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Abstract. We investigate a certain quartic integral from Victor Moll’s book
“Irresistible Integrals” and demonstrate how it can be solved by means of
computer algebra methods, namely by using non-commutative Gröbner bases.
We present recent implementations in the computer algebra systems Singular

and Mathematica.

1. Introduction

The integral [1, (7.2.1)] which we deal with is

(1) F (a,m) =

∫

∞

0

1

(x4 + 2ax2 + 1)m+1
dx.

From mathematical expert’s view this integral might not look very challenging,
and of course, Moll is able to compute its solution by hand. But nevertheless his
computations are involved and need some quite special knowledge. From the soft-
ware point of view both Maple and Mathematica fail to evaluate (1) due to the
presence of two parameters a,m (if they are set to concrete numbers the evaluation
can be immediately done). We present computer algebra methods that allow to
compute this integral in a purely automatic fashion with no expert’s knowledge
involved. The first approach is based on D-module theory whereas the second one
follows Zeilberger’s “holonomic systems approach”. Our aim is to bring together
these two directions since the underlying theoretical principles are identical. More-
over, we aim at a self-contained presentation of theory and algorithms.

2. Preliminaries

Let K be a field. For the integration, we will need to deal with some special
non-commutative algebras. It is common to define K-algebras via generators and
relations, especially if they have infinite dimension over K. Let X = {x1, . . . , xn}
be a finite set of symbols, then by K〈X〉 one denotes a free associative algebra.
Given a finite set R = {r1(x), . . . , rm(x)} ⊂ K〈X〉, writing for an associative K-
algebra A = K〈X | R〉 means A ∼= K〈X〉/IR, where IR := 〈R〉 is the two-sided ideal
of K〈X〉 generated by R. The elements of both R and IR are often regarded as
relations of A. This way of defining algebras has its roots in group theory, where
a similar construction is performed. Since we are dealing with the algebras, which
are in many sense close to commutative - in particular, each pair of variables is
connected by some relation - we use shorter notation when writing the defining
relations R. Namely, if we do not mention any relation between a pair of variables,
these variables do commute.
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Given two algebras A = K〈X〉/I and B = K〈Y〉/J , we identify A⊗K B with the
algebra K〈X,Y | I + J〉, since in A ⊗K B any element a ⊗ 1 for a ∈ A commutes
with every element 1 ⊗ b for b ∈ B.

In this article we deal with Weyl algebras, shift algebras and their tensor products
over a field K of characteristic 0. Given a natural number n ≥ 1 and a set of variables
(also called coordinates) X = {x1, . . . , xn}, we construct first a commutative ring
Rn = K[X]. We identify a polynomial f ∈ Rn with the operator of multiplication by
f . Given n natural operators ∂i := ∂xi

= ∂
∂xi

of partial differentiation with respect
to the coordinate variable xi, we define the algebra of linear partial differential
operators with polynomial coefficients (also called the n-th Weyl algebra) to be

An := K〈x1, . . . , xn, ∂1, . . . , ∂n | {∂jxi = xi∂j + δij
1 ∀1 ≤ i, j ≤ n}〉.

Note, that the action of an operator on a function from an appropriate function
space will be denoted by •, while · will be used for multiplication in operator
algebras. Thus,

∂xi
• f(x1, . . . , xn) :=

∂f(x1, . . . , xn)

∂xi

.

To each coordinate xi we can also associate a partial shift operator si, which
acts on a function f(x1, . . . , xi, . . . , xn) as

si • f(x1, . . . , xi, . . . , xn) := f(x1, . . . , xi + 1, . . . , xn).

Given n such operators, we define the algebra of linear partial shift operators with
polynomial coefficients (also called the n-th shift algebra) to be

Sn := K〈x1, . . . , xn, s1, . . . , sn | {sjxi = xisj + δijsj ∀1 ≤ i, j ≤ n}〉.
Both An and Sn share many nice properties, for instance

- {xα1

1 . . . xαn

n ∂β1

1 . . . ∂βn

n | αi, βi ∈ N0} is a K-basis for An,

- {xα1

1 . . . xαn

n sβ1

1 . . . sβn

n | αi, βi ∈ N0} is a K-basis for Sn,
- An and Sn are Noetherian domains (in particular, every module is finitely

generated and there are no zero divisors),
- for any i, j ∈ N, Ai+j

∼= Ai ⊗K Aj and Si+j
∼= Si ⊗K Sj ,

- there is a Gröbner basis theory for both types of algebras, very close to the
theory in the commutative case, see e.g. [11, 8].

Picking some nice K-basis for an algebra as above, we call these basis elements
monomials. As one can see, the monomials are in one-to-one correspondence with
their exponent vectors, say, (α1, . . . , αn, β1, . . . , βn) ∈ N

2n. Hence, we can define a
monomial ordering on An as follows (the cases of Sm and An⊗K Sm are completely
analogous, see e.g. [8])

Definition 1. A monomial ordering on An is a total ordering ≺ on the set of

monomials, which satisfies for all α = (αx, α∂), β = (βx, β∂), γ = (γx, γ∂) ∈ N
2n

(1) α ≺ β ⇒ xαx∂α∂ ≺ xβx∂β∂ and

(2) xαx∂α∂ ≺ xβx∂β∂ ⇒ xαx+γx∂α∂+γ∂ ≺ xβx+γx∂β∂+γ∂ .

Since every polynomial f ∈ An can be uniquely written as a sum of monomials
times coefficients, we call the highest monomial of f with respect to a given ordering
the leading monomial of f . We denote the latter by lm(f).

Note that there is another requirement we need to be fulfilled in our class of
algebras, namely 1 ≺ xi, ∂j , sk ∀ i, j, k, that is the monomial ordering is a well-

ordering.
We say that xαx∂α∂ divides xβx∂β∂ , if αi ≤ βi for all i in the range. Note,

that this just means, that there exist γ ∈ N
2n and r ∈ An, such that xβx∂β∂ =

xαx∂α∂ · xγx∂γ∂ + r with r = 0 or lm(r) ≺ xαx∂α∂ .

1
δij denotes the Kronecker symbol
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Definition 2. Let ≺ be a monomial ordering on An and G ⊂ An a finite set of

polynomials. Let I be a left ideal, generated by G. G is called a left Gröbner basis

of I if and only if for any f ∈ I r {0} there exists g ∈ G satisfying lm(g) | lm(f).

Given a finite set of generators of a left ideal L, there is Buchberger’s algorithm

for computing a left Gröbner basis of L (see e.g. [11, 8]).
Let Mn := Rn \ {0}, then Mn is a multiplicatively closed subset of both An

and Sn. Hence, using the algebraic formalism of “localization” and the fact that
Mn is an Ore set, we can pass from An (resp. Sn) to its “Ore localization”, that is an
algebra (An)Mn

(resp. (Sn)Mn
). In the language of systems of operator equations

(An)Mn
(resp. (Sn)Mn

) stays for the algebra of linear partial differential (resp.
shift) operators with rational coefficients. The algebras with rational coefficients
appear very often in practical applications. They - as well as the Weyl and the shift
algebra - are special cases of Ore algebras. We refer to [10, 4, 3, 8] for more details
on these algebras, their properties as well as computational aspects and Gröbner
bases.

3. Integration with D-modules

Define f := f(a, x) = x4 + 2ax2 + 1 ∈ K[x, a], then we have to integrate the
function f−(m+1) with respect to x.

D-module theory stands for “the theory of differential modules” and encom-
passes systems of linear partial differential equations with polynomial and rational
coefficients. One of the most important algorithms, obtained with D-module theory
(see [11] and references therein for the full picture) is the algorithm for computing
the s-parametric annihilator of f ∈ K[x1, . . . , xn] for a symbolic s. That is, it is
possible to compute a set of operators {P ∈ D[s] : P • fs = 0} =: AnnD[s] f

s,
which is indeed a left ideal in the algebra D[s] := An[s] = An⊗K K[s] (for historical
reasons D stands for some n-th Weyl algebra). Additionally, there is an algorithm
for computing AnnD fλ for any λ ∈ C, which uses the previously mentioned one.

In the case of the integral (1), the polynomial f is in K[x, a] = R2. Then
D = A2 = K〈x, a, ∂x, ∂a|∂xx = x∂x +1, ∂aa = a∂a +1〉 is the 2nd Weyl algebra and
D[s] = A2 ⊗K K[s]. First, we are going to compute the left ideal L := AnnD[s] f

s ⊂
A2⊗K K[s] for s := −(m+1) being symbolic. L corresponds to the system of linear
partial differential equations in operators ∂x, ∂a, s with coefficients in K[x, a], which
has fs as a solution. That is ∀h ∈ L, h • fs = 0.

In order to compute a system I of such equations for the function F (a, s), we
use Theorem 5.5.1 of [11], which states the following: let J be the right ideal
of A2, generated by all partial differential operators, corresponding to variables,
with respect to which we perform integration (in our case this is just ∂x, but the
Theorem, as well as the whole approach, which goes back to Takayama [13, 12],
holds for the multiple variable case too). Then

I = (L + J) ∩
(

K〈a, ∂a | ∂aa = a∂a + 1〉 ⊗K K[s]
)

,

where the latter algebra is a natural K-subalgebra of A2 ⊗K K[s].
In general the sum of a left and of a right ideals carries no left or right structure.

However, in the setting we work with a right ideal is very special one and, as we
can see, there is a structure of left ideal on the intersection I of the sum of ideals
above with a subalgebra.

We work with the special K-basis of the algebra A2⊗KK[s], namely {∂α
x xβaγ∂δ

asǫ |
α, β, γ, δ, ǫ ∈ N0}. In particular, each monomial of any polynomial in a left Gröbner
basis of L = AnnD[s] f

s is presented in this form. Moreover, we compute a left
Gröbner basis G of L with respect to an ordering which eliminates x, ∂x, i.e., any
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monomial containing ∂x or x is bigger than one, which does not contain both of
them.

Instead of summing L with the right ideal J (generated by ∂x), we perform
the right reduction of G with respect to J , what amounts to just skipping any
monomial of every polynomial of G, if it is of the form ∂α

x xβaγ∂δ
asǫ, where α ≥ 1.

We may throw such a monomial away, because it belongs to the ideal J . After such
a procedure we get a new set of polynomials G′, where ∂x does not appear. Since
we used elimination ordering for both x and ∂x for G and, moreover, monomials
containing ∂x are not present in G′, it remains to pick those elements of G′, which do
not contain x. These elements then belong to the algebra K〈a, ∂a | ∂aa = a∂a+1〉[s]
and, according to the Theorem 5.5.1 of [11], they generate the left ideal I we are
looking for.

Now we illustrate the computation for the integral (1) with the computer algebra
system Singular:Plural [5, 6]. This system has a library for computations with
algebraic D-modules dmod.lib [9], which we are going to use.

LIB "dmod.lib"; // load the library for D-modules

ring r = 0,(a,x),dp; // define a commutative ring

poly f = x^4 + 2*a*x^2 + 1;

def A = Sannfs(f); // A is a ring with the result object

// in it

setring A;

In the ring A, which stays for D[s] (see above), there is an object called LD of the
type ideal, which is the s-parametric annihilator ideal L = AnnD[s] f

s as before.
Its Gröbner basis consists of four operators

2x2∂a + 2a∂a − x∂x ,
x3∂x − 2a2∂a + ax∂x − 4x2s + 2∂a ,
4a2∂2

a − x2∂2
x − 8a∂as + 4a∂a − 4∂2

a + 4x∂xs − x∂x ,
2a2x∂a + ax2∂x − 4axs − 2x∂a + ∂x.

Now, we change the order of variables into ∂x, x, a, ∂a, s; adjust the non-commutative
relations respectively; set the monomial ordering, eliminating ∂x, x and compute
the left Gröbner basis of the ideal L, mapped from the ring A.

ring rr = 0, (Dx, x, a, Da, s), (a(1,1),dp);

matrix @D[5][5];

@D[1,2] = -1; @D[3,4] = 1;

def RR = nc_algebra(1,@D);

setring RR; // a new non-commutative ring

map M = A, a, x, Da, Dx, s; // map from A to RR using names

ideal LD = M(LD); // the image of LD in the new ring

LD = groebner(LD); // left Groebner basis of LD

At this stage we have to perform the addition of the left ideal L with the right
ideal J , generated by ∂x and intersect the result with the subalgebra K〈a, ∂a |
∂aa = a∂a + 1〉[s]. We go along the lines, described above.

ideal DD = Dx ;

ideal J = rightNF(LD,DD); // reduce with Dx from the right

ideal NJ = nselect(J,1,2); // see below

NJ = groebner(NJ); // left Groebner basis of NJ

We achieve these operations by computing the right normal forms of generators
of left Gröbner basis of LD with respect to ∂x. Invoking nselect command we
select those generators, which do not include the variables from 1 to 2, that is ∂x

and x. As we can see, the ideal called NJ, which stay for I as above, is a principal
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ideal indeed. It is generated by the polynomial

4a2∂2
a − 4∂2

a − 8a∂as + 4a∂a − 4s − 1.

Depending on the monomial ordering used, sometimes an invertible element
might appear as a factor.

Now we substitute s by −m−1 and rewrite some terms, giving back the answer:
the integral F (a,m) is annihilated by the left principal ideal of the algebra K〈a, ∂a |
∂aa = a∂a + 1〉[m], which is generated by the operator

4(a − 1)(a + 1)∂2
a + 4a(2m + 3)∂a + (4m + 3).

Of course, it is not yet a final answer, but an important part of it. In the next
sections we show how we come to a closed form for the integral.

4. Holonomic systems and ∂-finite functions

We will now demonstrate how the symbolic evaluation of integrals like (1) can be
performed in a different, more general framework, following D. Zeilberger’s “holo-
nomic systems approach” [14]. This theory was extended by F. Chyzak [2, 3, 4] who
introduced the concept of ∂-finite functions and proposed Ore algebras to describe
them. Moreover he implemented the underlying algorithms in the Maple package
Mgfun.

For the construction of an Ore algebra, one starts with a commutative al-
gebra like K[X] or K(X) and adds one or several Ore extensions. These ex-
tensions introduce operators that necessarily commute with each other but usu-
ally do not commute with the variables X. This setting is quite general (see
e.g. [10]) and here we consider only special operators, namely the partial deriva-
tives ∂x, ∂a and the shift sm. For example, the Ore algebra that we will use here
is O = K(x, a,m)[∂x; 1, ∂x][∂a; 1, ∂a][sm; sm, 0]. This algebra can also be realized as
an Ore localization (A2 ⊗K S1)B where A2 = K〈x, a, ∂x, ∂a | ∂xx = x∂x + 1, ∂aa =
a∂a + 1〉, S1 = K〈m, sm | smm = msm + sm〉, and B is the multiplicatively closed
set K[x, a,m] \ {0} ⊂ A2 ⊗K S1.

A function f is called ∂-finite w.r.t. a rational Ore algebra K(X)[P; ., .] if the
K(X)-vector space spanned by all (Xm

P
n)•f is finite-dimensional over K(X). The

following example will clarify this definition.
We want to find Ore operators in O that annihilate the integrand g(x, a,m) =

1/(x4 + 2ax2 + 1)m+1. First observe that g is hyperexponential in x and a, i.e.,
∂x•g

g
and ∂a•g

g
are rational functions in x and a respectively, e.g.,

∂x • g(x, a,m)

g(x, a,m)
=

(−m − 1)
(

4x3 + 4ax
)

x4 + 2ax2 + 1
.

Moreover g is hypergeometric in m which means that sm•g
g

= g(x,a,m+1)
g(x,a,m) is a ra-

tional function in m. Hence we can compute first order annihilating operators
for g(x, a,m) in AnnO g = {R ∈ O | R • g = 0}. Note that we use the term
“annihilator” for any ideal of annihilating operators.

g = 1/(x^4+2*a*x^2+1)^(m+1);

ann = Annihilator[g, {S[m], Der[a], Der[x]}]

{(x4 + 2ax2 + 1)∂x + 4mx3 + 4x3 + 4ax + 4amx,

(x4 + 2ax2 + 1)∂a + 2mx2 + 2x2,

(x4 + 2ax2 + 1)sm − 1}
An easy check ensures that these polynomials indeed constitute a Gröbner basis of
the left ideal they generate. Moreover all leading monomials have degree 1; hence
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the corresponding ideal is a left maximal ideal and dimK(x,a,m) O/AnnO g = 1, so g
is indeed ∂-finite w.r.t. O.

In order to perform the integration w.r.t. x, we are interested in finding operators
in AnnO g of the following special form:

P (a,m, ∂a, sm) + ∂xQ(x, a,m, ∂x, ∂a, sm),

since

0 =

∫

∞

0

(

P (a,m, ∂a, sm) + ∂xQ(x, a,m, ∂x, ∂a, sm)
)

• g(x, a,m) dx

= P • F (a,m) +
[

Q • g(x, a,m)
]x=∞

x=0
.(2)

For this purpose we will use Takayama’s algorithm [13, 12]. It is designed in a way
that it computes P (the part one is mainly interested in) without computing Q.
Informally spoken, one first divides out the right ideal generated by ∂x and then
eliminates x by performing a Gröbner basis computation over a module. To this
aim we have to compute in the Ore algebra K(a,m)[x][∂x; 1, ∂x][∂a; 1, ∂a][sm; sm, 0]
because otherwise we were not able to eliminate x. More details on Takayama’s
algorithm were given in the previous section.

The fact that Q is not considered at all leads to the prerequisite that the integral
must have natural boundaries: An integral

∫ v

u
h(x, . . . )dx is said to have natural

boundaries if [R • h]
x=v
x=u = 0 for all operators R in the respective algebra. In

particular, the inhomogeneous part in (2) will vanish. If the integral does not have
natural boundaries, we can end up with an inhomogeneous equation.

If we now look at the integral (1) we see that unfortunately it does not have
natural boundaries, e.g.,

[

1 • g(x, a,m)
]x=∞

x=0
= −1.

We nevertheless can apply Takayama’s algorithm, but we have to use an extended
version where also Q is computed. Such an extension is included in [7].

Takayama[ann, {x}, OreAlgebra[x, Der[x], S[m], Der[a]],

Extended -> True]

{{(−4m − 4)sm + 2a∂a + (4m + 3),(3)

(4a2 − 4)∂2
a + (8ma + 12a)∂a + (4m + 3)},

{x, (−4m − 4)xsm + 2ax∂a + x}}.
We are interested in the ordinary differential equation in a (the second operator).
Note that it is the same as the result obtained with the first method. The corre-
sponding Q is (−4m − 4)xsm + 2ax∂a + x. Now we verify that [Q • g]x=∞

x=0 indeed
vanishes although the integral does not have natural boundaries:

inhom = Simplify[ApplyOreOperator[%[[2,2]], g]]

x
(

x4 + 2ax2 + 1
)−m−2 (

−x4 + 2ax2 + 4m
(

ax2 + 1
)

+ 3
)

inhom /. x -> 0

0

Limit[inhom, x -> Infinity, Assumptions -> m >= 0]

0

Hence, we derived in a purely automatic fashion an ordinary differential equation
in a that is satisfied by the integral.
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5. Closed form solution

Up to now we did not present a closed form solution of the integral, but only a
differential equation in the parameter a:

(4) (4m + 3)F (a,m) + 4a(2m + 3)F ′(a,m) + 4
(

a2 − 1
)

F ′′(a,m) = 0.

For solving this differential equation we can use standard tools. Since it has order 2,
we need the initial values F (0,m) and F ′(0,m):

in0 = Integrate[g /. a -> 0, {x, 0, Infinity},

Assumptions -> m >= 0]

Γ
(

5
4

)

Γ
(

m + 3
4

)

Γ(m + 1)

in1 = Integrate[D[g, a] /. a -> 0, {x, 0, Infinity},

Assumptions -> m >= 0]

−2Γ
(

7
4

)

Γ
(

m + 5
4

)

3Γ(m + 1)

We solve (4) with Mathematica’s command DSolve:

DSolve[{(4m+3)F[a] + 4a(2m+3)F’[a] + 4(a^2-1)F’’[a] == 0,

F[0] == in0, F’[0] == in1}, F[a], a]

After some simplification we end up with the final result:

F (a,m) = − (1 + i)(−i)m2−m−1
(

a2 − 1
)

−
m

2
−

1

4
√

πQ
(m+ 1

2
)

m (a)

Γ(m + 1)
,

where Q
(µ)
λ (z) denotes the associated Legendre function of the second kind.

Note that we computed this solution completely automatically with no necessity
of human insight to the specific problem. V. Moll as an expert in the field of
integrals gives the following slightly simpler solution involving Jacobi polynomials:

F (a,m) = 2−m−
3

2 (a + 1)−m−
1

2 πP
(m+ 1

2
,−m−

1

2 )
m (a)

With our software [7] we can immediately prove the correctness of this solution:

Annihilator[Pi*JacobiP[m, m+1/2, -m-1/2, a]/2^(m+3/2)/

(a+1)^(m+1/2), {Der[a], S[m]}]

{−4m + (−2a)∂a + (4m + 4)sm − 3,

4m +
(

4a2 − 4
)

∂2
a + (8ma + 12a)∂a + 3}

Observe that this annihilator is exactly the same as (3). By comparing the initial
values

F (0, 0) =
π

2
√

2
and F ′(0, 0) = − π

4
√

2
we complete the proof.

6. Conclusion

We presented computer algebra methods for the automatic solution of a para-
metrized integral. We want to emphasize that these methods are applicable to
a wide class of integration (and summation) problems. In particular the second
method works for the large class of holonomic functions (including hypergeometric,
hyperexponential, algebraic, and Special functions). As a more challenging example
let’s just mention the integral

∫

∞

0

1

(x4 + ax3 + bx2 + cx + d)m
dx
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which contains more parameters, but nevertheless can be tackled in an analogous
way. The problem here is only that the resulting differential equations are so
involved that the standard tools are not able to find a closed form solution.

We are grateful to Victor Moll and Peter Paule for turning our attention towards
this interesting problem.
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