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Abstract. In this paper we derive convergence results for regularized solutions of
linear inverse problems obtained by the Bayesian approach in the Ky Fan metric. We
show that the convergence rate is order optimal in finite dimensional spaces. Moreover,
we prove that order optimal rates can be obtained for weighted Bayesian solutions when
the dimension goes to infinity.

1. Introduction

We study the solution of the linear ill-posed problem

Tx = y (1.1)

from noisy measurements of y, where T ∈ L(X ,Y) and X and Y are Hilbert spaces.
Opposed to the deterministic regularization theory (cf., e.g., [2]), where it is assumed
that a bound for the noise is known, i.e., ‖yδ − y‖ ≤ δ, we are interested in the case
where the noise can be modelled by a normal random variable (cf., e.g., [3, 5]).

In a first step, we treat a finite dimensional version of equation (1.1) as it occurs when
this problem is discretized (see Section 4), i.e., we deal with the solution of the problem

Ax̄ = ȳ , (1.2)

where A ∈ Rm×n is a (usually ill-conditioned) matrix, x̄ ∈ Rn, and ȳ ∈ Rm.
In this paper, we use the Bayesian approach for obtaining an approximate solution

of (1.2) (see [8] for a comprehensive introduction into the Bayesian inversion theory).
In the Bayesian framework all quantities included in the model of an inverse prob-

lem are treated as random variables. Even though the quantity of primary interest is
assumed to be deterministic, all information available about it before performing the
measurements is coded into the so-called prior distribution. Since we assume that the
measurements are disturbed by an additive noise, we obtain the following linear model
for the measurements

Y = A X + E ,

where X, Y , and E are random variables from a probability space (Ω,F ,P) to Rn and
R

m, respectively.
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The Bayesian inversion theory is based on the Bayes formula. The solution of the
inverse problem after performing the measurements is the posterior distribution of the
random variables of interest. The Bayes formula describes how the prior information
and the measurements have to be combined to give the posterior distribution; by this
formula the posterior density is proportional to the product of the prior density and
the likelihood function which is given by the model for the indirect measurements.
Consequently, in the Bayesian approach not just a single regularized solution of (1.2)
is obtained but instead a whole distribution is computed.

We examine the common case where all distributions are assumed to be normal, i.e.,
the prior distribution of X is given by N(x̄0, Γ) and the noise model distribution of E is
given by N(0, Σ) with x̄0 ∈ Rn and positive definite symmetric matrices Γ ∈ Rn×n and
Σ ∈ Rm×m. Moreover, we assume that X and E are mutually independent. Then the
posterior distribution µpost of X conditioned on the data ȳσ is again normal. It can be
shown (cf. [8, Theorem 3.7]) that the posterior distribution is given by N(x̄post, Γpost)
with the posterior mean

x̄post := (Γ−1 + AT Σ−1A)−1(AT Σ−1ȳσ + Γ−1x̄0) (1.3)

and the posterior covariance matrix

Γpost := (Γ−1 + AT Σ−1A)−1 . (1.4)

The data ȳσ are a realization of the random variable ȳ + E, where ȳ are the unknown
exact data in equation (1.2). Thus, the posterior mean x̄post in (1.3) is also a realization
of the random variable

Xpost(ω) := (Γ−1 + AT Σ−1A)−1(AT Σ−1(ȳ + E(ω)) + Γ−1x̄0) (1.5)

and the posterior distribution µpost is a realization of the random variable

Mpost : (Ω,F ,P) → (M(Rn), ρP), ω 7→ N(Xpost(ω), Γpost) , (1.6)

where M(Rn) is the set of all Borel measures in Rn and ρP is the Prokhorov metric in
M(Rn) (see Definition 2.1 below).

We are interested in where the random variables Xpost and Mpost converge to when
the noise E tends to the zero random variable. These convergence issues were studied
in [6, 7]. In this paper these results are generalized and improved. Moreover, we also
consider the case when the dimensions m and n tend to infinity, i.e., when the finite
dimensional problem (1.2) approaches some infinite dimensional problem (1.1).

The outline of the paper is as follows: in the next section we summarize some results
about the Prokhorov and Ky Fan metrics necessary for our convergence analysis. In
Section 3 we show that Xpost converges to a special x̄0-minimum-norm-least-squares
solution, x̄†, and that Mpost converges to a certain normal distribution with mean x̄†.
Finally, in Section 4 we present some convergence results for the case where m and n
tend to infinity.

2. Preliminaries

As mentioned above, in the setup of this work, we treat the posterior distribution as a
probability measure valued random variable. The set M(Rn) of Borel measures in Rn
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is a metric space, when equipped with the Prokhorov metric, which is defined as follows
(cf., e.g., [1]):

Definition 2.1. (Prokhorov metric). Let µ1 and µ2 be Borel measures in a metric
space (X , dX ). The distance between µ1 and µ2 in the Prokhorov metric is defined as

ρP(µ1, µ2) := inf {ε > 0 : µ1(B) ≤ µ2(B
ε) + ε ∀B ∈ B(X ) } ,

where B(X ) is the Borel σ-algebra in X . The set Bε is the ε-neighbourhood of B, i.e.,

Bε := {x ∈ X : inf
z∈B

dX (x, z) < ε } .

For the special case (M(Rn), ρP), the metric space (X , dX ) in Definition 2.1 is Rn

equipped with some norm. Although all norms are equivalent in Rn, it will turn out
that it is appropriate to work with different norms. If Q is a positive definite symmetric
matrix in Rn×n, we define the Q-norm as follows

‖x̄‖Q := ‖Q− 1
2 x̄‖ = (x̄T Q−1x̄)

1
2 , (2.1)

where ‖ · ‖ denotes the Euclidean norm in Rn.
The following estimate on the Prokhorov metric will be essential for our convergence

analysis:

Proposition 2.2. Let µ1 and µ2 be probability measures in Rn equipped with the Q-
norm and µ3 a probability measure in Rp equipped with the Euclidean norm, 1 ≤ p < n,
defined by

µ1(B) :=
∫

B̂
π2(ξ2) dξ2 , B ∈ B(Rn), B̂ := {ξ2 ∈ Rn−p : g(0, ξ2) ∈ B} ,

µ2(B) :=
∫

g−1(B)
π1(ξ1)π2(ξ2) d(ξ1, ξ2) , B ∈ B(Rn) ,

µ3(B) :=
∫

B
π1(ξ1) dξ1 , B ∈ B(Rp) ,

where π1 and π2 are density functions in Rp and Rn−p, respectively, and g(ξ) := x̃ +

Q
1
2 V ξ, ξ = (ξ1, ξ2), is an affine transformation with x̃ ∈ Rn and a unitary matrix

V ∈ Rn×n. Then it holds that

ρP(µ1, µ2) = ρP(µ3, δ0) = ρ(µ3) := inf {ε > 0 : µ3(R
p\Bε(0)) ≤ ε} ,

where δ0 is the point measure at 0 ∈ Rp and Bε(0) := {ξ1 ∈ Rp : ‖ξ1‖ < ε}.

Proof. Let B ∈ B(Rn) be arbitrary but fixed. Then obviously

x̄ ∈ Bε ⇐⇒ x̄ = g(ξ) ∧ ∃η ∈ g−1(B) : ‖g(ξ)− g(η)‖Q = ‖ξ − η‖ < ε .

Thus, Bε = g((g−1(B))ε).
If ε > 0 is such that µ3(R

p\Bε(0)) ≤ ε, then 1 ≤ µ3(Bε(0)) + ε and hence, due to
Fubini’s Theorem and the fact that µ1(B) ≤ 1,

µ1(B) ≤ µ1(B)µ3(Bε(0)) + ε = µ2(g(Bε(0)× B̂)) + ε

≤ µ2(g((g−1(B))ε)) + ε = µ2(B
ε) + ε .

3



Thus, due to Definition 2.1, ρP(µ1, µ2) ≤ ρ(µ3).
Let us now assume that µ1(B) ≤ µ2(B

ε) + ε for all B ∈ B(Rn). Then for the special
set B := g({0} ×Rn−p) we obtain by Fubini’s Theorem that

1 = µ1(B) ≤ µ2(B
ε) + ε = µ2(g((g−1(B))ε)) + ε

= µ2(g(Bε(0)×Rn−p)) + ε = µ3(Bε(0)) + ε .

Therefore, µ3(R
p\Bε(0)) ≤ ε and hence ρP(µ1, µ2) ≥ ρ(µ3). All together we have shown

that ρP(µ1, µ2) = ρ(µ3).
Since it is obvious that δ0(B) ≤ µ3(B

ε) + ε for all B ∈ B(Rp) is equivalent to
1 ≤ µ3(Bε(0)) + ε, the last assertion ρP(µ3, δ0) = ρ(µ3) follows.

We want to quantify the convergence in probability for M(Rn)-valued random vari-
ables. This can be achieved via the Ky Fan metric which measures distances between
random variables on a metric space (cf., e.g., [1]):

Definition 2.3. (Ky Fan metric). Let X1 and X2 be random variables in a probability
space (Ω,F ,P) with values in a metric space (X , dX ). The distance between X1 and X2

in the Ky Fan metric is defined as

ρK(X1, X2) := inf {ε > 0 : P(dX (X1(ω), X2(ω)) > ε) < ε } .

The following proposition shows that convergence rates are essentially preserved when
they are lifted from a metric space to the space of random variables equipped with the
Ky Fan metric. The result was proven in [6, Theorem 6]. For the convenience of the
reader we include the proof.

Proposition 2.4. Let X1, X2 and Y1, Y2 be random variables on metric spaces (X , dX )
and (Y , dY), respectively. Let

dX (X1(ω), X2(ω)) ≤ Φ(dY(Y1(ω), Y2(ω))) (2.2)

for almost all ω ∈ Ω, where Φ is a monotonically increasing right-continuous function.
Then

ρK(X1, X2) ≤ max{ρK(Y1, Y2), Φ(ρK(Y1, Y2))} .

Proof. For an arbitrary ε > 0, (2.2) and the monotonicity of Φ imply that

P

(
dX (X1(ω), X2(ω)) > Φ(ε)

)
≤ P

(
Φ(dY(Y1(ω), Y2(ω))) > Φ(ε)

)
≤ P

(
dY(Y1(ω), Y2(ω))) > ε

)
.

Hence, by Definition 2.3,

P

(
dX (X1(ω), X2(ω)) > max{ε, Φ(ε)}

)
< max{ε, Φ(ε)}

for any ε > ρK(Y1, Y2). The assertion now follows with the right-continuity of Φ.

In the following proposition, we give an upper bound for the Ky Fan distance between
a normal random variable and its mean. This result is an improvement of [6, Lemma 7].
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Proposition 2.5. Let ȳ ∈ R
m and Σ ∈ R

m×m be a positive definite symmetric
matrix. Let Y be a random variable with values in Rm and with distribution N(ȳ, Σ).
Then it holds in (Rm, ‖ · ‖Q) that

ρK(Y, ȳ) = ρ(N(0, Σ)) := inf {ε > 0 : N(0, Σ)(Rm\Bε(0)) ≤ ε} , (2.3)

where Bε(0) := {ξ ∈ Rm : ‖ξ‖Q < ε}. Moreover,

ρ(N(0, Σ)) ≤ min
{
1,
(
2λmax(m− ln−(λmaxam))

) 1
2

}
, (2.4)

where λmax is the largest eigenvalue of Σ
1
2 Q−1Σ

1
2 ,

am := 2πm2
(

e
2

)m
, (2.5)

and f−(h) := min{0, f(h)}.

Proof. Formula (2.3) follows immediately from Definition 2.3. We will now show esti-
mate (2.4).

Using spherical coordinates we obtain that

N(0, Σ)(Rm\Bε(0)) = (2π)−
m
2 |Σ|−

1
2

∫
‖ξ‖Q≥ε

e−
1
2
ξT Σ−1ξ dξ

≤ 2 Γ(m
2
)−1

∫ ∞

ε(2λmax)−
1
2

tm−1e−t2 dt .

Here |Σ| denotes the determinant of Σ. Hence, by (2.3),

ρ(N(0, Σ)) ≤ (2λmax)
1
2 s (2.6)

for any s satisfying the inequality

Im(s) := 2
∫ ∞

s
tm−1e−t2 dt =

∫ ∞

s2
u

m
2
−1e−u du ≤ Γ(m

2
) (2λmax)

1
2 s .

Since u
m
2
−1e−

u
2 is strictly monotonically decreasing if u > max{0, m− 2}, it holds that

Im(s) ≤ 2sm−2e−s2
if s2 > max{0, m− 2}. Together with the formula

Γ(m
2
) = (m

2
)

m−1
2 e−

m
2

√
2π rm , m ∈ N , r2m ↘ 1 , r2m+1 ↘ 1 , (2.7)

which will be shown below, we obtain that (2.6) holds for any s satisfying

sm−3e−s2 ≤ (m
2
)

m−1
2 e−

m
2 (πλmax)

1
2 and s2 > max{0, m− 2} . (2.8)

We will now show that s2 = m − ln−(λmaxam) satisfies these inequalities, where am is
as in (2.5).

Let us first consider the case λmaxam ≥ 1. Then s2 = m and

m
m−3

2 e−m ≤ (m
2
)

m−1
2 e−

m
2 (πλmax)

1
2 ⇐⇒ λmaxam ≥ 1 .

If λmaxam < 1, then s2 = m − ln(λmaxam) > m and the left inequality in (2.8) is
equivalent to (

m− ln(λmaxam)
)m−3

2 e−mλmaxam ≤ (m
2
)

m−1
2 e−

m
2 (πλmax)

1
2 ,
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which together with (2.5) is equivalent to(
1− 1

m
ln(λmaxam)

)m−3
2 (λmaxam)

1
2 ≤ 1 .

However, this inequality holds true, since
(
1− 1

m
ln(h)

)m−3
2 h

1
2 is strictly monotonically

increasing on the interval (0, 1].
Due to (2.6) and (2.8), this together with the fact that N(0, Σ)(Rm\Bε(0)) < 1 proves

assertion (2.4).
It remains to be shown that (2.7) holds. Actually, it is an immediate consequence of

Stirling’s formula (see, e.g., [4])

n! = nne−n
√

n cn , n ∈ N , lim
n→∞

cn =
√

2π . (2.9)

It is well-known that

Γ(m
2
) =


(m

2
− 1)! , m even ,

(m− 1)!
√

π

2m−1(m−1
2

)!
, m odd ,

m ∈ N .

This together with (2.9) implies that the formula in (2.7) is valid with

rm :=

 (1− 2
m

)
m−1

2
e√
2π

cm
2
−1 , m even ,

(1− 1
m

)
m−1

2
√

e cm−1/cm−1
2

, m odd ,
m ≥ 3 , lim

m→∞
rm = 1 .

The monotonicity result in (2.7) is shown as follows: using rm = Γ(m
2
)(m

2
)−

m−1
2 e

m
2 /
√

2π
and the fact that Γ(x + 1) = xΓ(x), we obtain that

rm+2 ≤ rm ⇐⇒ e ≤ (1 + 2
m

)
m+1

2 .

However, the latter inequality is easy to show.

3. Convergence analysis for the finite dimensional setting

In this section, we show, where the random variables Xpost and Mpost (see (1.5) and
(1.6), respectively) converge to when the noise E tends to the zero random variable.
Note that Xpost(ω) is the mean of the normal distribution Mpost(ω). To be able to

control how the noise tends to the zero random variable we assume that Σ = σ2Σ̂,
where the largest eigenvalue of Σ̂ is 1.

It will turn out that Xpost converges to x̄†, the x̄0-minimum-norm-least-squares so-
lution (cf. [2]) defined as follows: x̄† minimizes the residual ‖Ax̄ − ȳ‖ Σ̂ and among all
minimizers it then minimizes ‖x̄ − x̄0‖Γ (see (2.1) for the definition of the norms).
Thus, the appropriate spaces for our convergence analysis are (X , dX ) = (Rn, ‖ · ‖Γ)
and (Y , dY) = (Rm, ‖ · ‖ Σ̂).

Let us assume in the following that λi, 1 ≤ i ≤ p ≤ min{m, n}, are the positive

singular values of the matrix Σ̂−
1
2 AΓ

1
2 and that vi are orthonormal eigenvectors of

Γ
1
2 AT Σ̂−1AΓ

1
2 in (Rn, ‖ · ‖), i.e.,

Γ
1
2 AT Σ̂−1AΓ

1
2 vi = λ2

i vi , λ1 ≥ . . . ≥ λp > λp+1 = . . . = λn = 0 . (3.1)
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Then x̄† may be expressed as

x̄† =
p∑

i=1

λ−2
i (vT

i Γ
1
2 AT Σ̂−1ȳ)Γ

1
2 vi +

n∑
i=p+1

(vT
i Γ−

1
2 x0)Γ

1
2 vi . (3.2)

Using the notations V1 := (v1, . . . , vp), V2 := (vp+1, . . . , vn), and V := (V1, V2), and
the splitting ξ = (ξ1, ξ2) with ξ1 ∈ Rp and ξ2 ∈ Rn−p, we will show that Mpost converges

to the normal distribution µx̄† = N(x̄†, Γ
1
2 V2V

T
2 Γ

1
2 ), i.e., for all B ∈ B(Rn)

µx̄†(B) = (2π)−
n−p

2

∫
B̂

e−
1
2
ξT
2 ξ2 dξ2 , (3.3)

where B̂ := {ξ2 ∈ Rn−p : g(0, ξ2) ∈ B} and g(ξ) := x̄† + Γ
1
2 V ξ. Note that, in case

N (A) = {0} (which is equivalent to n = p), this normal distribution is a point measure,
i.e., µx̄†(B) = 1 if x̄† ∈ B and µx̄†(B) = 0 if x̄† /∈ B, usually denoted by δx̄† .

Theorem 3.1. Let Xpost and Mpost be the random variables defined in (1.5) and (1.6),
respectively. Then the following estimates hold:

ρK(Xpost, x̄
†) ≤ max

{
ρK(E, 0),

σ2

σ2 + λ2
p

‖(I − P )(x̄† − x̄0)‖Γ

+
max{σ, λp}

σ2 + max2{σ, λp}
ρK(E, 0)

}
= O

(
σ
√

1 + | ln σ|
)
,

(3.4)

where P denotes the orthogonal projector onto N (A) and

ρK(E, 0) ≤ σ
(
2(m− ln−(σ2am))

) 1
2 = O

(
σ
√

1 + | ln σ|
)

(3.5)

with am as in (2.5). Moreover,

ρK(Mpost, µx̄†) ≤ max
{
ρK(E, 0),

σ2

σ2 + λ2
p

‖(I − P )(x̄† − x̄0)‖Γ

+

(
2σ2

σ2 + λ2
p

(
p− ln−

( σ2ap

σ2 + λ2
p

))) 1
2

+
max{σ, λp}

σ2 + max2{σ, λp}
ρK(E, 0)

}
= O

(
σ
√

1 + | ln σ|
)

(3.6)

with µx̄† as in (3.3) and ap as in (2.5) (with m = p).

Proof. Using (1.5), (3.1), and (3.2) we obtain the estimate

‖Xpost(ω)− x̄†‖Γ

≤
( p∑

i=1

σ4

(σ2 + λ2
i )

2
(vT

i Γ−
1
2 (x̄† − x̄0))

2

) 1
2

+ sup
1≤i≤p

λi

σ2 + λ2
i

‖E(ω)‖ Σ̂

≤ σ2

σ2 + λ2
p

‖(I − P )(x̄† − x̄0)‖Γ +
max{σ, λp}

σ2 + max2{σ, λp}
‖E(ω)‖ Σ̂ . (3.7)
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This together with Proposition 2.4 and Proposition 2.5 (with ȳ = 0, Q = Σ̂, and
λmax = σ2) yields the assertions (3.4) and (3.5).

We will now show that estimate (3.6) holds. Noting that ρP(Mpost(ω), N(x̄†, Γpost)) ≤
‖Xpost(ω)− x̄†‖Γ the triangle inequality yields that

ρP(Mpost(ω), µx̄†) ≤ ‖Xpost(ω)− x̄†‖Γ + ρP(N(x̄†, Γpost), µx̄†) .

Note that for any B ∈ B(Rn)

N(x̄†, Γpost)(B) = (2π)−
n
2 |Γpost|−

1
2

∫
B

e−
1
2
(x̄−x̄†)T Γ−1

post(x̄−x̄†) dx̄

=
∫

g−1(B)
(2π)−

p
2 |F |

1
2 e−

1
2
ξT
1 Fξ1 · (2π)−

n−p
2 e−

1
2
ξT
2 ξ2 d(ξ1, ξ2)

with F := I +V T
1 Γ

1
2 AT Σ−1AΓ

1
2 V1 = diag (1+σ−2λ2

i ). Now (3.3), Proposition 2.2 (with
x̃ = x̄† and Q = Γ), and Proposition 2.5 (with m = p, ȳ = 0, Σ = F−1, Q = I, and
λmax = σ2

σ2+λ2
p
) imply that

ρP(N(x̄†, Γpost), µx̄†) = ρ(N(0, F−1)) ≤
(

2σ2

σ2 + λ2
p

(
p− ln−

( σ2ap

σ2 + λ2
p

))) 1
2

.

This together with (3.7) and Proposition 2.4 proves assertion (3.6).

As expected for regularization in finite dimensional spaces we obtain convergence
rates with the same order as the noise.

4. Convergence analysis for the infinite dimensional setting

In this section, we turn back to the infinite dimensional equation (1.1) formulated
between real separable Hilbert spaces. As mentioned in the introduction, this equation
is usually discretized leading to a finite dimensional problem (1.2). One possibility to
discretize equation (1.1) is via projection. We choose the following approach (see [2,
Section 5.2]):

Let {Yn} be a sequence of finite dimensional subspaces of R(T ) with the following
approximation property

lim
n→∞

‖(I −Qn)y‖ = 0 for all y ∈ R(T ) , (4.1)

where Qn is the orthogonal projector of Y onto Yn. This condition is especially satisfied
if Yn ⊂ Yn+1 for all n ∈ N and if the union of Yn is dense in R(T ). Instead of (1.1) we
now want to solve

Tnx = Qny , Tn := QnT . (4.2)

As in the finite dimensional approach we assume that we have a prior distribution
for X. Now X is a random variable from a probability space (Ω,F ,P) to the Hilbert
space X with Gaussian distribution N(x0, Γ), where x0 ∈ X and Γ is a positive definite
self adjoint trace class operator (see, e.g., [9]). We will look for stable solutions of (4.2)
in the space Xn := ΓT ∗Yn, where T ∗ denotes the adjoint of T : X → Y .
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Assuming that Yn has dimension n and that {ϕn
i }1≤i≤n, is a basis for Yn, problem

(4.2) is equivalent to

Anx̄ = ȳ with An := G−1
n Hn , (4.3)

where

x =
n∑

i=1

x̄iΓT ∗ϕn
i , Qny =

n∑
i=1

ȳiϕ
n
i , Hn := [〈ΓT ∗ϕn

i , T
∗ϕn

j 〉] , Gn := [〈ϕn
i , ϕ

n
j 〉] .

Note that Hn = [〈T#ϕn
i , T

#ϕn
j 〉Γ], where T# = ΓT ∗ is the adjoint of T : XΓ → Y and

XΓ := D(Γ−
1
2 ) ⊂ X is the Hilbert space with inner product

〈x1, x2 〉Γ := 〈Γ−
1
2 x1, Γ

− 1
2 x2 〉 .

Moreover, for x ∈ Xn and y ∈ Y it holds that

‖x‖2
Γ = x̄T Hnx̄ and ‖Qny‖2 = ȳT Gnȳ . (4.4)

Finally, we need an error model. It is known from the deterministic regularization
approach that for the finite dimensional equation (4.2) only noise in Yn matters. There-
fore, we can choose a random noise model, where the random variable En has its values
in Yn. We assume in this section that the distribution of the noise En is given by
N(0, σ2Qn) and as always that En is independent of X. Note that the values of En

belong to Yn with probability 1 (cf., e.g., [10]).
From the prior distribution of X on X we can derive a prior distribution for

X̄ := H−1
n [〈X, T ∗ϕn

i 〉], the random variable corresponding to x̄ ∈ Rn: it is well known
(see, e.g., [9]) that [〈X, T ∗ϕn

i 〉] is normally distributed with mean [〈x0, T
∗ϕn

i 〉] and
covariance matrix Hn. Then the proper prior distribution for X̄ is given by N(x̄0, H

−1
n )

with x̄0 = H−1
n [〈x0, T

∗ϕn
i 〉]. Note that

Pnx0 =
n∑

i=1

x̄0,iΓT ∗ϕn
i

if x0 ∈ XΓ, where Pn is the orthogonal projector from XΓ onto Xn ⊂ XΓ. In a similar way
we see that the corresponding distribution of the noise in Rn is given by N(0, σ2G−1

n ).
The Bayesian approach now yields that the posterior distribution µpost for the finite

dimensional problem (4.3) is given by N(x̄post, Γpost) with (see (1.3) and (1.4))

x̄post = (σ2Gn + Hn)−1(Gnȳ
σ + σ2Gnx̄0) and Γpost = (Gn + σ−2Hn)−1GnH

−1
n .

Obviously, there is an appropriate element xpost,n =
∑n

i=1 x̄post,iΓT ∗ϕn
i in Xn given by

xpost,n = (σ2Γ−1 + T ∗nTn)−1(T ∗nyσ
n + σ2Γ−1Pnx0) , (4.5)

where yσ
n is a realization of the random variable Qny+En such that Qny

σ
n =

∑n
i=1 ȳσ

i ϕn
i .

The induced posterior distribution µpost,n with values in X is then given by

N(xpost,n, Γpost,n) with Γpost,n := (Γ−1 + σ−2T ∗nTn)−1 = Γ
1
2 (I + σ−2Γ

1
2 T ∗nTnΓ

1
2 )−1Γ

1
2 .

Note that Γpost,n is a trace class operator.
The question is now, where the corresponding random variables Xpost,n and Mpost,n

(compare (1.5) and (1.6)) converge to as σ goes to 0 and as n tends to infinity.
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For this convergence analysis we need an estimate for ρK(En, 0). To obtain a quali-
tatively nice estimate that does not involve too many parameters we assume that the
following condition

σncn ≥ 1 for some c > 1 (4.6)

holds. Then Proposition 2.5 (with m = n, ȳ = 0, Σ = σ2G−1
n , and Q = G−1

n ) together
with Definition 2.3, (2.1), and (4.4) implies that

ρK(En, 0) = O(σn
1
2 ) . (4.7)

Checking the proof of Proposition 2.5 one can show that this estimate is sharp if σn → 0.
Obviously σ has to go faster to zero than n

1
2 tends to infinity so that ρK(En, 0) will

converge to zero. This reflects the fact that En is a projection of the white noise which
is not a Gaussian distribution in Y . On the other hand, condition (4.6) means that σ
is not allowed to go too fast to zero as n tends to infinity, however, it might still tend
to zero exponentially fast.

From Tikhonov regularization one knows that the regularization parameter is not
allowed to go to zero too fast compared to the noise level (see, e.g., [2]). In view of (4.7)
we can not expect that xpost,n as defined in (4.5) will converge. Therefore, we consider
the following weighted Bayesian approach:

Viewing the random variable X in the space X equipped with the weighted norm
α

1
2 σ−1‖ · ‖X implies that the appropriate prior distribution for X̄ in Rn is given by

N(x̄0, σ
2α−1H−1

n ). Now the standard Bayesian approach in Rn yields a posterior distri-
bution µα

post = N(x̄α
post, Γ

α
post) with

x̄α
post = (αGn + Hn)−1(Gnȳ

σ + αGnx̄0) and Γα
post = σ2(αGn + Hn)−1GnH

−1
n .

The induced posterior distribution with values in X is then given by N(xα
post,n, Γ

α
post,n)

with

xα
post,n = (αΓ−1 + T ∗nTn)−1(T ∗nyσ

n + αΓ−1Pnx0) and Γα
post,n := σ2(αΓ−1 + T ∗nTn)−1 .

For a convergence analysis in X one would have to use results from regularization in
Hilbert scales (see [2, Section 8.5]), i.e., one would need an assumption like ‖Tx‖ ∼
‖Γ−a

2 x‖ for some a > 0. We will not pursue this approach here, but we rather derive
results on convergence and convergence rates in XΓ.

The appropriate induced posterior distribution µα
post,n in Xn,Γ, the space Xn equipped

with the XΓ-norm, is given by N(xα
post,n, Γ̃

α
post,n) with

Γ̃α
post,n := σ2(αI + T#QnT )−1 .

Note that µα
post,n is not a Gaussian distribution in XΓ, since Γ̃α

post,n is not a trace class
operator in XΓ.

As in the finite dimensional case the weighted posterior mean xα
post,n and the weighted

posterior distribution µα
post,n are realizations of random variables Xα

post,n and Mα
post,n,

respectively, i.e.,

Xα
post,n(ω) := (αΓ−1 + T ∗nTn)−1(T ∗n(Qny + En(ω)) + αΓ−1Pnx0)

= (αI + T#QnT )−1(T#Qn(y + En(ω)) + αPnx0) , (4.8)
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Mα
post,n : (Ω,F ,P) → (M(Xn,Γ), ρP), ω 7→ N(Xα

post,n(ω), Γ̃α
post,n) . (4.9)

In the next theorem, we present convergence rates for ρK(Xα
post,n, x

†) and ρK(Mα
post,n, δx†n

),

where x† = T †y, T † is the Moore-Penrose inverse of T : XΓ → Y , and x†n = T †ny. Note
that x†n = Pnx

† (cf., e.g., [2, Theorem 3.24]) and that δx†n
is a point measure in Xn,Γ.

Theorem 4.1. Let (4.6) hold, let Xα
post,n and Mα

post,n be the random variables defined
in (4.8) and (4.9), respectively, and suppose that T is compact. Moreover, assume that
x†, x0 ∈ XΓ and that

(I − P )x0 − x† = (T#T )µv , v ∈ N (T )⊥ , µ ∈ [0, 1] , (4.10)

where P denotes the orthogonal projector from XΓ onto N (T ) ⊂ XΓ.

If σn
1
2 → 0 and if α → 0 and σ2n

α
→ 0 in case µ = 0 and α ∼ (σn

1
2 )

2
2µ+1 in case

µ > 0 as σ → 0 and n →∞, then it holds that

ρK(Xα
post,n, x

†) = O
(
‖(I − Pn)x†‖Γ

)
+

 o(1) , µ = 0 ,

O
(
γ2µ

n + (σn
1
2 )

2µ
2µ+1

)
, µ > 0 ,

(4.11)

and

ρK(Mα
post,n, δx†n

) =

 o(1) , µ = 0 ,

O
(
γ2µ

n + (σn
1
2 )

2µ
2µ+1

)
, µ > 0 ,

(4.12)

where γn := ‖(I −Qn)T‖XΓ,Y .

Proof. Noting that Pnx0 = Pn(I − P )x0 and QnTx†n = Qny, and using standard
estimation techniques for Tikhonov regularized solutions (see [2, Section 5.2]), we obtain
the following estimate

‖Xα
post,n(ω)− Pnx

†‖Γ ≤ ‖α(αI + T#QnT )−1Pn(x0 − x†)‖Γ

+ ‖(αI + T#QnT )−1T#QnEn(ω)‖Γ

≤ ‖(I − Pn)((I − P )x0 − x†)‖Γ +
1

2
√

α
‖En(ω)‖

+

{
o(1) , µ = 0 ,
O(γ2µ

n + αµ) , µ > 0 .

Now assertion (4.11) follows together with (4.7), Proposition 2.4, the choices for α, and
the fact (see [2, Lemma 5.10]) that

‖(I − Pn)((I − P )x0 − x†)‖Γ =

{
o(1) , µ = 0 ,
O(γ2µ

n ) , µ > 0 .

The proof of estimate (4.12) is similar to the one of estimate (3.6) noting that as in the
finite dimensional case

ρP(M
α
post,n(ω), δx†n

) ≤ ‖Xα
post,n(ω)− Pnx

†‖Γ + ρP(N(x†n, Γ̃
α
post,n), δx†n

)

and

ρP(N(x†n, Γ̃
α
post,n), δx†n

) = ρ(N(0, Γα
post)) = ρ(N(0, diag−1(σ−2(α + λ2

i ))))

≤
(

2σ2

α + λ2
n

(
n− ln−

( σ2an

α + λ2
n

))) 1
2

,
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where an := 2πn2
(

e
2

)n
and λi, 1 ≤ i ≤ n, are the singular values of the matrix G

− 1
2

n H
1
2
n

or equivalently the singular values of Tn : XΓ → Y . Moreover, due to (4.6), we obtain

that ρP(N(x†n, Γ̃
α
post,n), δx†n

) = O(α−
1
2 σn

1
2 ).

The rate in (4.11) is known to be order optimal. Note that γn → 0, since T is compact.
The a priori parameter choice of α depends on the parameter µ in (4.10). This pa-

rameter is in general not known. For a posteriori parameter selection criterions that do
not need this knowledge see [2].

The convergence results in Theorem 4.1 show that, although the rates in the finite
dimensional case (see Theorem 3.1) are order optimal, one might obtain better estimates
with a weighted approach, especially for large scale problems.
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