Ks=0 =

where theb; (k;) andh(n) are represented ifior they are defined as products over elements ffom
Such type of solutions are called d’Alembertian solutid2k] [ which are a subclass of Liouvillian
solutions [22].

Remark.The d’Alembertian solutions are obtained by factorizing fihear difference equation as
much as possible into first order linear right factors overdiven difference field/ring. Then each
factor corresponds basically to one indefinite summatiamtfier; see [21, 23]. We remark that
finding such a linear right hand factor is equivalent to figdirproduct solution of the recurrence in
its coefficient domain. For the rational case, isg(k), fi(k) € K(k), this problem has been solved
in [24]. A general version for thBIZ*-field situation, which uses the methods described in S&c. 2.
as subroutines, has been developed in the summation paSigme; see also [14, 23].

We stress the following important aspect: one usually needplified representations of the
solutions (2.5) for further treatment. If the solutions gien in form of harmonic sums, one can
derive compact representations by using the algebraitioe$aof harmonic sums (see e.g. [25]),
or alternatively, usesigma for this task. Ongoing research (see e.g. [26]) is dedictietthe
computation of sum representations of the type (2.5) witinogd nested depth.

It is worth pointing out, that within the formalism dflZ*-fields, a number of exten-
sions/generalizations can be treated (e.gSigma). These include algebraic objects like1)".
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Figure 1: Examples of Feynman integrals froefe -annihilation (left) and deep-inelastic scattering
(right). All propagators have unit power.

Note that such elements cannot be represented in fieldsnbutrorings with zero-divisors, like
(1+(=1)")(1—-(—1)") = 0; for more details see [23]. One can also consider radigactblike
y/nor free/generic sequencs, for which the corresponding algorithms are presentedhdfd
in [28, 29], respectively.

Summarizing, given an equation of the form (2.1), the matktaral framework of1z*-fields
puts us in a position to solve the corresponding recurreelegions in terms of indefinite nested
sums and products over the given coefficient figldThis class covers harmonic surgg and is
therefore sufficient for solutions of difference equatiémssingle scale Feynman integrals in the
Mellin space approach.

3. Examples of Feynman integrals

Here we present two examples from QCD calculations to twd-tlree loops for DIS structure
functions for single hadron inclusives e -annihilation [6—9]. The relevant diagrams are displayed
in Fig. 1 and the respective difference equations for thenfren integrald (N) are of second and
third order. They could be solved by matching to an ansathefype

I(N) = a(j,m) e Sa(N)+ Y b(j, Mk el GeSa(N). (3.1)

were the unknown coefficienssandb were then determined with tfeummer package [13] by
inserting Eg. (3.1) in the recursion relation (1.4). Thipmach, of course, rests entirely on the
fact that the solution for the Feynman integri(bl) as a Laurent series inis within the space
spanned by harmonic surg(N) and Riemanr{-values(;. For all Feynman integral§N) which
were determined by higher order difference equations waddhis condition to be fulfilled.

An alternative path to the solution, based on the mathealdtaamework developed in Sec. 2.2
above, is provided by thBigma package. This we want to discuss next.

3.1 ete -annihilation

The example which stems from single hadron inclugVve -annihilation is a phase space
integral for a decay process-% 4 in one-particle inclusive kinematics, see Fig. 1 on the [Ehe
scalar diagram describes the decay of a particle with imtiementumq according toq — p1 +
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p2 + p3+ p and the dashed vertical line denotes the final-state cuh&ptoduction of particles.
Our example is the master integral(Rl) from the so-calledeal-realemission and it depends on
the dimensionless variabie which is the scaled momentum fraction

_2p-q

- , 0<xe <1. 3.2
aq e (3.2)

Xe
The solution of the integration-by-parts identities leaosa difference equation of second
order [9], which reflects the underlying symmetries of thgrifean diagram. We find

(N+1—2¢)(N+2—66)Ry(N) — (N—1)(N—4&)Ra(N—2) =
(1—€)(1—3¢)(2—3¢)(2N+1—6¢)

2 (N—3¢)(N+1—3¢)

Ri(N—2), (3.3)

where R denotes the inhomogeneous part. For a complete solutiomajseehave to provide the
initial conditions R(0) and R(1). The explicit expressions are rather lengthy, in particthe
higher powers in the Laurent seriesdrand we refer the reader to [9] for details.

We have provide&igma with the difference equation (3.3) and the expression fonRerms
of harmonic sums. Subsequen8jgma was able to solve for KN) and we have found complete
agreement with the published result after insertion of tfitéai conditions RB(0) and R (1).

3.2 Deep-inelastic scattering

During the computation of the three-loop QCD correctionsh® DIS structure functionB,
and i we have encountered the Feynman integral shown in Fig. bht{rigfhe scalar diagram
in the DIS case has external momeptandq and is of the non-planar topology N®with unit
powers of the propagators. Due to the framework of the opepbduct expansion and the optical
theorem applied in DIS, we are specifically interested irintteeginary part of N@,. In momentum
space it depends on the scaling variake

—9-9

= < <1. .
TR 0<xg<1 (3.4)

XB
In Mellin space the associated difference equation is ofl thider and very difficult [8]. It has
been obtained by means of a systematic solution of the mtiegrby-parts identities and is given

by

—NO2(N)N(N —2)(3N —5)(N? - 1)

+NO22(N — 1)N(3N* — 20N + 45N? — 40N + 12)

+NO22(N — 2)N(3N* — 17N> 4- 35N — 31N + 10)
—NO2(N—3)(N—1)(N—2)%(3N—2)(N —3) = 2X(N), (3.5)

where we have pwt = 0, since the integral N& does not contain any divergences. Itis completely
finite and to the accuracy needed in the three-loop calonld8] positive powers ire were not
necessary.
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For the solution of Eqg. (3.5), we have to provide the inhonmegeis part X (which is also
finite),

X(N) = 3253+56&f\5'\i; 3 —8&?\5[\12 2)
So(N-2) . So(N-2)
N— (N—2)2
S(N-1) SN-1)
*N=1 +8(1\1—1)

SHN-3) . SaN-3
N=3 T N_3p
S(N-2) S(N-2)

N=2 T1oN—2e
s l(\IN_—ZZ)_S%I(\IN_—ll)_ sSN)

NZ 3+24 54 Z—32+92(N—12)2+56(N—12)3_48Ni1+4NZ—31
—100(N_11)2 —36(N_11) +48 +76 +20— (=N (—2453—72Nz3
&?\(I'\i; 3 —24&?’\5'\'_; 2) +8&?\§N_1 b — 165 _3(N) —48S_3(N)N
N=ra s 2
—92(N_12)2 —56(N_12)3+12NZ_31+12(N_11)2+20(N_11)3—12lj 2oljg>
(3.6)

+20S_3(N)+ 108

36 -8 +12S 5(N)+12

1

+84

—56

—108

-8 — 16S_5(N) — 485 5(N)N — 84

along with the initial conditions N&(0), NO,2(1) and NGQ»(2). Here,{ denotes the Riemann
{-function at valua.

We have again usesligma for solving the difference equation (3.5), given the exgi@s for
X from Eq. (3.6) andsigma has provided us with the correct analytical answer fonppl@nce also
the initial conditions N@,(0), NO,2(1) and NO»(2) had been supplied. The solution is given by
the following very compact expression,

2(643+ (=" (643 —5N?Ls))

NO2(N) = N2(N+1)
8(1+(-1")Ss(N)  4(1+(=DV) S5(N) 4S(N) 4

- N+1 - N+1 +SZ(N)(N+1_N+31>
8(1+(-DN) 42+ (-1)N)S.2(N) 4S(N)

+&3(N)< N2(N+1) N+1 N+1
—1273N3+ (—1)N (8—8N3Z3) +8  (4+8(—1)N) S(N)

+S-2(N) ( N3(N + 1) a N+1

L8835 o(N)  (4-4(=1)") S 32(N)  (4+12-1)")S25(N) _ 8S3(N)

N+1 N+1 N+1 N+1 '’

3.7)

where we have eliminated a number of nested sums in favorwodijots of harmonic sums through
their product algebra, leaving only four independent sufrdepth two.
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4. Summary

In these proceedings, we have presented a short introdutttithe problem of calculating
Feynman integrals at multiple loops. For single-scale lerok we have sketched how to formulate
the problem in Mellin space, how to obtain algebraic redungifor the loop integrals and, finally,
how these reductions lead to difference equations in Msfiace. While the underlying physics
problem usually places certain restrictions on the diffeeeequations, which allow for their solu-
tions to be expressed in terms of harmonic sums, and heneedoristructed with a corresponding
ansatz, it is advantageous to reconsider the problem in a gereral mathematical framework.

We have reported on progress in this direction by exploititgebraic properties of differ-
ence fields, the so-callddx*-fields. The algorithmic construction of analytical soduts to the
recursion relations for Feynman integrals over differdingles as, for instance, implemented in the
Mathematica packageSigma provides great calculational advantages. To that end, weteated
the packag&igma on two examples of Feynman integrals which had appeareaémtgerturba-
tive higher-order QCD computations fer e -annihilation and deep-inelastic scattering. With the
improved mathematical machinery both examples have beevataated with the packagigma
and we have found agreement.

In the future more generalizations or extensions are ceabki. From the need to consider
physics problems and Feynman integrals depending on feuftqales one arrives at generalized
sums [30], which in turn are connected to multiple and hatimpalylogarithms [31,32]. A related
problem is the expansion of (generalized) hypergeomatrictfons around integer or rational val-
ues in a small parameter These problems lead to recursiatiored similar to Eqgs. (1.4) or (2.1)
although with functional or parametric dependences on mar@bles. Some algorithms and im-
plementations exist [33—-36] and it will be interesting taque this line of research further within
the framework of1Z*-fields.
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