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Abstract

We consider a Poisson problem and its functional a posteriori es-
timate derived in [20]. The estimate majorizes the L2 norm of the
error of the discrete solution computed by FEM method and contains
a free variable from a H(div) space. In order to keep the estimate
sharp, the majorant term is minimized with respect to the free vari-
able. A minimization procedure is introduced, containing a solution
of linear system of equations as its computationally most expensive
part. The linear system is efficiently solved using a conjugate gradient
method with a multigrid as a preconditioner. All numerical techniques
including the computation of the constant from the Korn’s inequality
as a part of majorant estimate are demonstrated on one benchmark
example.

1 Introduction

A priori rate convergence estimates for finite element approximations of such
problems has been investigated in 70s-80s (see e.g., [13]). However, adap-
tive multi-level algorithms require a posteriori estimates able to (a) provide
a reliable and directly computable estimate of the approximation error and
(b) efficient error indicator that detects the regions with excessively high
errors.

In the recent decades, a posteriori estimates for linear elliptic and parabolic
problems were intensively investigated. A reader will find a systematic ex-
position of the main approaches to a posteriori error estimation of finite
element approximations (such as residual or gradient averaging methods) in
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[1, 6, 7, 5, 4, 11, 27] and in the literature cited therein.

In this paper, a posteriori estimates that majorate the difference between
exact solution of a linear elliptic equation and any function in the admissible
(energy) class are studied. For the class of uniformly convex variational
problems computable error majorants (for any conforming approximation)
were derived by the variational techniques in the mid 90th using duality
theory of the calculus of variations. Key publications related to this subject
are [20, 25, 22]. Another ”nonvariational” method was introduced in [23].
In this paper it was stated that for linear elliptic problems both methods
lead to the same error majorants. Later it was applied to many problems,
including parabolic equations and nonliner problems [8, 9, 14, 15, 24].

As an example of demonstration, let us consider a scalar boundary value
(Poisson) problem

△u + f = 0 in Ω, u = 0 on ∂Ω (1)

for the searched function u. The right hand side f ∈ L2(Ω) and an open
bounded domain Ω ∈ R

d, where d denotes a domain dimension, i.e., d =
1, 2, 3 are given. Assume that v ∈ H1

0 is some approximation of u in a
Sobolev space H1

0 (Ω). Then, a functional error estimate

‖∇(u − v)‖Ω ≤ ‖∇v − y‖Ω + CΩ ‖divy + f‖Ω (2)

holds for all functions y ∈ H(Ω,div), ‖·‖Ω denotes the L2(Ω) norm. Note
that no mesh–dependent constants or any assumptions on regularity of an
exact solution are contained in this estimate. The only global constant CΩ

included represents a constant from the Fridrichs’ inequality

‖w‖2
Ω ≤ C2

Ω
‖∇w‖2

Ω (3)

which holds for all w ∈ H1
0 (Ω). Thus the constant CΩ only depends on the

domain Ω and can be precomputed (it is demonstated in subsection 3.1).

The functional a posteriori estimate (2) holds for any y ∈ H(Ω,div) and
its quality for a particular choice of y is measured by an index of efficiency

Ieff :=
‖∇v − y‖Ω + CΩ ‖divy + f‖Ω

‖∇(u − v)‖Ω

. (4)

Under the assumption of an exact solution u and exact integrations of the
norm terms it muss hold Ieff ≥ 1 with an equality for the particular choice
y = ∇u, i.e., y is chosen as the flux of an exact solution.

There are several ways [21] how to compute the flux y approximation
from the discrete solution v in order to substitute y to (2):
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1) Averaging on the mesh of the discrete solution. From a known discrete
approximation v of the solution u we choose the testing function y =
Gv, where G represents an averaging gradient operator, see e.g., [11]
for more details. This is a cheap method providing some preliminary
knowledge on the upper bound of the error.

2) Averaging on a refined mesh. This method is similar to 1), only with
the difference that the averaging is done for the the solution calculated
on once more (or more times) refined mesh. This method can be
regarded as a quantitative form of the Runge’s rule. This method is
more expensive, but provides (generally not always) sharper results.

3) Using partially equilibrated fluxes. By postprocessing of v, a function
yf̄ is constructed such that divyf̄ + f̄ = 0 and f̄ is sufficiently close

to f in L2(Ω) norm. Then, the substitution of y = yf̄ + τ into (2)
provides an estimate

‖∇(u − v)‖Ω ≤
∥

∥∇v + curlτ − yf̄

∥

∥

Ω
+ CΩ

∥

∥f − f̄
∥

∥

Ω
,

where τ ∈ H(Ω, curl) is arbitrary.

4) Minimization of the majorant with respect to y on the mesh of the
discrete solution v. This is the most expensive method for a detailed
knowledge of the error.

A comparison of methods 1), 2) and 4) for a broader class of problems
with nonlinear boundary conditions can be found e.g., in [24]. An equili-
bration techniques based on computation of y as a solution of small local
problems are documented e.g., in [10] and [27].

This paper is focused merely on the method 4), i.e., the minimization
of the majorant on the same mesh, in particularly from the point of their
efficient numerical implementation.

2 Majorant minimization problem

Let us assume to know a discrete solution v ∈ H1
0 (Ω) corresponding to

a problem (1) with a given f . Then, the choice of the “flux” function
y ∈ H(Ω,div) determines how small value of the nominator in Ieff, is and
therefore how sharp the estimate (2) is.

Problem 1 (Minimization problem). Given a discrete solution v ∈ H1
0 , a

right-hand side of the Poisson problem f ∈ L2(Ω), the Friedrich’s constant
belonging to the domain Ω. Find a function y ∈ H(Ω,div) satisfying the
condition

‖∇v − y‖Ω + CΩ ‖divy + f‖Ω → min. (5)
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In order to avoid complications with the nondiferentibiality of norm
terms in (5), we apply the inequality (a + b)2 ≤ (1 + β)a2 + (1 + 1

β
)b2

valid for all β > 0 to obtain

(‖∇v − y‖Ω + CΩ ‖divy + f‖Ω)2 ≤ M(∇v, f, β,CΩ, y), (6)

where the upper bound in (6) denotes a functional majorant

M(∇v, f, β,CΩ, y) := (1 + β) ‖∇v − y‖2
Ω + (1 +

1

β
)C2

Ω
‖divy + f‖2

Ω .

The majorant arguments f, v, CΩ are known and only β > 0 and y ∈
H(Ω,div) are free arguments. In particular case, for a fixed choice of β,
the majorant represents a quadratic functional in unknown flux y. On the
other hand, for a fixed y, the parameter

β =
CΩ ‖divy + f‖Ω

‖∇v − y‖Ω

(7)

minimizes the majorant M amongst all positive β. It suggests the following
solution algorithm to Problem 1.

Algorithm 1 (Majorant minimization algorithm). Given β > 0.

(a) Compute y from the minimization of the quadratic problem

M(∇v, f, β,CΩ, y) → min (8)

(b) Upgrade β from y using the formula (7). If the convergence in y is not
achieved then goto to step (a).

For the detailed analysis of step (a) of Algorithm 1, it is convenient to
decompose M = M1 + M2 in its y-dependent and independent parts

M1 := (1 + β) ‖∇v‖2
Ω + (1 +

1

β
)C2

Ω
‖f‖2

Ω , (9)

M2 := (1 + β)
(

‖y‖2
Ω − 2(∇v, y)

)

+ (1 +
1

β
)C2

Ω

(

‖divy‖2
Ω + 2(f,divy)

)

,

where (·, ·) denotes the L2(Ω) scalar product. Then, one can replace the
minimization problem (8) by

M2(∇v, f, β,CΩ, y) → min. (10)

Since M2 = 0 for the choice y = 0, the minimum of (10) must be nonposi-
tive. Besides, it holds M1 ≥ 0.
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Figure 1: Uniform triangulations at levels 0 (left), 1 (middle), and 2 (right).

2.1 Discretization

The finite element method is used to provide discrete approximations of
the minimization problem above. The domain Ω is divided by a regular
triangulation T in triangles in the sense of Ciarlet [12], i.e., T is a finite
partition of Ω into closed triangles; two distinct elements T1 and T2 are
either disjoint, or T1 ∩ T2 is a complete edge or a common node of both
T1 and T2. The bilinear forms in (10) read after the discretization (using a
given H(Ω,div) finite element basis)

‖y‖2
Ω = ŷT Mŷ, ‖divy‖2

Ω = ŷT DIV DIV ŷ, (11)

where M and DIV DIV represent the ”mass” and “divdiv” matrices, whereas
the linear forms discretize as

(∇v, y) = lT1 ŷ, (f,divy) = lT2 ŷ,

where ŷ denotes a vector representing y in the considered H(Ω,div) finite
element basis. With this discretization, the y-dependent majorant part reads

M2 = ŷT

[

(1 + β)M + (1 +
1

β
)C2

ΩDIV DIV

]

ŷ−

2ŷT

[

(1 + β)l1 − (1 +
1

β
)C2

Ωl2

]

(12)

and its minimization with respect to ŷ leads to the linear system of equations
[

(1 + β)M + (1 +
1

β
)C2

ΩDIV DIV

]

ŷ = (1 + β)l1 − (1 +
1

β
)C2

Ωl2. (13)

The next example explains a practical application of the majorant esti-
mate (2) and of Algorithm 1.

3 Example

Let us assume the external force f(x, y) = 2x(1− x) + 2y(1− y) in the unit
square domain (x, y) ∈ Ω = (0, 1) × (0, 1). For this special setup, the exact
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solution of (1) and its flux read

u = x(1 − x)y(1 − y),

∂u

∂x
= (1 − 2x)y(1 − y),

∂u

∂y
= x(1 − x)(1 − 2y)

(14)

for all (x, y) ∈ Ω. In order to approximate (in this case known) exact solution
numerically, the finite element method is applied. The unit square geometry
is discretized using the sequence of nested uniform meshes as displayed in
Figure 1. Then, a discrete solution v is computed by using the nodal linear
(Courant) ansatz functions on each triangular mesh, see the left column
pictures of Figure 2.

3.1 Friedrich’s constant and its computation

level elements CΩ

0 2 0.17677669529664
1 8 0.20912551729722
2 32 0.22083318837774
3 128 0.22400032086691
4 512 0.22480827985755
5 2048 0.22501130936667
6 8192 0.22506213224527
7 32768 0.22507484206717

theory ∞ 0.22507907903928

Table 1: Friedrich’s constant for the unit square domain computed from the
generalized eigenvalue problem (16) on nested uniform meshes.

The computation of (2) requires the knowledge of the constant C2
Ω

from
the Friedrich’s inequality (3). The discretization of this inequality (on a
given triangulation of Ω) reads

ŵT M△ŵ ≤ C2
Ω
ŵT K△ŵ, (15)

where K△ and M△ represent a stiffness and mass matrices of the Poisson
problem (1). Thus C2

Ω
represent the maximum of all eigenvalue λ of the

generalized eigenvalue problem

M△ŵ = λK△ŵ. (16)

Table 1 reports on approximate values of CΩ using nested uniform meshes
and nodal linear (Courant) ansatz functions and compares them with a
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Figure 2: Discrete solutions v and y-component of the flux y computed from
using Algorithm 1 on mesh levels 2, 3, 4 (the first three rows from above)
and the exact solution u and its flux y-component ∂u

∂y
(bottom row).
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level DOF v ‖∇(u − v)‖2
Ω DOF y majorant M Ieff

1 9 8.873457e-03 16 2.135435e-02 1.55
2 25 3.240138e-03 56 9.050160e-03 1.67
3 81 8.950033e-04 208 2.635564e-03 1.72
4 289 2.295153e-04 800 6.858397e-04 1.73
5 1089 5.774695e-05 3136 1.732119e-04 1.73
6 4225 1.445987e-05 12416 4.341359e-05 1.73
7 16641 3.616415e-06 49408 1.086033e-05 1.73
8 66049 9.041944e-07 197120 2.715516e-06 1.73

Table 2: Comparison of the square of exact error ‖∇(u − v)‖2
Ω and majorant

M values and on various uniform mesh levels.

theoretical value

CΩ =
1√
2π

≈ 0.22507484206717

known for the unit square domain.Discrete values of CΩ converge to the
theoretical value quadratically with respect to the mesh size. Discrete values
of CΩ were computed from (16) in MATLAB.

3.2 Majorant computation

Raviart-Thomas elements of the zero degree (known as RT0 elements [17])
are applied for the computation of the flux y ∈ H(Ω,div) in Algorithm 1.
Their MATLAB implementation is based on [3] with some modification with
respect to the performance and extension towards a multigrid solver.

For simplicity, only one step (a) and one step (b) of Algorithm 1 were
applied assuming an initial value β = 1. Quadrature rules exact for poly-
nomials up to the order two were used for the computation of integrals on
triangulations. The right column of Figure 2 displays computed fluxes (only
one component due to symmetry reasons) for various uniform mesh levels
and the exact flux of the solution provided by (14). It can be observed that
both discrete solutions and fluxes (at least visually) converge to exact solu-
tion and its flux.

By comparing the values of Table 2 or its visualization (Figure 3), both
exact errors and majorant values converge linearly with respect to corre-
sponding degrees of freedom used for their computation. The ratio of their
values on the same mesh level is expressed by the index of efficiency which
remains bounded and converge to the approximate value Ieff ≈ 1.73.
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Figure 3: Values of exact error ‖∇(u − v)‖Ω and the square root of the
majorant

√
M displayed versus degrees of freedom (displayed as DOF v

and DOF y in Table 2) of their calculation on various uniform mesh levels.

4 Improving computational costs

It is obvious from the example in Section 2.1, that the highest computation
costs are caused due to the solution of the linear system of equation (13) in
step (a) of Algorithm 1. Note that the system matrix

[

(1 + β)M + (1 +
1

β
)C2

ΩDIV DIV

]

is symmetric and positive definite. The positive definiteness follows auto-
matically from the estimate (6), where the quadratic functional on the right
side must be nonnegative in order to bound the nonnegative error from
above (reliability of the estimate).

Let consider an iterative method for solving the linear system of equa-
tion (13). The advantage of iterative over direct methods is clear, since
each iteration flux vector ŷk for k = 0, 1, . . . can be insterted into the ma-
jorant (12). It is therefore not necessary to solve the linear system exactly.
Let us consider the preconditioned conjugate gradient (PCG) method for the
iterative solution of the linear system of equation (13). The PCG method
can be schematically described (for a reformulated system Ax = b) as

Algorithm 2 (PCG for Ax=b). Let an initial iteration x0 is given. Com-
pute the initial residual r0 = b − Ax0, the initial energy E0 = 1

2(Ax0, x0) −
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(b, x0) and s0 = C−1r0, p0 = s0, where C is a given preconditioning matrix.
For the iterations j = 0, 1, . . . do the loop

(1) γj =
(rj ,sj)

(pj ,Apj)

(2) Ej+1 = ej − γj(rj ,sj)
2

(3) xj+1 = xj + γjpj

(4) rj+1 = rj − γjApj

(5) sj+1 = C−1rj+1

(6) δj+1 =
(rj+1,sj+1)

(rj ,sj)

(7) pj+1 = sj+1 + δj+1pj

After the end of loop output the solution xj+1 and the energy Ej+1.

This algorithm recalls Algorithm 2 from [26] with an extension for the
computation of the energy (in the step (2)) defined as

Ej :=
1

2
(Axj , xj) − (b, xj). (17)

The knowledge of the energy is required for the computation of the flux-
dependent functional majorant part M2, since it holds (cf. (12))

M2(∇v, f, β,CΩ, yj) = 2Ej , (18)

where A and b are the matrix and the right-hand side of the linear sys-
tem (13). In order to save extra matrix-vector multiplication in (17), which
is already provided in step (1) of Algorithm 2, the formula in step (2) pro-
vides a cheap way of computing Ej . It can be directly derived from the
combination of two formulae. The first one is the known relation between
the energy error of the CG-iterations and their energy

Ej − E =
1

2
(Axj , xj) −

1

2
(Ax, x) − (b, xj) + (b, x)

=
1

2
((Axj , xj) + (Ax, x) − 2(Ax, xj))

=
1

2
(A(x − xj), x − xj) :=

1

2
||xj − x||2A,

(19)

where x denotes an exact solution of the linear system Ax = b. The second
one is a special version of the formula (3.6) for d = 1 from [26]

||x − xj+1||2A = ||x − xj||2A − γj(rj , sj). (20)

Since γj(rj , sj) ≥ 0 in (20), the PCG reduces (or at least does not increase)
the energy in each iteration. Therefore, Algorithm 1 is modified to obtain
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Algorithm 3 (Majorant minimization CG based algorithm). Let v ∈ H1
0

be a given discrete solution. Let β > 0 is a given value.

(a) Compute ŷ as a solution of a linear system (13) using CG method with
a given stopping criterion.

(b) Upgrade β from y using the formula (7). If the convergence in y is not
achieved then goto to step (a).

The left column of Figure 4 reports on the behavior of one step (a) of
Algorithm 3 applied to levels 6 and 7 solutions from Example 2.1. The con-
jugate gradient methods is applied for the solution of the linear system (13),
in which β = 1 is set. The initial choice ŷ0 = 0 leads to an estimate

‖∇v − y‖2
Ω ≤ M1(∇v, f, β,CΩ), (21)

where M1 is defined in (9). This estimated is improved with each PCG iter-
ation yj, since the flux-dependent part M2(∇v, f, β,CΩ, yj) of the majorant
M decreases (or stays constant it the worst theoretical case).

4.1 Numerical performance of PCG

The following test are measuring the performance of PCG solver from the
step (a) of Algorithm 3 in MATLAB. For practical computation, the PCG
terminated in the j-th iteration, if the stopping criterion (with ε = 10−6)

√

(rj , sj)

(r0, s0)
≤ ε (22)

was fulfilled.

Remark 1. If the preconditioner C approximates A very well, i.e., C ≈ A,
it obviously holds

(rj, sj) = (A(x − xj), C
−1A(x − xj)) ≈ ||x − xj ||2A

and (22) is equivalent to a stopping criterion based on the relative the relative
A-norm of the error

||x − xj||A
||x − x0||A

≤ ε. (23)

In the extremal case of no preconditioning (then we speak of CG method
without preconditioning), i.e., C is an identity matrix, (22) is equivalent to
a classical stopping criterion (default in MATLAB)

||b − Axj ||2
||b||2

≤ ε. (24)
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Then, it obviously holds (rj , sj) = (A(x − xj), A(x − xj)) = ||x − xj ||2A2 and
(22) is equivalent to another stopping criterion

||x − xj ||A2

||x − x0||A2

≤ ε. (25)

As an operation of the preconditioner C, we apply a simple V-cycle of a
geometrical multigrid method [16] based on provided hierarchy of nested tri-
angulations T0,T1, . . . . As the linear system (13) arises from a H(div) prob-
lem, a special smother as a part of the multigrid method is required. Our
choice is the additive version of the smoother of Arnold, Falk and Winther
[2] using one presmoothing and one postsmoothing steps.

Table 3 compares numbers of iterations of non-preconditioned (CG) and
multigrid-preconditioned (MPCG) method for various levels of triangula-
tion. Single CG or MPCG iterations and the corresponding majorant val-
ues are displayed on Figure 4 for mesh levels 6 and 7. The number of
iterations reflects typical properties of conjugate gradients and system ma-
trices arising in elliptic partial boundary value problems. For shape regular
triangulations, the condition number of A is known to be proportional to
h−2, where h is the mesh-size parameter, i.e., cond(A) ≈ h−2. Furthermore,
the number of CG- iterations (with respect to the same stopping tolerance
ε) satisfies ITER ≈

√

cond(A). Together, it holds

ITER ≈ h−1. (26)

The mesh parameter h is halfened after each uniform refinement and there-
fore the number of CG-iterations is according to (26) expected to be doubled
in the non-preconditioned case.

For the multigrid-preconditioned CG method (MPCG) we observe that
the number of iterations remains bounded, in our case

ITER ≤ 11. (27)

This property is so called mesh- independence and it demonstrates the opti-
mality of the chosen multigrid preconditioner. A detailed observation of the
right column pictures of Figure 4 indicates that 4 iterations, i.e., ITER = 4
provide already a very sharp knowledge of the majorant values without
need for additional iterations. Thus a better understanding and application
of different termination criteria of the conjugate gradient might lead to even
higher effectivity in the computation of the majorant values in the future.
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Figure 4: Majorant values displayed versus iterations of CG and MPCG
method for level 6 and 7 meshes. For better illustration, the majorant part
M1 (the upper bound) from (9) and the square of the exact error, i.e.,
‖∇(u − v)‖2

Ω (the lower bound) are displayed.
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level problem no multigrid
size preconditioner preconditioner

0 5 2 2
1 16 5 5
2 56 15 8
3 208 45 10
4 800 108 11
5 3136 219 11
6 12416 349 11
7 49408 877 11
8 197120 1773 11
9 787456 3506 11

Table 3: Number of iterations of the CG method using no preconditioner
or the multigrid (V cycles) preconditioner with the additive smoother of
Arnold, Falk and Winther for 1 smoothing step, ε = 10−6.

5 Conclusions

The minimization of the majorant term in the functional aposteriori es-
timate can be done by solving a sequence of systems of linear equations
for an unknown approximation of the flux of an exact solution. The so-
lution of the first linear system was obtained by the conjugate gradient
method in combination with a (Hdiv) multigrid preconditioner. For higher
efficiency, the conjugate gradient method is terminated after few iteration
providing already very good flux approximation in a considered benchmark
example. However, an optimal strategy for the termination process of the
preconditioned conjugate gradiennt method in connection to the majorant
computation remains an interesting open question.
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[26] Z. Strakoš and P. Tichý, Error estimation in preconditioned conjugate
gradients, BIT Numerical Mathematics, 45, 2005, pp. 789-817.
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