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Abstract. We consider the following problem: Given a nested sum expres-
sion, find a sum representation such that the nested depth is minimal. We
obtain symbolic summation algorithms that solve this problem for sums de-
fined, e.g., over hypergeometric, q-hypergeometric or mixed hypergeometric
expressions.

1. Introduction

Karr’s telescoping algorithm (Kar81; Kar85) based on his difference field the-
ory of ΠΣ-fields provides a general framework for symbolic summation. E.g., his
algorithm, or a simplified version presented in (Sch05c), covers summation over
hypergeometric terms (Gos78; Zei91), q-hypergeometric terms (PR97) or mixed
hypergeometric terms (BP99). More generally, one can handle expressions in terms
of indefinite nested sums or products. His algorithm is, in a sense, the discrete
counterpart of Risch’s integration algorithm (Ris69; Ris70).

As it turns out, the construction of the underlying ΠΣ-field for a given sum
expression can lead to sum representations with increased nested depth. Motivated
by this observation, we derived a difference field theory for symbolic summation
in (Sch05a; Sch07b) that refines Karr’s ΠΣ-fields. As a consequence, we obtained
new algorithms that can express nested sums in the so called depth-optimal ΠΣ∗-
extensions. Reinterpreting these difference field expressions as sequences gives then
sum representations with simplified nested depth.

In this article we show that the nested depth of such a simplified expression,
produced by our algorithm from (Sch07b), is optimal in the ring of sequence. In
order to derive this result, we exploit the fact (Sch07a) that a rather general sub-
class of ΠΣ∗-extensions, the so called generalized d’Alembertian extensions, can be
embedded in the ring of sequences, provided that the ground field can be embedded
in the ring of sequences. This construction allows us to carry over results from our
refined difference field theory (Sch07b) to the sequence setting. In particular, we
can show that sum representations in a depth-optimal ΠΣ∗-extension are always
minimal in its depth.

From an applicational point of view our algorithms are able to produce d’Alem-
bertian solutions (AP94), a subclass of Liouvillian solutions (HS99), of a given
recurrence with minimal nested depth; for applications see, e.g., (Sch04; DPSW06;
Sch07c; PS07; BBKS07; MS07). The presented algorithms are implemented in the
summation package Sigma (Sch07c), that can be executed in the computer algebra
system Mathematica.
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The general structure of this article is as follows. In Section 2 we introduce
the problem to find optimal sum representations which we supplement by concrete
examples. In Section 3 we define depth-optimal ΠΣ∗-extensions and show how
indefinite summation can be handled accordingly in such fields. After showing how
generalized d’Alembertian extensions can be embedded in the ring of sequences in
Section 4, we are ready to prove that our algorithms produce sum representations
with optimal nested depth in Section 5. Applications are presented in Section 6.

2. The problem description in the ring of sequences

Let N be the non-negative integers, let K be a field1 and consider the set of
sequences KN with elements (an)∞n=0 = 〈a0, a1, a2, . . . 〉, ai ∈ K. With component-
wise addition and multiplication we obtain a commutative ring; the field K can
be naturally embedded by identifying k ∈ K with the sequence k := 〈k, k, k, . . . 〉.
Given a sequence a and a nonnegative integer i, a(i) denotes the i-th entry in a.

In order to turn the shift-operation

S : 〈a0, a1, a2, . . . 〉 7→ 〈a1, a2, a3, . . . 〉 (2.1)

to an automorphism, we follow the construction from (PWZ96, Sec. 8.2): We define
an equivalence relation ∼ on KN with (an)∞n=0 ∼ (bn)∞n=0 if there exists a d ≥ 0 such
that ak = bk for all k ≥ d. The equivalence classes form a ring which is denoted by
S(K); the elements of S(K) will be denoted, as above, by sequence notation. Now
it is immediate that S : S(K) → S(K) with (2.1) forms a ring automorphism.

In general, a difference ring (resp. difference field) (A, σ) is defined as a ring A
(resp. field) with a ring automorphism (resp. field automorphism) σ : A→ A. The
set of constants constσA = {k ∈ A |σ(k) = k} forms a subring2 (resp. subfield) of
A. We call constσA the constant field of (A, σ). A difference ring (resp. difference
field) (E, σ) is a difference ring extension (resp. difference field extension) of a
difference ring (resp. difference field) (A, σ′) if A is a subring (resp. subfield) of E
and σ′(f) = σ(f) for all f ∈ A; we call (A, σ′) also a sub-difference ring (resp. field)
of (E, σ). Since σ and σ′ agree on A, we do not distinguish them anymore.

Definition 2.1. The difference ring (S(K),S) is called the ring of K-sequences, or
in short, the ring of sequences.
a ∈ S(K) is called rational (resp. hypergeometric) if there is a rational function
p(n) ∈ K(n) such that a(n) = p(n) (resp. a(n+1)

a(n) = p(n)) for all n ≥ r for some
r ∈ N. The difference ring of all rational sequences is denoted by (R(K),S).
Let K = K′(q) be a transcendental extension. a is called q-rational (resp. q-
hypergeometric) if there is a rational function p(n) ∈ K(n) s.t. a(n) = p(qn)
(resp. a(n+1)

a(n) = p(qn)) for all n ≥ r for some r ∈ N. The difference ring of all
q-rational sequences is denoted by (qR(K),S).
Let K = K′(q1, . . . , ql) be a transcendental extension. a is called mixed ratio-
nal (resp. mixed hypergeometric, cf. (BP99)) if there is a rational function of the
form p(n, n1, . . . , nl) ∈ K(n, n1, . . . , nl) such that a(n) = p(n, qn

1 , . . . , qn
l ) (resp.

a(n+1)
a(n) = p(n, qn

1 , . . . , qn
l )) for all n ≥ r for some r ∈ N. The difference ring of all

mixed rational sequences is denoted by (qRl(K),S).

1All fields and rings are commutative and contain the rational numbers Q.
2Subsequently, we assume that constσA is a field, which we usually denote by K.
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We introduce the sum ring over a subring S of S(K); here we can choose, e.g.,
S = R(K) or S = qRl(K).

Definition 2.2. Let (S,S) be a sub-difference ring of (S(K),S). The sum ring
over S, denoted by (Σ(S),S), is the smallest sub-difference ring of (S(K),S) s.t.
(1) S ⊆ Σ(S),
(2) f ∈ Σ(S) implies that F ∈ Σ(S) if S(F ) = F + f .

In other words, Σ(S) consists of all polynomial expressions of indefinite nested
sums over S. Note that the sum ring Σ(R(K)) is a subring of Liouvillian sequences;
see (HS99, Def. 3.3)

Example 2.3. Consider the sequences a = 〈A(n)〉n≥0 and b = 〈B(n)〉n≥0 with
A(n) =

∑n
k=1 k and B(n) = n(n+1)

2 . Clearly, a = b ∈ Σ(R(Q)).

Example 2.4. Subsequently, we denote the harmonic numbers of order r > 0
by H

(r)
n =

∑n
k=1 1/kr; we set Hn = H

(1)
n . Then 〈H(r)

n 〉n≥0 ∈ Σ(R(Q)) for r ∈
N \ {0}. Moreover, the sequences 〈A(n)〉n≥0, 〈W (n)〉n≥0, 〈B(n)〉n≥0 represented by
the indefinite nested sum expressions

A(n) =
n∑

r=1

r∑

l=1

H2
l + H

(2)
l

l
+

r∑

l=1

Hl

l

r
, W (n) =

n∑
r=1

r∑

l=1

2
l∑

i=1

Hi

i

l
+

r∑

l=1

Hl

l

r
,

B(n) = 1
12

(
H4

n + 2H3
n + 6(Hn + 1)H(2)

n Hn + 3
(
H(2)

n

)2 + (8Hn + 4)H(3)
n + 6H(4)

n

)

(2.2)

are also elements from Σ(R(Q)). Note that for all n ∈ N,

A(n) = W (n) = B(n),

i.e., A(n),W (n), B(n) represent the same sequence. But, from the symbolic sum-
mation point of view, they differ in its representation depth.

We introduce the measure of depth that is defined for a given nested sum ex-
pression; for a formal description of such representations (like term algebras) we
refer, e.g., to (NP97).

Definition 2.5. Let (S,S) be a sub-difference ring of (S(K),S) with a function
δ : S→ N. F̄ (n) is a sum expression over S, if F̄ (n) is an expression in terms of
indefinite nested sums over S; by definition there is an F ∈ Σ(S) s.t. F (n) = F̄ (n)
for all n ≥ r for some r ∈ N. The δ-depth of F̄ (n) is defined as follows.
(1) If no sum quantifiers occur in F̄ (n), i.e., F ∈ S, the δ-depth of F̄ (n) is δ(F ).
(2) Let f̄(n) be a sum expression over S with δ-depth d. Then F̄ (n) =

∑n
k=r f̄(k),

for some r ∈ N properly chosen, has δ-depth d + 1.
(3) Let f̄1(n) and f̄2(n) be sum expressions over S with δ-depths d1 and d2, respec-

tively. Then F̄ (n) = f̄1(n)+f̄2(n) or F̄ (n) = f̄1(n)f̄2(n) have δ-depth max(d1, d2).
The δ-depth of F ∈ Σ(S) is the minimal δ-depth of a sum expression F̄ (n) such
that F (n) = F̄ (n) for all n ≥ r for some r ∈ N. Such an F̄ (n) with F (n) = F̄ (n)
for all n ≥ r for some r ∈ N with minimal δ-depth is called sum representation of F
with optimal δ-depth.
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Remark. Note that by simple term rewriting sum expressions might cancel which
then leads to better depth representations. We overcome this phenomenon later by
representing such expressions in ΠΣ∗-fields where the elements are in reduced form
(the numerators and denominators are coprime); see Definition 3.6 below.

Example 2.6. Define δ : R(Q) → N by

δ(a) =

{
0, if a = 〈a, a, a, . . . 〉 for some a ∈ Q
1, otherwise.

(2.3)

In Example 2.3 the δ-depths of A(n) is 2. Since B(n) has no sum quantifier, the
δ-depth of B(n) is δ(b) = 1. Clearly, the δ-depth of a is 1 and B(n) is a sum
representation of a with optimal δ-depth.
In Example 2.4 the δ-depth of A(n), W (n) and B(n) are 4, 5 and 2, respec-
tively. Note that B(n) has minimal δ-depth, i.e., the δ-depth of the sequence
a = 〈A(n)〉n≥0 = 〈W (n)〉n≥0 = 〈B(n)〉n≥0 is 2 and B(n) is a sum representation
with optimal δ-depth.

Subsequently, we consider the following summation problem.

DOS: Depth Optimal Summation. Given a sub-difference ring (S,S) of (S(K),S)
with a function δ : S→ N and given a sum expression over S that represents a
sequence a ∈ Σ(S); find a sum representation of a with optimal δ-depth.

E.g., we shall derive algorithms if (S,S) is the rational or the mixed sequence
ring over K with the canonic depth function

δ(a) =

{
0, if a = 〈a, a, a, . . . 〉 for some a ∈ K
1, otherwise.

(2.4)

More generally, (S,S) can be a subring of S(K) that contains, e.g., hypergeometric
sequences or q-hypergeometric sequences; see Section 5 below.

3. Telescoping in refined difference fields

Loosely speaking, the telescoping problem can be formulated as follows:
Given a term expression f(k) that represents a sequence f = 〈f(k)〉k≥0 ∈ S(K);
find an “appropriate” term expression g(k) such that

g(k + 1)− g(k) = f(k + 1) (3.1)

holds for all k ≥ r for some r ∈ N. Then summing this equation over k gives

g(n)− g(r) =
n∑

k=r+1

f(k).

To sum up, the sequence

g = 〈0, . . . , 0, g(r), g(r + 1), g(r + 2), . . . 〉 − 〈g(r)〉n≥0 (3.2)

of the sum
∑n

k=r+1 f(k) is represented by the “appropriate” term expression g(n).

This task has been accomplished for the rational case (f , g ∈ R(K)), see (Abr71),
for the q-rational case (f , g ∈ qR(K)), see e.g. (PS95), or the mixed rational case
(f , g ∈ qRl(K)), see (BP99). Moreover, there are algorithms for the (q–)hyper-
geometric and the mixed hypergeometric case, see (Gos78; PR97; BP99).
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More generally, we consider the telescoping problem in ΠΣ∗-fields in which one
can represent expressions in terms of indefinite nested sums and products.

Definition 3.1. A difference field extension (F(t), σ) of (F, σ) is called a ΠΣ∗-
extension if both difference fields share the same field of constants, t is transcen-
dental over F, and σ(t) = t + a for some a ∈ F∗ (a sum) or σ(t) = a t for some
a ∈ F∗ (a product). If σ(t)/t ∈ F (resp. σ(t) − t ∈ F), we call the extension
also a Π-extension (resp. Σ∗-extension). In short, we say that (F(t1) . . . (te), σ) is a
ΠΣ∗-extension (resp. Π-extension, Σ∗-extension) of (F, σ) if the extension is given
by a tower of ΠΣ∗-extensions (resp. Π-extensions, Σ∗-extensions). We call a ΠΣ∗-
extension (F(t1) . . . (te), σ) of (F, σ) with σ(ti) = αi ti+βi generalized d’Alembertian,
or in short polynomial, if αi ∈ F and βi ∈ F[t1, . . . , ti−1] for all 1 ≤ i ≤ e. A ΠΣ∗-
field (K(t1) . . . (te), σ) over K is a ΠΣ∗-extension of (K, σ) with constant field K.

To be more precise, we consider the following subproblems:
R1 (Representation 1): Represent f ∈ S(K), given as an expression f(k) in terms of

nested sums and products, in a ΠΣ∗-field (F, σ) with f ∈ F.
T (Telescoping): Solve the telescoping problem (3.3) in (F, σ): Given f ∈ F; find a

g in F or in an appropriate extension of F such that

σ(g)− g = f. (3.3)

R2 (Representation 2): Reinterpret the result g as an expression g(k) in terms of
nested sums and products such that (3.1) holds. This finally leads to the sum
sequence (3.2) of

∑n
k=r+1 f(k).

3.1. A straightforward approach. The following result from (Kar81) gives a
first glance how these tasks can be treated.

Theorem 3.2. Let (F(t), σ) be a difference field ext. of (F, σ) with σ(t) = a t + f .
(1) (F(t), σ) is a Σ∗-extension of (F, σ) iff a = 1 and there is no g ∈ F s.t. (3.3).
(2) (F(t), σ) is a Π-extension of (F, σ) iff t 6= 0, f = 0 and there are no g ∈ F∗ and

m > 0 such that σ(g) = amg.

Loosely speaking, we can adjoin a sum formally by a Σ∗-extension if and only if
there does not exist a solution of the telescoping problem.

Example 3.3. We start with the ΠΣ∗-field (Q(k), σ) over Q with σ(k) = k + 1.
Now we consider the sum expressions of A(k) in (2.2) (n replaced by k), say in the
order

(1)→ Hk =
k∑

i=1

1
i

(2)→ H(k) =
k∑

i=1

Hi

i

(3)→ H
(2)
k =

k∑

i=1

1
i2

(4)→ a(k) =
k∑

i=1

H2
i + H

(2)
i

i

(5)→ A(k),

(3.4)

and represent them in terms of Σ∗-extensions following Theorem 3.2.1.
(1) Using, e.g., Gosper’s algorithm (Gos78), Karr’s algorithm (Kar81) or a sim-

plified version of it presented in (Sch05c), we check that there is no g ∈ Q(k)
with σ(g) = g + 1

k+1 . Hence, by Theorem 3.2.1 we adjoin Hk in form of the
Σ∗-extension (Q(k)(h), σ) of (Q(k), σ) with σ(h) = h + 1

k+1 ; note that the shift
behavior Hk+1 = Hk + 1

k+1 is reflected by the automorphism σ.
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(2) With the algorithms from (Kar81) or (Sch05c) we show that there is no g ∈
Q(k)(h) with σ(g) = g + σ(h)

k+1 . Thus we take the Σ∗-extension (Q(k)(h)(H), σ) of

(Q(k)(h), σ) with σ(H) = H + σ(h)
k+1 and express H(k) by H.

(3) With the algorithms from above, we find g = 2H − h2 ∈ Q(k)(h)(H) with
σ(g) = g + 1

(k+1)2 , and represent3 H
(2)
k by g.

(4) We check algorithmically that there is no g ∈ Q(k)(h)(H) with σ(g) = g +
2σ(H)

k+1 ; thus we rephrase a(k) as a in the Σ∗-extension (Q(k)(h)(H)(a), σ) of

(Q(k)(h)(H), σ) with σ(a) = a + 2σ(H)
k+1 .

(5) Finally, we fail to find a g ∈ Q(k)(h)(H)(a) such that σ(g) = g + σ(H+a)
k+1 ;

thus we represent A(k) with A in the Σ∗-extension (Q(k)(h)(H)(a)(A), σ) of
(Q(k)(h)(H)(a), σ).

Reformulating A as a sum expression yields W (k) (n replaced by k) from (2.2).

The product case works similarly; for more information and problematic cases
we refer to (Sch05b). In this article, we consider mainly the following special case.
Suppose that K = K′(q1, . . . , qe) is a transcendental extension and consider the
ΠΣ∗-field (K(k), σ) with σ(k) = k + 1. Applying Thm. 3.2.2 iteratively shows that
(K(k)(t1) . . . (te), σ) is a Π-extension of (K(k), σ) with σ(t1) = qiti for 1 ≤ i ≤ e;
this result is a direct consequence of (Sch07a, Thm. 6.1) and (Sch07b, Cor. 16)).

Definition 3.4. We call such a ΠΣ∗-field (K(k)(t1) . . . (te), σ) (e ≥ 0) introduced
above a mixed ΠΣ∗-field over K with depth 1.

We remark that the sums occurring in W (n) pop up only in the numerator. Here
the following result plays an important role.

Theorem 3.5 ((Sch07a)). Let (F(t1) . . . (te), σ) be a polynomial ΠΣ∗-extension of
(F, σ). For all g ∈ F[t1, . . . , te], σ(g)−g ∈ F[t1, . . . , te] if and only if g ∈ F[t1, . . . , te].
Namely, if, e.g., A(n) consists only of sums that occur in the numerator, then by
solving iteratively the telescoping problem, it is guaranteed that also the telescoping
solutions will have only sums that occur in the numerators.

Note that the representation depth of W (n) is reflected by the nested depth of
the underlying difference field constructed in Example 3.3.

Definition 3.6. Let (F, σ) be a ΠΣ∗-field over K with F := K(t1) . . . (te) where
σ(ti) = ai ti or σ(ti) = ti + ai for 1 ≤ i ≤ e. The depth function for elements of F,
δK : F→ N, is defined as follows.
(1) For any g ∈ K, δK(g) := 0.
(2) If δK is defined for (K(t1) . . . (ti−1), σ) with i > 1, we define δK(ti) := δK(ai)+1;

for g = g1
g2
∈ K(t1) . . . (ti), with g1, g2 ∈ K[t1, . . . , ti] coprime, we define

δK(g) := max({δK(ti)K | ti occurs in g1 or g2} ∪ {0}).
The depth of (F, σ) is max(δK(t1), . . . , δK(te), 0). More generally, the extension depth
of a ΠΣ∗-extension (F(x1) . . . (xr), σ) of (F, σ) is max(δK(x1), . . . , δK(xr), 0).

Example 3.7. In Example 3.3 we have δQ(k) = 1, δQ(h) = 2, δQ(H) = 3, δQ(a) =
4, and δQ(A) = 5. The depth of (Q(k)(h)(H)(a)(A), σ) is 5.

3Note that there is no way to adjoin a Σ∗-extension h2 of the desired type σ(h2) = h2 +1/(k+
1)2, since otherwise σ(g − h2) = (g − h2), i.e., constσQ(k)(h)(H)(h2) 6= Q.



SYMBOLIC SUMMATION FINDS OPTIMAL NESTED SUM REPRESENTATIONS 7

3.2. A refined approach. With the straightforward approach sketched in Exam-
ple 3.3 we obtain an alternative sum representation B(n) for A(n) with larger depth.
Motivated by such problematic situations, Karr’s ΠΣ∗-fields have been refined in
the following way; see (Sch05a; Sch07b).

Definition 3.8. Let (F, σ) be a ΠΣ∗-field over K. A difference field extension
(F(s), σ) of (F, σ) with σ(s) = s+f is called depth-optimal Σ∗-extension, in short Σδ-
extension, if there is no Σ∗-extension (E, σ) of (F, σ) with extension depth ≤ δK(f)
such that there is g ∈ E as in (3.3). A ΠΣ∗-extension (F(t1) . . . (te), σ) of (F, σ) is
depth-optimal, in short a ΠΣδ-extension, if all Σ∗-extensions are depth-optimal. A
ΠΣδ-field consists of Π- and Σδ-extensions.

Note that a Σδ-extension is a Σ∗-extension by Theorem 3.2.1. Moreover, a ΠΣ∗-field
(F, σ) with depth ≤ 2 and k ∈ F such that σ(k) = k + 1 is always depth-optimal;
see (Sch07b, Prop. 19). In particular, a mixed ΠΣ∗-field with depth 1 is a ΠΣδ-field.
Given any ΠΣδ-field, we obtain the following crucial property (Sch07b, Result 3).

Theorem 3.9. Let (F, σ) be a ΠΣδ-field over K. Then for any f, g ∈ F such
that (3.3) we have

δK(f) ≤ δK(g) ≤ δK(f) + 1. (3.5)

In other words, in a given ΠΣδ-field we can guarantee that the depth of a telescoping
solution is not bigger than the sum itself.

Example 3.10. We consider again the sum expressions in (3.4), but this time we
use the refined algorithm presented in (Sch07b).
(1) As in Example 3.10 we compute the ΠΣδ-field (Q(k)(h), σ) and represent Hk

with h. From this point on, our new algorithm works differently.
(2) Given (Q(k)(h), σ), we find the Σδ-extension (Q(k)(h)(h2), σ) of (Q(k)(h), σ)

with σ(h2) = h2+ 1
(k+1)2 in which we find H ′ = 1

2 (h2+h2) such that σ(H ′)−H ′ =
σ(h)
k+1 . Hence we represent H(k) by H ′.

(3) H
(2)
k can be represented by h2 in the already constructed ΠΣδ-field.

(4) Our algorithm finds the Σδ-extension (Q(k)(h)(h2)(h3), σ) of (Q(k)(h)(h2), σ)
with σ(h3) = h3 + 1

(k+1)3 together with a′ = 1
3 (h3 + 3hh2 + 2h3) such that

σ(a′)− a′ = σ(h2+h2)
k+1 ; hence we rephrase a(k) as a′.

(5) Finally, we find the Σδ-ext. (Q(k)(h)(h2)(h3)(h4), σ) of (Q(k)(h)(h2)(h3), σ)
with σ(h4) = h4 + 1

(k+1)4 and get A′ = 1
12 (h4 + 2h3 + 6(h + 1)h2h + 3h2

2 + (8h +

4)h3 + 6h4) s.t. σ(g)− g = σ(g1+g2)
k+1 ; A(k) is represented by A′.

Reinterpreting A′ as a sum expression gives B(k) (n replaced by k) from (2.2); see
also Example 5.2.

To sum up, we can compute step by step a ΠΣδ-field in which we can represent
nested sum expressions. To be more precise, we will exploit the following result.

Theorem 3.11. Let (F, σ) be a ΠΣδ-field over K and f ∈ F.
(1) There is a Σδ-extension (E, σ) of (F, σ) in which we have g ∈ E such that (3.3);

(E, σ) and g can be given explicitly.
(2) In particular, suppose that (F, σ) with F = G(x1, . . . , xr) is a polynomial ΠΣδ-

extension of (G, σ) where (G, σ) is a mixed ΠΣδ-field with depth 1. If f ∈
G[x1 . . . , xr], then (E, σ) from part (1) can be given as a polynomial ΠΣδ-ex-
tension of (G, σ); if E = F(t1, . . . , te), then g ∈ G[x1, . . . , xr][t1, . . . , te].



8 CARSTEN SCHNEIDER

Proof. The first follows by (Sch07b, Result 1). The second part follows by Result 2,
Lemma 44, and Corollary 60 of (Sch07b). ¤

4. Embedding of polynomial ΠΣ∗-extensions in S(K)

In Examples 3.3 and 3.10 we illustrated how subtasks R1, T, and R2 can be
handled in ΠΣ∗-fields. In the following we will make steps R1 and R2 more precise.

Namely, following (Sch07a) we will embed the polynomial ring F[t1, . . . , te] of a
generalized d’Alembertian extension (F(t1) . . . (te), σ) of (F, σ) with constant field
K in the ring of sequences (S(K),S), provided that (F, σ) can be embedded in
(S(K),S). Then by constructing the monomorphism accordingly, R1 is accom-
plished by τ−1(f) and R2 is carried out by τ(g); see Example 5.2 below.

A difference ring homomorphism τ : A1 → A2 between difference rings (A1, σ1)
and (A2, σ2) is a ring homomorphism with the additional property that τ(σ1(f)) =
σ2(τ(f)) for all f ∈ A1. If (A1, σ) and (A2, σ) are difference ring extensions of (G, σ)
and τ(g) = g for all g ∈ G, we call τ also a G-homomorphism. If τ is injective, we
call τ a difference ring monomorphism (resp. a G-monomorphism).

More precisely, we will construct a difference ring monomorphism of the form
τ : F[t1, . . . , te] → S(K) such that the constants k ∈ K are mapped to

k = 〈k, k, . . . 〉.
We will call such a difference ring monomorphism also a K-embedding.

Let (A, σ) be a difference ring with constant field K and let τ : A→ S(K) be a
K-embedding. Then by definition of τ the following holds: For all c ∈ K there is a
d ∈ N such that

∀i ≥ d : (τ(c))(i) = c; (4.1)
for all f, g ∈ A there is a d ∈ N such that

∀i ≥ d : (τ(f g))(i) = (τ(f))(i) (τ(g))(i), (4.2)

∀i ≥ d : (τ(f + g))(i) = (τ(f))(i) + (τ(g))(i); (4.3)

and for all f ∈ A and j ∈ Z there is a d ∈ N such that

∀i ≥ d (τ(σj(f)))(i) = (τ(f))(i + j). (4.4)

To take into account the constructive aspects, we introduce the following functions.

Definition 4.1. Let (A, σ) be a difference ring and let τ : A→ S(K) be a K-
embedding. τ is called operation-bounded by L : A→ N if for all f ∈ A and j ∈ Z
with d = d(f, j) := L(f) + max(0,−j) we have (4.4) and for all f, g ∈ A with
d = d(f, g) := max(L(f), L(g)) we have (4.2) and (4.3); such a function is also
called o-function for τ .

Example 4.2. Given the ΠΣδ-field (K(k), σ) overK with σ(k) = k+1, we construct
a K-embedding (K(k), σ) into the ring of sequences (S(K),S). We start with the
K-embedding τ0 : K→ S(K) where τ0(c) = 〈c, c, c, . . . 〉 for all c ∈ K; for the o-
function we can set L0(c) = 0 for all c ∈ K. Now we define the difference ring
homomorphism τ1 : K(k) → S(K) with τ1(p

q ) = 〈F (k)〉k≥0, p and q are coprime
polynomials, such that

F (k) =

{
0 q(k) = 0
p(k)
q(k) q(k) 6= 0.
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For the o-function L1(
p(k)
q(k) ) we take the maximal non-negative integer l such that

q(k + l) 6= 0 for all k ∈ N. Note: since p(k), q(k) have only finitely many roots,
τ1(p

q ) = 0 if and only if p(k)
q(k) = 0. Hence τ1 is injective.

Since τ1(K(k)) = R(K), τ1 forms an isomorphism between K(k) and R(K).

Summarizing, the ΠΣδ-field (K(k), σ) with σ(k) = k + 1 can be embedded into
(S(K),S). More generally, if (F, σ) is a mixed ΠΣδ-field with depth 1, then there
is a K-embedding τ : F→ S(K) and an o-function L, which can be given explicitly;
for more details see (Sch07a) which relies on (BP99). As a consequence, we obtain
a difference ring isomorphism between qRl(K) and mixed ΠΣδ-fields with depth 1.

Example 4.3. Take (K(k), σ) and τ1 from Example 4.2 and consider the Σδ-
extension (K(k)(h), σ) of (K(k), σ) with σ(h) = h + 1

k+1 . We define the difference
ring homomorphism τ2 : K(k)[h] → S(K) with τ2(h) = 〈Hn〉n≥0 and

τ2(
d∑

i=0

fih
i) =

d∑

i=0

τ1(fi)τ2(h)i.

As o-function we can take L2(
∑d

i=0 fih
i) = max(L1(fi)|0 ≤ i ≤ d). Note that

τ2 is injective. Namely, suppose otherwise. Then we can take f =
∑d

i=0 fih
i ∈

K(k)[h] \ {0} with deg(f) = d minimal such that τ2(f) = 0. Since τ1 is injective,
f /∈ K(k). Define

g := σ(fd)f − fdσ(f) ∈ K(k)[h].
Note that deg(g) < d by construction. Moreover,

τ2(g) = τ1(σ(fd))τ2(f)− τ1(fd)τ2(σ(f)).

Since τ2(f) = 0 by assumption and τ2(σ(f)) = S(τ2(f)) = S(0) = 0, it follows
τ2(g) = 0. By the minimality of deg(f), g = 0, i.e., σ(fd)f − fdσ(f) = 0, or equiv-
alently, σ(f)

f = σ(fd)
fd

∈ K(k). As f /∈ K(k), this contradicts (Kar81, Theorem 4).

Example 4.4. Take (K(k), σ) and τ1 from Example 4.2 and consider the Π-
extension (K(k)(b), σ) of (K(k), σ) with σ(b) = k+1

2(2k+1)b. Since
(

2(k + 1)
k

)−1

=
k + 1

2(2k + 1)

(
2k

k

)−1

,

it easy to see that τ2 : K(k)[b] → S(K) with τ2(b) = 〈(2n
n

)−1〉n≥0 and

τ2(
d∑

i=0

fib
i) =

d∑

i=0

τ1(fi)τ2(b)i

forms a difference ring homomorphism; note that τ2(b) has no zero entries by con-
struction. We define the o-function by L2(

∑d
i=0 fib

i) = max(L1(fi)|0 ≤ i ≤ d)).
Suppose that τ2 is not injective. Then take f =

∑d
i=0 fib

i ∈ K(k)[b] \ {0} with
deg(f) = d minimal such that τ2(f) = 0. Similarly to Example 4.3, we can con-

clude that σ(f)
f = σ(fd)

fd

(
k+1

2(2k+1)

)d

∈ K(k). By (Kar81, Theorem 4), f = u bm

where m > 0 and u ∈ K(k)∗. Thus, 0 = τ2(f) = τ1(u)τ2(b)m. Since τ1(u) 6= 0
(τ1 is injective and u 6= 0), τ2(b) has infinitely many zeros; a contradiction.

More generally, we arrive at the following result; see (Sch07a) for a detailed proof.
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Lemma 4.5. Let (F(t1) . . . (te)(t), σ) be a polynomial ΠΣ∗-extension of (F, σ) with
K := constσF and σ(t) = α t + β. Let τ : F[t1] . . . [te] → S(K) be a K-embedding.
(1) Then there is a K-embedding τ ′ : F[t1] . . . [te][t] → S(K) with τ ′(f) = τ(f) for

all f ∈ F[t1, . . . , te] and

(τ ′(t))(k) =





c

k∏

i=r

(τ(α))(i− 1) if σ(t) = α t

k∑

i=r

(τ(β))(i− 1) + c if σ(t) = t + β,

(4.5)

for some r ∈ N and c ∈ K; we require c 6= 0, if β = 0.
(2) If there is an o-function L for τ , there is an o-function L′ for τ ′; if L is given

explicitly, the lower bound r in (4.5) and L′ can be given explicitly.

Applying Lemma 4.5 iteratively, gives the following theorem.

Theorem 4.6. Let (F(x1) . . . (xr)(t1) . . . (te), σ) be a polynomial ΠΣ∗-extension
of (F, σ) with K := constσF. If τ : A→ S(K) with A = F[x1, . . . , xr] is a K-
embedding with o-function L, there is a K-embedding τ ′ : A[t1, . . . , te] → S(K) with
an o-function L′ such that τ ′(f) = τ(f) for all f ∈ A. If (F, σ) is a mixed ΠΣδ-field
with depth 1, τ ′ and L′ can be given explicitly.

Example 4.7. E.g., take the ΠΣδ-field (F, σ) with F = K(k) and σ(k) = k +
1 together with the K-embedding τ : F→ S(K) as carried out in Example 4.2.
Moreover, take a Π-extension (F(x1) . . . (xr), σ) of (F, σ) such that σ(xi)

xi
∈ F for

1 ≤ i ≤ r. Then we can extend the K-embedding τ to τ ′ : F[x1, . . . , xe] → S(K)
such that for all 1 ≤ i ≤ e,

(τ(xi))(n) = c

n∏

k=r

αi(k)

for some r ∈ N, c ∈ K∗ and α(k) ∈ K(k) such that α(k) = τ(σ(xi)
xi

)(k) for all
k ≥ r. In other words, we can model a finite set of hypergeometric sequences
which do not contain algebraic relations. Similarly, we are in the position to handle
q-hypergeometric sequences or mixed hypergeometric sequences.

Example 4.8. E.g., take the ΠΣδ-field (Q(k), σ) with σ(k) = k + 1 together with
the Q-embedding τ : Q(k) → S(Q) as carried out in Ex. 4.2 (K = Q). Moreover,
consider the ΠΣδ-field (Q(k)(h)(h1)(h2)(h3)(h4), σ) from Ex. 3.10. Then we obtain
the Q-embedding τ ′ : Q(k)[h, h2, h3, h4] → S(Q) such that τ ′(f) = τ(f) for all f ∈
Q(k) and such that τ ′(h) = 〈Hn〉n≥0 and τ ′(hi) = 〈H(i)

n 〉n≥0 for 2 ≤ i ≤ 4.

Remark 4.9. In (Sch07a) we constructed this K-embedding τ : F[t1, . . . , te] → S(K)
in order to carry over the algebraic independence of ΠΣ∗-extensions into (S(K),S).
In particular, if we set S := τ(F[t1, . . . , te]), then the sub-difference ring (S,S) of
(S(K),S) and (F[t1, . . . , te], σ) are isomorphic. This result has direct implications
in symbolic summation: E.g., the summation principles telescoping, creative tele-
scoping, parameterized telescoping, or recurrence solving in S and in F[t1, . . . , te]
are exactly the same thing; for more details of these principles we refer to (PWZ96)
for the (q–)hypergeometric case and to (Sch07c) for the general ΠΣ∗-field case.

In the next section we shall use this K-embedding construction τ in order to
carry over the depth-behavior (see Theorem 3.9) to (S(K),S). As a consequence,
we can then solve problem DOS.
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5. Finding optimal nested sum representations

Suppose that we have represented our basic summation objects in terms of indef-
inite nested sums and products in a well chosen ΠΣδ-field. More precisely, suppose
that we are given a mixed ΠΣδ-field (F, σ) over K with depth 1 and a polynomial
ΠΣδ-extension (F(x1) . . . (xr), σ) of (F, σ). Furthermore, we assume that we are
given a K-embedding

τ : F[x1, . . . , xr] → S(K) (5.1)
which is constructed explicitly by iterative application of Lemma 4.5. This leads
directly to the sub-difference ring (S,S) of (S(K),S) with

S := τ(F[x1, . . . , xr]).

The following remarks are crucial. From the algorithmic point of view, the ele-
ments of S are given by a ∈ F[x1, . . . , xr] and we can link them to S(K) with τ(a).
From the symbolic summation point of view, we represent the sequences from S
by indefinite nested sum and product expressions that we find by applying the
K-embedding τ to a. In a nutshell, we have full control on S or F[t1, . . . , te], and
can switch between the nested sum-product representation and the ΠΣδ-field rep-
resentation in an algorithmic fashion. In this way we can model rational-sequences
(see Example 4.2), q-rational sequences, or mixed rational sequences. Moreover,
hypergeometric sequences, q-hypergeometric sequences, or mixed hypergeometric
sequences can be handled which are transcendental to each other; see, e.g., Exam-
ple 4.4 or, more generally, Example 4.7 for the hypergeometric case. Furthermore,
sum expressions over such sequences can be represented accordingly in S; see, e.g.,
Example 4.3 and Example 4.8.

Now define

δ :
{
S → N
f 7→ δK(τ−1(f)); (5.2)

note that δ gives the nested depth of the sequences as they are described in the
underlying ΠΣδ-field. Then we solve problem DOS for such a given S as follows.

A solution to DOS. Givena A ∈ Σ(S) in terms of a sum expression A(n) over S.
Find a Σδ-extension D := (F(x1) . . . (xr)(s1) . . . (su), σ) of (F(x1) . . . (xr), σ)
such that D is a polynomial extension of (F, σ) and find a K-embedding

τ ′ : F[x1, . . . , xr][s1, . . . , su]︸ ︷︷ ︸
=:A

→ S(K) (5.3)

by iterative application of Lemma 4.5 (starting with (5.1)) with the following
properties: We obtain an a ∈ A such that τ ′(a) = A and such that d := δK(a)
is the δ-depth of A.

aAs mentioned above, we assume that we have full control on the elements of S in form of
nested sum-product expressions or equivalently on the corresponding elements of F[t1, . . . , te];
the sums over S from Σ(S) are given in form of nested sums that are specified by the user.

More precisely, in Theorem 5.1 we will show that a sequence A ∈ Σ(S) can be
represented in a ΠΣδ-field algorithmically just as required in our solution to DOS
presented above. Finally, in Theorem 5.5 we prove that any such representation
in a ΠΣδ-field, in particular, our constructed one, has optimal δ-depth d. Reinter-
preting those elements as nested sums and products using (5.3) gives then a sum
representation of A with optimal δ-depth d.
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Theorem 5.1. Let (F(x1) . . . (xr), σ) be a ΠΣδ-field over K and (5.1) be a K-
embedding as stated above; set S := τ(F[x1, . . . , xr]), and define (5.2). Let A ∈ Σ(S)
be given by a sum expression A(n) over S with δ-depth d. Then there is a Σδ-
extension D := (F(x1) . . . (xr)(s1) . . . (su), σ) of (F(x1) . . . (xr), σ) such that D is a
polynomial extension of (F, σ) and there is a K-embedding (5.3) with the following
property: There is an a ∈ A such that τ(a) = A and such that δK(a) ≤ d. This
extension, τ ′ and a can be given explicitly.

Proof. If d = 0, then A ∈ S is given as an indefinite nested sum and product
expression and we get a := τ−1(A) ∈ F[x1, . . . , xr] as required; by assumption, this
construction can be given explicitly.
Now suppose that the statement holds for sum expressions with δ-depth ≤ d, and let
A ∈ Σ(S) be given by a sum expression A(n) with δ-depth d+1. By assumption take
a Σδ-extension D := (F(x1) . . . (xr)(s1) . . . (su), σ) of (F(x1) . . . (xr), σ) such that D
is a polynomial extension of (F, σ) and let τ : F[x1, . . . , xr][s1, . . . , su] → S(K) be a
K-embedding with the following property: For any expression F (n) in A(n) with
δ-depth ≤ d we are given explicitly f ∈ F[x1, . . . , xr][s1, . . . , su] such that τ(f) = F
with F (n) = F (n) all n ≥ r for some r ∈ N and such that δK(f) ≤ d. Since
A(n) has δ-depth d + 1, there pops up a sum of the form B(n) =

∑n
k=r+1 F (k)

where F (k) has δ-depth d. Take f ∈ F[x1, . . . , xr][s1, . . . , su] with (τ(f))(k) =
F (k + 1) for all k ≥ L(f). Then by Theorem 3.11 we can take a Σδ-extension
D := (F(x1) . . . (xr)(s1) . . . (su)(t1) . . . (te), σ) of (F(x1) . . . (xr)(s1) . . . (su), σ) such
that D a polynomial extension of (F, σ) and in which we have g ∈ A with A :=
F[x1, . . . , xr][s1, . . . , su][t1, . . . , te] such that (3.3). Moreover, we can extend the
embedding to τ : A→ S(K) explicitly and obtain a corresponding o-function L′ by
Theorem 4.6. Take l := max(r, L(f), L′(g)) + 1 and define c :=

∑l
k=r+1 F (k) −

(τ(g))(l − 1). Then for all n ≥ l,

(τ(g + c))(n) = (τ(σ−1(g)+σ−1(f)))(n)+ c = (τ(g))(n−1)+(τ(f))(n−1)+ c

= (τ(g))(n− 1) + F (n) + c = · · · = (τ(g))(l − 1) +
n∑

k=l

F (k) + c = B(n).

Since δK(g) ≤ δK(f) + 1 by Thm. 3.9, δK(g + c) = δK(g) ≤ δK(f) + 1 ≤ d + 1.
Note that the Σδ-extension with g and the K-embedding τ can be given explicitly;
moreover, we can give L′ and therefore l and c explicitly. We proceed for all sums
with δ-depth d + 1 in A(n) and complete the induction step. ¤
We remark that this translation mechanism presented in Theorem 5.1 is imple-
mented in the summation package Sigma (Sch07c).

Example 5.2. Consider the ΠΣδ-field (Q(k)(h)(h2)(h3)(h4), σ) from Example 3.10
and the Q-embedding τ ′ : Q(k)[h, h2, h3, h4] → S(Q) from Example 4.8. By con-
struction, we can link the sums in (3.4) with h, H ′, h2, a

′, A′ ∈ Q(k)[h, h2, h3, h4]
from Example 3.10 as follows:

〈Hn〉n≥0 = τ ′(h), 〈H(n)〉n≥0 = τ ′(H ′), 〈H(2)
n 〉n≥0 = τ ′(h2),

〈a(n)〉n≥0 = τ ′(a′) , 〈A(n)〉n≥0 = τ ′(A′).
(5.4)

The δ-depths of Hk, H(k), H(2)
k , a(k), A(k) are 2, 3, 2, 3, 4, respectively; δ is given

by (2.3). The corresponding depths in the ΠΣδ-field, δQ(h) = δQ(H ′) = δQ(h2) =
δQ(a′) = δQ(A′) = 2, are the same or have been improved.
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Note that we rely on the fact that all our sums are represented in ΠΣδ-fields; for
general ΠΣ∗-fields, the depth might be bigger than the δ-depth, see Example 3.3.

Lemma 5.3. Let (F(x1) . . . (xr), σ) be a polynomial ΠΣδ-extension of (F, σ) and
let (F, σ) be a ΠΣδ-field over K with a K-embedding (5.1); let (F(t1) . . . (te), σ) be
a polynomial Σ∗-extension of (F, σ) with a K-embedding ρ : F[t1, . . . , te] → S(K).
There is a Σ∗-extension D := (F(x1) . . . (xr)(y1) . . . (yl), σ) of (F(x1) . . . (xr), σ)
such that D is a polynomial Σ∗-extension of (F, σ) with the following properties:

(1) There is an F-monomorphism λ : F(t1, . . . , te) → F(x1, . . . , xr)(y1, . . . , yl) such
that for all a ∈ F(t1, . . . , te),

δK(λ(a)) ≤ δK(a); (5.5)

and such that for all a ∈ F[t1, . . . , te],

λ(a) ∈ F[x1, . . . , xr][y1, . . . , yl]. (5.6)

(2) There is a K-embedding τ ′ : F[x1, . . . , xr][y1, . . . , yl] → S(K) such that for all
a ∈ F[t1, . . . , te],

τ ′(λ(a)) = ρ(a). (5.7)

Proof. The base case e = 0 holds with λ(a) = a for all a ∈ F and τ ′ := ρ.
Suppose the lemma holds for e extensions (H, σ) with H = F(t1) . . . (te) and let
(D, σ) with D := F(x1) . . . (xr)(y1) . . . (yr), τ , ρ and λ as stated above; set S =
F[x1, . . . , xr, y1, . . . , yl]. Now let (H(t), σ) be a Σ∗-extension of (H, σ) with f :=
σ(t) − t ∈ F[t1 . . . , te], and take a K-embedding ρ′ : F[t1, . . . , te][t] → S(K) such
that ρ′(a) = ρ(a) for all a ∈ F[t1 . . . , te].
Case 1: If there is no g ∈ D such that

σ(g)− g = λ(f), (5.8)

we can take the Σ∗-extension (D(y), σ) of (D, σ) with σ(y) = y + λ(f) by Theo-
rem 3.2.1 and we can define an F-monomorphism λ′ : H(t) → S(y) s.t. λ′(a) = λ(a)
for all a ∈ H and such that τ ′(t) = y. By construction, δK(y) = δK(λ(f))+1. Since

δK(λ(f)) + 1 ≤ δK(f) + 1 = δK(t), (5.9)

δK(λ(a)) ≤ δK(a) for all a ∈ H(t). Moreover, since λ(f) ∈ S, it follows that (S(y), σ)
is a polynomial extension of (F, σ). Moreover, for all a ∈ F[t1, . . . , te, t], λ(a) ∈ S[y].
This proves part (1).
Now we define the K-embedding τ ′ : S[y] → S(K) by τ ′(a) = τ(a) for all a ∈ S and
τ ′(y) as in the right hand side of (4.5) where β = λ(f) and c = (ρ′(t))(r − 1); for
some r ∈ N properly chosen. Then for all k ≥ r (r is chosen big enough),

(τ ′(λ′(t)))(k) = (τ ′(y))(k) =
k∑

i=r

(τ(λ(f)))(i− 1) + (ρ′(t))(r − 1)

=
k∑

i=r

(ρ(f))(i− 1) + (ρ′(t))(r − 1) =
k∑

i=r+1

(ρ(f))(i− 1) + h(r)
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with h(r) = (ρ(f))(r−1)+(ρ′(t))(r−1) = (ρ′(f + t))(r−1) = (ρ′(σ(t)))(r−1) =
(ρ′(t))(r). Applying this reduction k − r + 1 times shows that

(τ ′(λ′(t)))(k) =
k∑

i=r

(ρ(f))(i− 1) + ρ′(t)(r − 1)

=
k∑

i=r+1

(ρ(f))(i− 1) + ρ′(t)(r) = · · · = (ρ′(t))(k).

Hence τ ′(λ′(t)) = ρ′(t), and thus τ ′(λ′(a)) = ρ′(a) for all a ∈ F[t1 . . . , te][t].
Case 2: Otherwise, if there is a g ∈ D s.t. (5.8), then g ∈ S by Theorem 3.5. In
particular, δK(g) ≤ δK(λ(f)) + 1 by Theorem 3.9. With (5.9), it follows that

δK(g) ≤ δK(t). (5.10)

Since (λ(H)(g), σ) is a difference field (it is a sub-difference field of (D, σ)), g is
transcendental over λ(H) by Theorem 3.2.1. In particular, we can define the F-
monomorphism λ′ : H(t) → D with λ′(a) = λ(a) for all a ∈ H and λ′(t) = g +
ρ(g)− τ(g). Since g ∈ S, λ′(t) ∈ S, and therefore λ(a) ∈ S for all a ∈ F[t1, . . . , te][t].
With (5.10) and our induction assumption it follows that δK(τ ′(a)) ≤ δK(a) for all
a ∈ H(t). This proofs part (1). Note that τ(λ′(t)) = τ(g) + ρ(g) − τ(g) = ρ(g) by
construction. Hence, τ(λ′(a)) = ρ(a) for all a ∈ F[t1 . . . , te][t]. This proves part (2)
and completes the induction step. ¤

Theorem 5.4. Let (F(x1) . . . (xr), σ) be a polynomial ΠΣδ-extension of (F, σ) and
let (F, σ) be a ΠΣδ-field over K with a K-embedding (5.1). Then for any polynomial
Σ∗-extension (F(t1) . . . (te), σ) of (F, σ) with a K-embedding ρ : F[t1, . . . , te] → S(K)
and any s ∈ τ(F[x1, . . . , xr]) ∩ ρ(F[t1, . . . , te]) we have

δK(τ−1(s)) ≤ δK(ρ−1(s)).

Proof. Take a Σ∗-extension (F(x1) . . . (xr)(y1) . . . (yl), σ) of (F(x1) . . . (xr), σ), an
F-monomorphism λ : F(t1) . . . (te) → F(x1) . . . (xr)(y1) . . . (yl) as in (5.5) and (5.6)
for all a ∈ F[t1, . . . , te] and a K-embedding τ ′ : F[x1, . . . , xr, y1, . . . , yl] → S(K) as
in (5.7) for all a ∈ F[t1, . . . , te]; this is possible by Lemma 5.3. Now take s ∈
τ(F[x1, . . . , xr]) ∩ ρ(F[t1, . . . , te]) and define f := τ−1(s) ∈ F[x1, . . . , xr] and g :=
ρ−1(s) ∈ F[t1 . . . , te]. Take g′ := λ(g) ∈ F[x1, . . . , xr, y1, . . . , yl] with δK(g′) ≤
δK(g). Since τ ′(g′) = ρ(g) = s and τ ′(f) = s, and since τ ′ is injective, g′ = f .
Thus, δK(f) = δK(g′) ≤ δK(g). ¤

Theorem 5.5. Let (F(x1) . . . (xr), σ) be a ΠΣδ-field with a K-embedding (5.1)
as stated above; set S := τ(F[x1, . . . , xr]), and define (5.2). Let A ∈ Σ(S) and
suppose that we are given a Σδ-extension D := (F(x1) . . . (xr)(y1) . . . (yu), σ) of
(F(x1) . . . (xr), σ) s.t. D is a polynomial extension of (F, σ) and that we are given
a K-embedding (5.3). If a ∈ A with τ(a) = A, δK(a) is the δ-depth of A.

Proof. Take a sum representation of A with optimal δ-depth d. By Theorem 5.1
we can take a Σ∗-extension D := (F(x1) . . . (xr)(s1) . . . (su), σ) of (F(x1) . . . (xr), σ)
s.t. D is a polynomial extension of (F, σ) and we can assume that there is a K-
embedding ρ : F[x1, . . . , xr][s1, . . . , su] → S(K) with a′ ∈ F[x1, . . . , xr][s1, . . . , su]
s.t. ρ(a′) = A and δK(a′) ≤ d. By Theorem 5.4, it follows that δK(a) = δK(a′).
Since a and a′ give sum representations of A with δ-depth ≤ d, and since d is
minimal, δK(a) = d. ¤
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Example 5.6. Since the elements h,H ′, h2, a
′, A′ ∈ Q(k)[h, h2, h3, h4] with depth 2

from Example 5.2 are given in a ΠΣδ-field, the δ-depths of the sequences (5.4) are 2;
here δ : R(Q) → N is given by (2.3). Reinterpreting h,H ′, h2, a

′, A′ in (5.4) as sum
expressions leads to the representations

Hk =
k∑

i=1

1
i
, H(k) =

1
2
(H2

k + H
(2)
k ), H

(2)
k =

k∑

i=1

1
i2

,

a(k) =
1
3

(
H3

k + 3H
(2)
k Hk + 2H

(3)
k

)
, A(k) = B(k)

on the right sides with optimal δ-depth 2; δ is given by (2.3), and the sum expres-
sions H(k), a(k), A(k), B(k) are given in (3.4) and (2.2).

6. Application: Simplification of d’Alembertian solutions

The d’Alembertian solutions (AP94; Sch01), a subclass of Liouvillian solutions
(HS99), of a given recurrence relation are computed by factorizing the recurrence
into linear right hand factors as much as possible. Given this factorization, one can
read of the d’Alembertian solutions which are of the form

h(n)
n∑

k1=c1

b1(k1)
k2∑

k2=c2

b2(k2) · · ·
ks−1∑

ks=cs

bs(ks) (6.1)

for lower bounds c1, . . . , cs ∈ N; here the bi(ki) and h(n) are given by the objects
form the coefficients of the recurrence or by products over such elements. Note
that such solutions can be represented in ΠΣδ-fields if the occurring products can
be rephrased accordingly in Π-extensions. Then applying our refined algorithms to
such solutions (6.1), we can find sum representations with minimal nested depth.
Typical examples can be found, e.g., in (DPSW06; OS06; KS06; Sch07c; MS07).

In the following we present two examples with detailed computation steps that
have been provided by the summation package Sigma (Sch07c).

6.1. An example from particle physics. In massive higher order calculations
of Feynman diagrams the evaluation of the sum

S(n) =
∞∑

i=1

H2
i+n

i2

was needed; see (BBKS07). In order to accomplish this task, Sigma computes in a
first step the recurrence relation

− (n + 2)(n + 1)3
(
n2 + 7n + 16

)
S(n)

+ (n + 2)
(
5n5 + 62n4 + 318n3 + 814n2 + 1045n + 540

)
S(n + 1)

− 2
(
5n6 + 84n5 + 603n4 + 2354n3 + 5270n2 + 6430n + 3350

)
S(n + 2)

+ 2
(
5n6 + 96n5 + 783n4 + 3478n3 + 8906n2 + 12530n + 7610

)
S(n + 3)

− (n + 4)
(
5n5 + 88n4 + 630n3 + 2318n2 + 4453n + 3642

)
S(n + 4)

+ (n + 4)(n + 5)3
(
n2 + 5n + 10

)
S(n + 5) = − 4(n + 7)

(n + 3)(n + 4)
Hn

− 2
(
2n7 + 35n6 + 235n5 + 718n4 + 824n3 − 283n2 − 869n + 10

)

(n + 1)(n + 2)(n + 3)2(n + 4)2(n + 5)
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by a generalized version of Zeilberger’s creative telescoping (Zei91). Given this
recurrence, Sigma computes the d’Alembertian solutions

A1(n) = 1, A2(n) = Hn, A3(n) = H2
n,

A4(n) =
n∑

i=2

k∑

j=2

(2j − 1)
∑j

k=1
1

(2k−3)(2k−1)

(j − 1)j

i
,

A5(n) =
n∑

i=3

i∑

j=3

(2j − 1)
j∑

k=3

2(k − 2)(k − 1)kHk − (2k − 1)
(
3k2 − 6k + 2

)

(k − 2)(k − 1)k(2k − 3)(2k − 1)

(j − 1)j

i
,

B(n) =
n∑

i=4

i∑

j=4

(2j − 1)
j∑

k=4

k∑

l=4

(2l − 3)
(
l2 − 3l + 6

)
B̃(l)

(l − 3)(l − 2)(l − 1)l

(2k − 3)(2k − 1)

(j − 1)j

i

where

B̃(l) =
l∑

r=3

− 2(2r6−27r5+117r4−254r3+398r2+2(r−3)(r−2)(r−1)(r+2)Hrr−446r+204)
(r−2)(r−1)r(r2−5r+10)(r2−3r+6) .

To be more precise, 〈Ai(n)〉n≥0 ∈ Σ(R(Q)), 1 ≤ i ≤ 5, are the five linearly inde-
pendent solutions of the homogeneous version of the recurrence and 〈B(n)〉n≥0 ∈
Σ(R(Q)) is one particular solution of the recurrence itself. If we define δ : R(Q) → N
by (2.3), then A1(n), . . . , A5(n), B(n) have δ-depths 0, 2, 2, 4, 5, 7, respectively. As
a consequence, we obtain the general solution

B(n) + c1A1(n) + c2A2(n) + c3A3(n) + c4A4(n) + c5A5(n) (6.2)

for constants ci. Checking initial values shows that we have to choose4

c1 = 17
10ζ2

2 , c2 = 1
12 (48ζ3 − 67), c3 = 31

12 , c4 = 1
4 (23− 8ζ2), c5 = − 1

2

in order to match (6.2) with S(n).
Finally, Sigma simplifies the derived expressions further and finds sum represen-

tations with minimal nested depth (see problem DOS). Namely, it computes the
ΠΣδ-field (Q(k)(h)(h2)(h4)(H), σ) with σ(k) = k+1, σ(h) = h+ 1

k+1 , σ(h2) = h2+
1

(k+1)2 , σ(h4) = h4 + 1
(k+1)4 and σ(H) = H + σ(h)

(k+1)2 together with the Q-embedding
τ : Q(k)[h, h2, h4,H] → S(K) such that τ(f) = τ1(f) for all f ∈ Q(k) from Exam-
ple 4.2 and such that τ(h) = 〈Hn〉n≥0, τ(h2) = 〈H(2)

n 〉n≥0, τ(h4) = 〈H(4)
n 〉n≥0 and

4ζk denotes the Riemann zeta function at k; e.g., ζ2 = π2/6.
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τ(H) = 〈∑n
k=1

Hk

k2 〉n≥0. Moreover, it finds

a1 = 1, a2 = h, a3 = h2, a4 =
1
2

(
h2 − h2

)
,

a5 =
1
2

(−h2 + 2h2 h− h
)
,

b =
1
24

(
h2 − 48hH + 128h− 12h2

2 + (12h− 69) h2 − 12h4

)

such that τ(ai) = 〈Ai(n)〉n≥0 for 1 ≤ i ≤ 5 and τ(b) = 〈B(n)〉n≥0. As a consequence
of Theorem 5.5, the expressions

A1(n) = 1, A2(n) = Hn, A3(n) = H2
n, A4(n) =

1
2

(
H(2)

n −H2
n

)
,

A5(n) =
1
2

(
−H2

n + 2H(2)
n Hn −Hn

)
,

B(n) = 1
24H2

n − 2Hn

n∑

k=1

Hk

k2
+ 16

3 Hn − 1
2

(
H(2)

n

)2

+
(

1
2Hn − 69

24

)
H(2)

n − 1
2H(4)

n

are sum representations with optimal δ-depths 0, 2, 2, 2, 2, 3. To this end, we ob-
tain (BBKS07, equ. 3.14):

∞∑

i=1

H2
i+n

i2
=

17
10

ζ2
2 + 4Hnζ3 + H2

nζ2 −H(2)
n ζ2 − 1

2

((
H(2)

n

)2

+ H(4)
n

)
− 2Hn

n∑

k=1

Hk

k2
.

6.2. A nontrivial harmonic sum identity. We look for an indefinite nested sum
representation of the definite sum

S(n) =
n∑

k=0

(
n

k

)2

H2
k ,

which is of similar type as in (DPSW06). First, Sigma finds with creative telescoping
the recurrence relation

8(n + 1)(2n + 1)3
(
64n4 + 480n3 + 1332n2 + 1621n + 735

)
S(n)− 4(768n8 + 8832n7

+ 43056n6 + 115708n5 + 186452n4 + 183201n3 + 106442n2 + 33460n + 4533)S(n + 1)

+2(n+2)(384n7+4224n6+18968n5+44610n4+58679n3+42775n2+16084n+2616)S(n+2)

− (n + 2)(n + 3)3
(
64n4 + 224n3 + 276n2 + 141n + 30

)
S(n + 3) =

− 3
(
576n6 + 4896n5 + 16660n4 + 28761n3 + 26171n2 + 11574n + 1854

)
.

Solving the recurrence in terms of d’Alembertian solutions and checking initial
values yield the sum representation

S(n) =
(

2n

n

)(1
2
A1(n)− 19

28
A2(n) + B(n)

)
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with

A1(n) =
n∑

i=1

4i− 3
i(2i− 1)

,

A2(n) =
n∑

i=2

(4i− 3)
i∑

j=2

64j4 − 288j3 + 468j2 − 323j + 84
(j − 1)j(2j − 3)(4j − 7)(4j − 3)

i(2i− 1)
,

B(n) = −
n∑

i=2

(4i− 3)
n∑

j=2

(
64j4 − 288j3 + 468j2 − 323j + 84

)
B̃(j)

(j − 1)j(2j − 3)(4j − 7)(4j − 3)

i(2i− 1)

where

B̃(j) =
j∑

k=1

− 3(2k−3)(2k−1)(4k−7)(576k6−5472k5+20980k4−41559k3+44882k2−25113k+5760)
k(64k4−544k3+1716k2−2379k+1227)(64k4−288k3+468k2−323k+84)(2k

k ) .

Now consider the ΠΣδ-field (Q(k)(b), σ) with σ(k) = k + 1 and σ(b) = k+1
2(2k+1)b,

and take the Q-monomorphism τ2 : Q(k)[b] → σ from Example 4.4 (K = Q). Then
(S,S) with S := τ2(Q(k)[b]) is a sub-difference ring of (S(Q),S) such that

〈A1(n)〉n≥0, 〈A2(n)〉n≥0, 〈B(n)〉n≥0 ∈ Σ(S).

If we define δ : S→ N by (5.2), then A1(n), A2(n) and B have δ-depths 2, 3, 5,
respectively. Finally, we represent A1(n), A2(n) and B in a ΠΣδ-field and obtain
the sum representations

A1(n) =2 (2Hn −H2n) ,

A2(n) =2
(
4H2

n + 4Hn + H2
2n + (−4Hn − 2)H2n −H

(2)
2n

)
,

B(n) =
3
14

(
44H2

n + 16Hn + 11H2
2n − (44Hn + 8) H2n − 11H

(2)
2n + 14

n∑

i=1

1
i2

(
2i
i

)
)
.

(6.3)
Summarizing, we have solved problem DOS for the expressions A1(n), A2(n) and
B(n), i.e., in the right hand sides of (6.3) we obtained sum representations with
optimal δ-depths 2, 2, 3, respectively. Finally, this leads to the identity

n∑

k=0

(
n

k

)2

H2
k =

(
2n

n

) (
4H2

n − 4H2nHn + H2
2n −H

(2)
2n + 3

n∑

i=1

1
i2

(
2n
n

)
)

.
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