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Introduction

Joint work with M. Fröhner, B. Martin (Cottbus).

Given
a system S of linear PDE’s in unknown functions ui in variables
{t , x , y , z, . . .} with constant coefficients
a set of approximations for differential operators involved

Tasks
Compute the finite difference scheme for a given data
Analyze the scheme for consistency, stability, dispersion etc.

Symbolic approach
Via the operator formulation the process of generation does not
depend on initial resp. boundary conditions.
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Difference Approximations
Notation: difference operators Tx : f (t , x , y , z) → f (t , x +4x , y , z).

Taylor Expansion

u(x ±4x) = u(x)±4xux(x) + 4x2

2 uxx(x) +O(4x3).

ux(x) =
u(x +4x)− u(x)

4x
+O(4x) (forward difference)

ux(x) =
u(x)− u(x −4x)

4x
+O(4x) (backward difference)

ux(x) =
u(x +4x)− u(x −4x)

24x
+O(4x2) (central 1st order diff.)

u(x +4x)− 2u(x) + u(x −4x)

4x2 = uxx(x) +O(4x2)

Forward difference

(Tx − 1) • u = 4x • ux ⇔ (4x , 1− Tx) · (ux , u)T = 0.
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Difference Approximations: Rules

Approximation Rules

Forward difference (4x , 1− Tx) · (ux , u)T = 0
Backward difference (4x · Tx , 1− Tx) · (ux , u)T = 0
A 1st order central appr. (24x · Tx , 1− T 2

x ) · (ux , u)T = 0
A 2nd order central appr. (−4x2 · Tx , (1− Tx)2) · (uxx , u)T = 0
Trapezoid rule (1

24x · (Tx + 1), 1− Tx) · (ux , u)T = 0
Midpoint rule (24x · Tx , 1− T 2

x ) · (ux , u)T = 0.
Pyramid rule (1

34x · (T 2
x + Tx + 1), Tx(1− T 2

x )) · (ux , u)T = 0
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Computing Finite Difference Schemes I

The equation utt − λ2uxx = 0
We approximate x via trapezoid rule and t via backward difference.
We obtain the matrix formulation

−λ2 0 1 0 0
4x/2 · (Tx + 1) 1− Tx 0 0 0

0 4x/2 · (Tx + 1) 0 0 1− Tx
0 0 4t · Tt 1− Tt 0
0 0 0 4t · Tt 1− Tt

 •


uxx
ux
utt
ut
u


Computational Task
Let M be a submodule of a free module, generated by the rows of the
matrix above. We look for a submodule N ⊂ M, involving only u.
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Elimination of module components

Suppose there is a monomial well–ordering ≺A on a ring A.

The ordering ≺m on a free left module Ar =
r
⊕

i=1
Aei is the

position–over–term ordering with e1 � e2 � . . ., defined as follows:

xαei ≺m xβej ⇔ j < i or j = i and xα ≺A xβ.

Lemma
Let M ⊆ Ar be a submodule. Let G = {g1, . . . , gm} be a Gröbner basis
of M with respect to ≺m as before.

Then ∀ 1 ≤ s ≤ r G ∩
r
⊕

i=s
Aei is a Gröbner basis of M ∩

r
⊕

i=s
Aei .
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Computing Finite Difference Schemes II
Continue with the example before. Gröbner basis computation gives
us the submodule, generated by the difference polynomial

4λ24t2

4h2 (T 2
x T 2

t − 2TxT 2
t + T 2

t ) =

= T 2
x T 2

t − 2T 2
x Tt + 2TxT 2

t + T 2
x − 4TxTt + T 2

t + 2Tx − 2Tt + 1

Written in the nodes of the mesh, it looks as follows

4λ24t2

4h2 · (un+2
j+2 − 2un+2

j+1 + un+2
j ) =

= (un+2
j+2 − 2un+1

j+2 + un
j+2) + 2(un+2

j+1 − 2un+1
j+1 + un

j+1) +

+(un+2
j − 2un+1

j + un
j )

One can easily see that this scheme is consistent.
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The Importance of Stability

Consistency and Convergence
A scheme is consistent if it converges towards the original PDE
equation for 4t ,4x → 0. We say that convergence takes place, if the
(numerical) solution of the scheme converges towards the real solution
of the PDE for 4t ,4x → 0.

Lax’s Equivalence Theorem
Given a properly posed initial value problem and a finite-difference
approximation to it that satisfies the consistency condition, stability is
the necessary and sufficient condition for convergence.

Using nice approximations, we often get consistent schemes.
The stability analysis is more involved.
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von Neumann Stability Analysis I

The idea is to let the error terms grow with the time.
Due to linearity of equations, error terms satisfy the same difference
equations as the scheme does.

Substitutions

Let J2 = −1. For spatial variables x , y , z and for the time t , we
substitute χ′ : Em

ijk 7→ Γi
nΛ

j
`Υ

k
sξm

n`s, where
Γn := eJβnhx , Λ` := eJγ`hy and Υs := eJδshz , ξn`s = eαn`s4t .

Let us denote by E := E0
000 the error in the initial point.

Interpretation

Indeed, χ′(E) = 1, χ′(Em
000) = ξm

n`s = χ′(T m
t • E),

χ′(E0
i00) = Γi

n = χ′(T i
x • E) and so on.
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von Neumann Stability Analysis II
Let R be a ring of linear difference operators on E over a field C with
C ⊇ C(4t ,4x ,4y ,4z).
A map χ′ induces a morphism of rings

χ : R = C[Tx , Ty , Tz , Tt ] → C(Γn,Λ`,Υs)[ξn`],

defined by χ(T i
xT j

yT k
z T m

t ) = Γi
n∆

j
`Υ

k
sξm

n`s.

Constructive Approach
1 use the morphism χt : C[Tx , Ty , Tz , Tt ] → C(Γn,Λ`,Υs)[Tt ]

2 map a difference equation of a given scheme to C(Γn,Λ`,Υs)[Tt ]
using χt , obtain a polynomial in one variable

3 solve the equation in Tt , get the roots {ts}
4 the scheme is stable, if |ts| ≤ 1 for all the roots
5 obtain the conditions for stability
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von Neumann Stability Analysis: Machinery

Yet easier formulation
In order to reduce computations to the polynomial case, we switch to
the ring C(4t ,4x ,4y ,4z)[g, sinx , cosx , . . .]/〈sin2

x + cos2
x − 1, . . .〉,

where g := Tt = ξn`s and cosx = cos(βn4x), sinx = sin(βn4x)
represent Γn := eJβn4x = cos(βn4x) + i sin(βn4x) (analogous for
Λ`,Υs).

Constructive Approach
One needs a routine to solve parametric polynomial equations
symbolically and represent the roots in different ways
(trigonometric or polynomial).
For solving the inequalities for the roots symbolically, we use
Cylindrical Algebraic Decomposition (CAD). However, one needs
to exclude extra components manually.
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von Neumann Stability of λ–wave equation I

Let us continue with the example before. Denote d2 :=
4λ24t2

4h2 . Then

T 2
x T 2

t − 2T 2
x Tt + 2TxT 2

t + T 2
x − 4TxTt + T 2

t + 2Tx − 2Tt + 1−
−d2(T 2

x T 2
t − 2TxT 2

t + T 2
t ) = 0

After performing substitutions T a
t T b

x 7→ ga(cos(α) + isin(α))b, we
obtain that g2 − 2bg + b = 0 must be true ∀ α, where

b =
cos2(α)

d2(1− cos2(α)) + cos2(α)
=

1
1 + d2 tan2(α)

.

The solutions are staightforward: g = b ±
√

b2 − b.
Note that 0 ≤ b ≤ 1, then b2 − b ≤ 0 and the absolute value of each
root is b2 + b − b2 = b ≤ 1.
Hence, this scheme is unconditionally stable.
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von Neumann Stability of λ–wave equation II

If we use 2nd order central approximations for both x and t and denote

d := λ
4t
4h

, we obtain the scheme

(un+2
j+1 − 2un+1

j+1 + un
j+1)− λ2 4t2

4h2 · (u
n+1
j+2 − 2un+1

j+1 + un+1
j ) = 0

Denote b := −1 + 2d2 sin2(α/2), then, in terms of operators,
d2T 2

x Tt − TxT 2
t + (−2d2 + 2)TxTt − Tx + d2Tt = 0.

The stability polynomial is g2 + 2bg + 1 = 0 and the roots are
b ±

√
b2 − 1. If b2 > 1, then absolute value of one of the roots is

bigger, than one. If b2 ≤ 1, the absolute value of both roots equals
b2 + 1− b2 = 1. And b2 ≤ 1 ⇔ d ≤ 1.
This scheme is conditionally stable with the condition for

the Courant number d := λ
4t
4h

≤ 1.
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Dispersion Analysis

Continuous dispersion

We call ei(kx−wt) a Fourier node. One gets continuous dispersion from
the PDE by substituting Fourier nodes into the equation and deriving a
relation w = w(k). For the equation above,

0 = (
∂

∂t2 − λ2 ∂

∂x2 )ei(kx−wt) = −ei(kx−wt) · (w2 − λ2k2)

Hence, w = ±λk is the continuous dispersion relation.

Discrete dispersion

We substitute discrete Fourier nodes F n
j := ei(kxj−wtn) into the

difference scheme (for un
j ) and derive a relation w = w(k).

We can see, that (T a
t T b

x ) • F n
j = (e−iw4t)a(eik4x)b · F n

j .
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Dispersion Analysis: Symbolic Approach

Discrete dispersion
Presenting discrete Fourier nodes via trigonometrical functions, we are
able to compute discrete dispersion relations symbolically.

For simplicity, assume we are dealing with the one–dimensional
situation.

Ring and Action
We work in the ring C(4t ,4x)[sint , cost , sinx , cosx ] modulo the ideal
〈sin2

x + cos2
x − 1, sin2

t + cos2
t − 1〉, where

cosx := cos(k4x), cost := cos(w4t) and so on.
We utilize the action (T a

t T b
x ) • F n

j = (cost −i sint)
a(cosx +i sinx)b · F n

j .
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Dispersion for λ–wave equation

In the scheme, obtained with the 2nd order central approximations for x

and t , we denote d := λ
4t
4h

.

The correspondent difference polynomial is
d2T 2

x Tt − TxT 2
t + (−2d2 + 2)TxTt − Tx + d2Tt = 0.

Performing computations, we obtain d2 cosx −cost + 1− d2 = 0,
that is cos(w4t) = 1− d2(1− cos(k4x)).
In the so-called stability limit d → 1, we have even
cos(w4t) = cos(k4x) ⇒ w = ±4x

4t k .
Since d → 1 ⇒ 4x

4t → λ, In the stability limit the discrete dispersion
relation goes to w = ±λk , the continuous dispersion relation.
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Main Instruments

Specialized Computer Algebra System SINGULAR

one of the fastest systems in the area of polynomial computations
distributed under GPL License (free for academic use)
many different flavors of Gröbner bases thoroughly implemented
a non–commutative subsystem PLURAL

easy C–like programming language
dynamical modules, namespaces, OPENMATH etc.

General Purpose Computer Algebra System MATHEMATICA

the system with overwhelmingly many abilities
very widely used Computer Algebra System
graphical, user–friendly interface
a package for intercommunication with SINGULAR
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Methodology

1 represent the module and compute the difference scheme by
eliminating the module components. (SINGULAR)

2 compute factorized difference polynomials and their mesh
presentations. (SINGULAR or MATHEMATICA)

3 apply the stability morphism and perform simplifications
(SINGULAR or MATHEMATICA)

4 use Cylindrical Algebraic Decomposition (CAD) for solving the
inequalities for the roots (MATHEMATICA)

Work in progress
• algorithmic check of consistency
• application to systems of PDE
• variable coefficients lead us to non–commutative algebras
• Godunov–type schemes, Two–step methods (Lax–Wendroff etc.)
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