
F1306 - Langer 1

1 F1306: Adaptive Multilevel Methods for Nonlin-

ear 3D Mechanical Problems

Title : Adaptive Multilevel Methods for Nonlinear 3D Mechanical Problems

Principal investigator : Prof. Dr. Ulrich Langer
Institute of Computational Mathematics
Johannes Kepler University Linz
Phone: +43-70-2468-9168
Fax: +43-70-2468-9148
E-Mail: ulanger@numa.uni-linz.ac.at

Co-investigator : Prof. Dr. Joachim Schöberl
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1.1 Abstract

In the first funding period, this subproject was concerned with magneto-mechanical prob-
lems. During the first year of the second funding period, we have finished this research
work on magneto-mechanical problems that was based on a direct cooperation of math-
ematicians (Langer’s group) and engineers (Lerch’s group) in one project.

During the second funding period we have investigated and implemented two new
classes of problems: 3D elasto-plastic flow problems and piezo-electrical problems. Both
problems are coupled field problems, but in a different sense. Piezo-electrical problems
are coupled field problems in which the electrical field interacts with the mechanical field
in the whole computational domain. whereas in elastoplasticity we have to deal with
an unknown and time evolving elastoplastic interface, which separates the computational
domain into parts. This elasto-plastic deformation process can be modeled by some time-
dependent quasi-variational inequality that results in a sequence of variational inequalities
with a non-differential term after time discretization.

The third period is entirely dedicated to the investigation of elastoplastic problems.



2 F1306 - Langer

In particular we have studied two very different solution algorithms, as described in the
subsections 1.3.1 and 1.3.2, and we applied nested iteration techniques (cf. the subsections
1.3.3 and 1.3.4) in order to speed up the solution algorithms. Moreover, we investigated
more complicated models of elastoplasticity as well as proper a posteriori error estimates
and finite elements for standard models (see the subsections 1.3.5 and 1.3.6). The former
postdoc Dr. J. Schöberl accepted a professorship at the RWTH Aachen and remained as
the project co-investigator.

This report is only concerned with the documentation on the third funding period.
Let us begin with summarizing the substantial contributions (publications and software)
to the goals of this subproject, which can be seen in the Table below:

Attained Goals References

Elasto-Plastic Materials [8], [5], [6], [7], [17], [20], [29], [28],
[31], [33], [32], [10], [11], [24], [25]

Other Mechanical Applications [43], [41]
Master’s theses [18], [40]
Ph.D. theses [30]
Software

| Packages for NGSolve www.sfb013.uni-linz.ac.at/software.html

In summary, we published 5 papers in refereed journals, 4 papers in refereed proceed-
ings, 1 paper in proceedings, and 7 technical reports. In addition, 1 Ph.D. theses and 2
Master’s theses were completed during the third funding period.

1.2 Scientific Background and Current State of Research

Elasto-plastic material behavior is often exploited in many engineering problems for cal-
culation of permanent deformation of structures, stability in the structural and solid
mechanics and other processes beyond elasticity. Mathematical and numerical aspects
of problems in elasto-plasticity date back to works of Duvaut and Lions [15], John-

son [27], and Korneev and Langer [34]. More recent works on this topic can be found
in Hlaváček et al. [23], Johnson et al. [16], Han and Reddy [21, 22], Simo and

Hughes [26], Stein et al. [46], amongst others.

A typical problem is a mechanical object fixed on some part of the boundary (Dirichlet
boundary conditions), which is subjected to surface traction on some other parts of the
boundary. The screw wrench from Schwarz [45] in Figure 1(a) belongs to this problem
class. It is fixed by an immobile screw, which results in homogenous Dirichlet boundary
conditions. The forces acting on the handle are assumed to be acting in the vertical
direction only. The result is given in Figure 1(b), where the blue zone is the elastic one
and the red areas are the the plastic ones, where permanent deformation has occurred.

For demonstrating the striking difference between purely elastic and elastoplastic
calculations, the von-Mises stress for the screw wrench is compared: In Figure 2(a) the



F1306 - Langer 3

(a)
(b)

Figure 1: (a) Screw wrench; (b) plasticity domain

(a) (b)

Figure 2: (a) The von-Mises stress for the purely elastic wrench (values from 0 to 66 N

mm2 );
(b) the von-Mises stress in plasticity (values from 0 to 20 N

mm2 )

stress varies from approximately zero up to 66 N

mm2 . For the elastoplastic screw wrench
in Figure 2(b) the von-Mises stress can only attain a certain maximal value, which is
here chosen as 20 N

mm2 . If this threshold is exceeded, the material undergoes permanent
deformation and the plastic zones as in Figure 1(b) are obtained.

Elasto-plastic materials are described by six governing equations, see e.g.
Carstensen [9]: According to the basic theorem of Cauchy, the stress field has to
fulfill the equations

σ = σT in Ω, (1)

−div σ = b in Ω, (2)

with b being the vector field of given body forces. The linearized Cauchy-Green strain
tensor is appropriate in the case of small deformations, and is given by

ε(u) =
1

2
(∇u + (∇u)T ) . (3)
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Moreover, in the case of small deformations the strain is split additively into two parts:

ε(u) = A σ + p a. e. in Ω. (4)

Here, A σ denotes the elastic, and p the plastic strain. Purely elastic material behavior is
characterized by p ≡ 0. The modeling of plasticity requires another material law in order
to determine p. There are restrictions on the stress variables described by a dissipation
functional ϕ, which is convex, and non-negative, but may also attain +∞. The first
restriction is

ϕ(σ, α) < ∞ a. e. in Ω. (5)

The internal hardening parameter α is the memory of the considered body and describes
previous plastic deformations. Its structure and dimension depend on the hardening law.
The above inequality indicates that α controls the set of admissible stresses. The pair
(σ, α) is called generalized stresses and values are called admissible if ϕ(σ, α) < ∞. The
time development of p and α is given by the Prandtl-Reuß normality law which states
that for all other generalized stresses (τ, β) there holds:

ṗ : (τ − σ) − α̇ : (β − α) ≤ ϕ(τ, β) − ϕ(σ, α) a. e. in Ω, (6)

where ṗ denotes the time derivative of p, i.e., ṗ = ∂p

∂t
, and : is the scalar product of

matrices such that A : B =
∑n

i,j=1
AijBij for all A, B ∈ Rn×n. The relations (1)-(6) are

equivalent to a variational problem with one equality in the stress and the strain, and
one time-dependent inequality resulting from the normality law. This problem is solved
by an implicit time discretization, e.g. an implicit Euler scheme.

The variational problem in each time step can be reformulated as an optimization
problem still depending on the hardening law. In the case of isotropic hardening (see
Alberty, Carstensen and Zarrabi [1]) it reads as a minimization problem in the
displacement u and the plastic strain p:

f(u, p) :=
1

2

∫

Ω

C [ε(u) − p] : (ε(u) − p) dx +
1

2

∫

Ω

(α0 + σyH|p − p0|)
2 dx

+

∫

Ω

σy |p − p0| dx −

∫

Ω

b u dx → min

(7)

under the constraint tr|p − p0| = 0, where α0 and p0 are the variables from the previous
time step and C = A−1 is the elasticity matrix. The minimization problem is discretized
by the use of the finite element method. This results in a finite dimensional minimization
problem of the same form as above. It is known that the second variable p depends
on the first variable u (see Alberty, Carstensen and Zarrabi [1]) such that for a
given u an optimal popt(u) can be determined. Then, f is minimized for a fixed u. The
optimization problem thus reduces to one in a single variable

min
u

f(u, popt(u)). (8)
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The functional f is continuous and convex, but not differentiable in the second variable
p on the whole domain. It is smooth in the purely elastic areas as well as in the purely
plastic areas of the body considered. Across the interface it is only continuous, but not
differentiable, since here the plastic variable p changes its value from zero in the elastic
case to a non-zero value for plasticity in a non-smooth manner.

1.3 Results and Discussion

The following two sections are concerned with the application of each a smoothing and
a semismooth method to the optimization problem of elastoplasticity.

1.3.1 Solution Algorithm 1: Regularization of the energy functional
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Figure 3: |p| and its regularizations.

The first approach is to regularize f and making it globally differentiable. This can
be interpreted as reduction to a smooth functional in the displacements and the plastic
strains. Figure 3 shows the modulus |p| and possible regularizations |p|ǫ depending on the
regularization parameter ǫ, ǫ is here chosen as 10−6. The green quadratic regularization
within the interval (−ǫ, ǫ) has a smooth first derivative, but the second derivative is
piecewise constant and discontinuous, thus the local convergence of Newton type methods
cannot be guaranteed. The blue piecewise cubic spline has a piecewise linear continuous
second derivative, thus Newton type methods can be applied. The final choice is the
pink regularization, where the blue cubic spline function is shifted into the origin, so that
|p|ǫ = 0 holds for p = 0.
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The necessary condition for the minimizer is that the Jacobian of f is equal to zero.
The system is transformed to a Schur-Complement only in the displacements. This sys-
tem is then solved by an inexact Newton method, where the inverse is approximated by a
multigrid preconditioned conjugate gradient method. The minimization with respect to
the plastic strains is separable and several solution methods are given. Even an analyti-
cal solution p(u) of the nonlinear minimization problem solely with respect to the plastic
strains can be calculated. A linearized iteration scheme was constructed to overcome pos-
sible bad initial guesses, but it also performs well as self-contained solver. A Lax-Milgram
analog based on the Banach fixed point theorem for nonlinear operators guarantees at
least linear order of convergence. The developed algorithms are implemented in the finite
element code NGSolve [37] of our group at the SFB. NGSolve stands here for both ”New
Generation Solver” and ”NETGEN Solver”, where NETGEN [36] is the automatic 3d
tetrahedral mesh generator mainly developed by Schöberl [44].

The algorithms are extended towards uniform p-adaptivity, where p denotes the poly-
nomial degree of the ansatz functions for the finite element spaces of u and p. Düster [14]
is one of the first to use high order finite elements for three-dimensional, thin-walled
nonlinear continua. The first results on uniform p-refinement of our group are summa-
rized in Kienesberger and Valdman [32]. In Nübel, Düster and Rank [39] and
Nübel [38] the p-refinement is combined with a p-adaptive strategy on the interface, i.e.
moving or removing nodes in the neighborhood such that the interface is approximated
by the grid. For such a p-adaptive method exponential convergence can be expected.

The first version of the solvers worked only for linear displacements and piecewise
constant plastic strains. Now the elastoplastic solver can handle higher polynomial ansatz
functions for the finite element spaces of u and p. These high order polynomials are
investigated and implemented by the Start project group ”Y-192” of Joachim Schöberl.

The considered test geometry is the two-dimensional plate fixed on the left edge and
under traction in normal direction on the right edge. Figure 4 shows the yield function
approximated by polynomials of degree 0, 2, 4, and 10 for several grids with uniformly
refined mesh. According to theory and other numerical experiments, the p-method yields
good approximation results for smooth functions.

If the solution is singular (e.g. in corners, for changing boundary conditions, or across
the elastoplastic interface), the approximation property fails and can only be restored
using h- or combined hp-methods. A global linear convergence result can be shown for
such smoothing methods due to a Lax-Milgram analog which is based on the Banach
fixed point theorem for nonlinear operators.

All details can be found in the PhD thesis of Johanna Kienesberger [30].

1.3.2 Solution Algorithm 2: Theorem of Moreau & Slanting Functions

Thanks to a theorem of Moreau [35] (Prop. 7.d) one can show, that the functional

F (v) := inf
q

f(v, q)
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(a) p = 0, h = 1

(d) p = 2, h = 1

(g) p = 4, h = 1

(j) p = 10, h = 1

(b) p = 0, h = 1/4

(e) p = 2, h = 1/4

(h) p = 4, h = 1/4

(k) p = 10, h = 1/4

(c) p = 0, h = 1/16

(f) p = 2, h = 1/16

(i) p = 4, h = 1/16

(l) p = 10, h = 1/16

Figure 4: First experiments for 2D elastoplasticity with uniform p-refinement
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with f defined in (7) is strictly convex and Fréchet differentiable, where the derivative of
F is explicitly computable, i. e., the Gâteaux differential into the direction w reads

D F (v; w) =

∫

Ω

C [ε(v) − p(ε(v))] : ε(w) dx −

∫

Ω

bT w dx .

Here the mapping p(ε(v)) denotes the plastic strain minimizer, which for all v satisfies

F (v) = f(v, p(ε(v))) .

By using results of Alberty, Carstensen, and Zarrabi [1], who found the explicit
form of p(ε(v)), the elastoplastic problem can now be solved by finding the displacement
field u such that the first derivative of F vanishes. In this sense, a regularization of the
former objective f is no longer necessary. But unfortunately, F is not twice differentiable,
such that a classical Newton-Raphson scheme cannot be applied. However, a Newton-
like method implemented in Matlab showed a super-linear convergence rate, cf. Table 1.
Some numerical examples, as shown in Figure 5 and Figure 6, are outlined in the diploma
thesis of Gruber [18], and the essential lines of code are presented in a technical report
by Gruber and Valdman [17].

For a theoretical study of the observed super-linear convergence rate, so called slanting
functions of the first derivative of F turned out to be a convenient replacement for the
lacking second derivative. The concept of slanting functions was recently introduced
by Chen, Nashed, and Qi [13] and represents a massive tool for the development
of semismooth methods, such as a slant Newton method which is of great use for our
purpose. The research on the application of a slant Newton method on elastoplastic
problems with hardening resulted in the following:

• In finite dimensions (after FE-discretization) the method converges locally super-
linear.

• In infinite dimensions (without any spatial discretization) the method converges
locally super-linear too, if an additional regularity condition is satisfied.

The validity of such regularity condition for general problems in elastoplasticity is still an
open question. All the rigorous analysis to this topic can be found in a technical report
of Gruber and Valdman [20], and are submitted for a journal publication.

Global linear convergence can be guaranteed for a slant Newton method with line
search similarly to smoothing methods in Section 1.3.1. However, the quality of a slant
Newton method obviously depends on two factors intrinsically:

• The efficient solution of the linear systems arising at each Newton step.

• The decrease of Newton steps, achieved by the prediction of proper initial values.

The first issue is studied in the context of the ongoing PhD thesis of P. G. Gruber,
whereas the second is treated in the Master thesis of B. Rauchenschwandtner [40]
(cf. Section 1.3.4).
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Figure 5: The example domain is a thin plate with a circular hole in the middle. A
surface load g is applied to the plate’s upper and lower edge into normal direction. Just
a single time step is considered, thus the surface load with the intensity |g| = 450 is
acting instantly. Due to symmetry, the solution has to be calculated on one quarter
of the domain only. Therefore it is necessary to incorporate gliding conditions to both
symmetry axes. The material parameters are set E = 206900, ν = 0.29, σY = 450

√

2/3,
and H = 0.5. Differently to the original example of Stein [46], we choose the modulus of
hardening H to be nonzero, i. e., hardening effects are considered. The numerical results
concerning the application of the slant Newton method to the the original benchmark
problem can be seen in a conference proceedings article of Gruber and Valdman [19].

Figure 6: The two plots show plastic zones (left), and the yield function (right) of the
deformed domain. For better visibility, the displacement is magnified by a factor 100.
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1.3.3 Nested iteration strategy for one time step problems

As already mentioned, one important task to speed up the slant Newton method of
Section 1.3.2 is to determine good initial values. For a one time step problem, the
solution at the present refinement level l, can be approximated by the interpolation of
the displacement field of the next coarser grid,

ul ≈ I
l
l−1 ul−1 .

For example, the interpolation operator Il
l−1 can be chosen to take the values at coarse grid

vertices straight forward, whereas for fine grid vertices, which do not appear in the coarse
grid, the initial values are obtained by the mean value of the corresponding neighboring
coarse grid vertices. The application of this strategy to the numerical example posed
in Figure 5 yields a convergence as displayed in Table 2. The number of iteration steps
seems now to be independent of the chosen grid size, which was not so without the nested
iteration strategy (cf. Table 1).

dof: 245 940 3680 14560 57920 231040

dis:

0-1 1.669e-02 3.036e-02 3.649e-02 3.908e-02 4.006e-02 4.035e-02

1-2 3.456e-03 4.059e-03 5.733e-03 6.325e-03 6.703e-03 6.857e-03

2-3 2.650e-04 1.991e-04 2.291e-04 2.463e-04 3.083e-04 3.371e-04

3-4 4.976e-08 6.206e-08 3.661e-06 6.981e-06 9.366e-06 1.022e-05

4-5 5.564e-15 1.821e-14 1.119e-10 1.052e-07 6.497e-10 3.337e-07

5-6 1.848e-15 1.115e-13 7.246e-15 5.351e-08

6-7 6.325e-14

res:

0 1.637e+03 1.184e+03 8.466e+02 6.019e+02 4.268e+02 3.022e+02

1 4.182e+01 2.504e+01 1.730e+01 1.647e+01 1.789e+01 1.317e+01

2 3.463e+00 2.405e+00 3.088e+00 2.184e+00 2.003e+00 1.661e+00

3 6.948e-04 7.978e-04 5.445e-02 1.007e-01 1.265e-01 1.374e-01

4 6.925e-11 2.341e-10 2.033e-06 1.458e-03 1.029e-05 4.622e-03

5 1.163e-11 2.402e-11 5.433e-11 1.475e-09 2.204e-10 7.041e-04

6 5.024e-11 1.095e-10 2.049e-10 1.425e-09

7 4.402e-10

sec: 1 4 15 58 234 1104

Table 1: This table outlines the convergence of the Newton-like method. In horizontal
direction, the refinement of the starting mesh takes place, where the degrees of freedom
(dof) are growing roughly by a factor 4. In the last line (sec) the computational time
is displayed in seconds. The two blocks in between the first and the last line report on
the convergence behavior. The first block (dis) displays the distance of two consecutive
Newton iterates |uj+1−uj| measured in the H1 semi norm, the second block (res) shows
the l2 values of the residual, i. e., the right hand side of Newton’s method. The method
terminates as the value of dis goes below the upper bound 10−12. Notice, that the last
line of the res–block shows no more improvement due to rounding errors.



F1306 - Langer 11

dof: 245 940 3680 14560 57920 231040

dis:

0-1 1.669e-02 3.757e-02 2.564e-02 1.536e-02 8.133e-03 4.124e-03

1-2 3.456e-03 4.981e-03 2.559e-03 9.493e-04 2.478e-04 9.472e-05

2-3 2.650e-04 1.646e-04 5.274e-05 3.859e-05 8.815e-06 2.776e-06

3-4 4.976e-08 4.850e-08 1.814e-08 1.250e-07 1.147e-09 1.357e-08

4-5 5.581e-15 1.160e-14 5.741e-15 1.337e-13 3.872e-15 1.388e-14

res:

0 1.637e+03 8.999e+02 7.471e+02 5.410e+02 3.423e+02 1.977e+02

1 4.182e+01 8.613e+01 2.619e+01 1.186e+01 3.144e+00 1.237e+00

2 3.463e+00 2.142e+00 5.991e-01 3.939e-01 1.207e-01 3.793e-02

3 6.948e-04 6.124e-04 2.209e-04 1.711e-03 1.234e-05 1.862e-04

4 6.878e-11 1.467e-10 7.575e-11 1.756e-09 1.687e-10 3.653e-10

5 1.290e-11 2.081e-11 4.131e-11 8.289e-11 1.698e-10 3.437e-10

sec: 1 4 13 53 195 856

Table 2: In this table the same numerical experiment is done as in Table 1 with the nested
iteration strategy applied. Notice, that the number of iterations now keeps constant with
respect to the degrees of freedom (dof).

1.3.4 Nested iteration strategy with time evolution

The same strategy also works for time evolving simulations. The time difference of the
displacement can be approximated by the interpolation of the same value of the next
coarser grid, i. e.,

ut
l − ut−1

l ≈ I
l
l−1

(

ut
l−1 − ut−1

l−1

)

,

where ut
l is the unknown displacement at the present time step t. This leads to the

extrapolation rule

ut
l ≈ ut−1

l + I
l
l−1

(

ut
l−1 − ut−1

l−1

)

.

In her Master thesis, B. Rauchenschwandtner investigates an application of this nested
iteration strategy, which is visualized in Figure 7.

Consider the numerical example as mentioned in Figure 5, but now with a time
dependent load |g| = 450 sin(t π). Here, t is in [0, 1.5] and the step width regarding the
time variable is set to 0.02. The number of Newton iterations at each time step resulting
from the nested iteration technique described above is outlined in Table 3.

Further, a good initial value can also be used for predicting the elastoplastic interface,
which moves permanently as the loads vary. Due to the non-smoothness of the energy
functional at the elastoplastic interface, it is important to resolve this zone with finer
mesh size adaptively, whereas higher order ansatz functions and a coarser mesh size can
be chosen for the rest of the domain. Therefore, at each time step we consider the mesh
to be generated in an spatial adaptive way starting from a fixed coarse mesh which is the
same for each time step. One option is to do some uniform refinements before starting
the adaptive refinements. This structure leads to different meshes for every time step
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Figure 7: Extrapolation strategy: Previous time step solutions as well as coarse-level
solutions are used to create proper initial values for the displacement.

t P1 P2 t P1 P2 t P1 P2 t P1 P2 t P1 P2

0.1 2 2 0.4 6 6 0.7 6 7 1.00 2 2 1.3 6 6

0.12 2 2 0.42 6 6 0.72 6 7 1.02 2 2 1.32 6 6

0.14 5 5 0.44 6 6 0.74 6 7 1.04 2 2 1.34 6 6

0.16 5 6 0.46 6 6 0.76 6 7 1.06 2 2 1.36 6 6

0.18 5 5 0.48 6 6 0.78 7 7 1.08 2 2 1.38 6 6

0.2 6 6 0.5 6 7 0.8 6 6 1.1 2 2 1.4 6 6

0.22 7 7 0.52 6 6 0.82 6 7 1.12 2 2 1.42 6 6

0.24 6 7 0.54 6 6 0.84 6 6 1.14 5 5 1.44 6 6

0.26 6 7 0.56 6 6 0.86 6 6 1.16 5 6 1.46 6 6

0.28 6 7 0.58 6 7 0.88 4 4 1.18 5 5 1.48 6 6

0.3 6 6 0.6 6 6 0.9 2 2 1.2 6 6 1.5 6 7

0.32 6 6 0.62 6 7 0.92 2 2 1.22 7 7

0.34 6 6 0.64 6 6 0.94 2 2 1.24 6 7

0.36 6 6 0.66 6 6 0.96 2 2 1.26 6 7

0.38 6 6 0.68 6 6 0.98 2 2 1.28 6 7

Table 3: Number of Newton steps for the problem posed in Figure 5 with a time dependent
load, |g| = 450 sin(t π), at a uniform refinement level 4 (P1, degrees of freedom: 14560),
and at an adaptive refinement level 6 (P2, degrees of freedom vary from 24000 to 32000).
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Figure 8: Two different adaptive meshes, both at adaptive refinement level 3 but subject
to different loads. The plastic domain is colored blue (dark in gray scale), whereas the
elastic domain is colored green (light in gray scale). Notice, that each of the two meshes
consists of vertices, which do not appear in the other mesh.

(incremental step) in which the solution is calculated. As it is shown in Figure 8, the
meshes of the same refinement level can be quite different at two different time steps,
i. e. in general there exists no common vertex except for the vertices of the coarsest mesh
(refinement level 0). Thus, one has to define another interpolation operator between the
meshes of two different time steps, It

t−1, and ends up with a slightly modified extrapolation
formula

ut
l ≈ I

t
t−1 ut−1

l + I
l
l−1

(

ut
l−1 − I

t
t−1 ut−1

l−1

)

.

Notice, that due to the nested iteration technique, not only the solution on the finest
mesh per time step is calculated, but rather a series of solutions on each refinement level
in every time step. Table 3 reports on the number of Newton steps needed for the finest
(adaptive) level. Other numerical examples dealing with nested iteration strategies and
interface prediction can be found in B. Rauchenschwandtner [40].

It is shown, that by using this nested iteration technique, and by assuming higher
regularity of the solution, e. g. u(t) ∈ H2(Ω) for all t, the number of Newton iterations
does neither depend on the number of refinement levels nor on the step width regarding
the time variable.
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1.3.5 Modeling of multi yield elastoplasticity

J. Valdman together with M. Brokate and C. Carstensen published his results on
analysis, see Brokate, Carstensen and Valdman [5] and numerical treatment,
see Brokate, Carstensen and Valdman [7] of multi-yield plasticity models. The
main feature of the multi-yield models is higher number of plastic strains p1, . . . , pN

used for more realistic modeling of the elasto-plastic transition. It was possible to prove
the existence and uniqueness of the corresponding variational inequalities and design a
FEM based solution algorithm. Since the structure of the minimization functional in
the multi-yield plasticity model remains the same as for the single-yield model discussed
above, a direct modification of an existing elastoplasticity package [29] as a part of the
Netgen/NGSolve software was feasible [33]. In addition to older Matlab examples, a new
3D calculation performed in Netgen/NGSolve was added [7]. Figure 9 displays (blue)
elastic, (red) first and (green) second plastic deformational zones of the shaft model.

Figure 9: Example of a two-yield plasticity distribution.

A. Hofinger from Project F1308 and J. Valdman also concentrated on fast calculation
techniques for the two-yield elastoplastic problem, which is a locally defined, convex but
non-smooth minimization problem for the unknown plastic-strain increment matrices
p1 and p2. So far, the only applied technique was an alternating minimization, whose
convergence is known to be geometrical and global. They showed that symmetries can be
utilized to obtain a more efficient implementation of the alternating minimization. For
the first plastic time-step problem, which describes the initial elastoplastic transition,
the exact solution for p1 and p2 could even be obtained analytically. In the later time-
steps used for the computation of the further development of elastoplastic zones in a
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continuum, an extrapolation technique as well as a Newton-algorithm were proposed.
Their results were summarized in a technical report [24] and were also accepted for a
journal publication, see Hofinger and Valdman [25]. Alternatively, some symbolic
techniques were applied in order to study a system of two polynomial for the unknowns
ξ1 = ||p1|| and ξ2 = ||p1|| in case that both ||p1|| and ||p1|| are positive (this correspond to
the activation of both plastic zones). Together with B. Buchberger and W. Windsteiger
from Project F1302 we managed to calculate the Gröbner base which gives insight to
the structure of solutions of the simultaneous system. It has also been confirmed that
no explicit formula can be found and the local minimization problem needs to be solved
approximatively for general material parameters and deformation states. In cooperation
with Project F1303 a combined numerical-symbolic method based on the Synaps package
was tested. One example of polynomial systems was also used for testing of a geometry
based solver by B. Jüttler (from Project 1315) and Bartoň [2].

1.3.6 h-adaptivity for nonlinear (elastoplastic) problems

In cooperation with C. Carstensen and A. Orlando (both HU Berlin), an adaptive
finite element algorithm for the solution of elastoplastic problems Carstensen,

Orlando and Valdman [12] has been established. Such an algorithm yields an energy
reduction and, up to higher order terms, the R−linear convergence of the stresses with
respect to the number of loops. Applications include several plasticity models: linear
isotropic-kinematic hardening, linear kinematic hardening, and multi-surface plasticity
as a model for nonlinear hardening laws. Numerical examples confirm an improved
linear convergence rate, the performance of the algorithm in comparison with the more
frequently applied maximum refinement rule is studied in Figure 10.

J. Valdman also cooperated also with S. Repin (St. Petersburg) on reliable error
estimates for the scalar nonlinear problem, where the nonlinearity is defined on a part
of the boundary. Such system can be easily described as a variational inequality. They
derived a-posteriori estimates of the difference between the exact solution of such type
variational inequalities and any function lying in the admissible functional class of
the problem considered. It is shown that the structure of the error majorant reflects
properties of the exact solution. The majorants provide guaranteed upper bounds of the
error for any conforming approximation and possess necessary continuity properties. In
the series of numerical tests performed, it was shown that the estimates are explicitly
computable, they provide sharp bounds of approximation errors, and they give high
quality indication of the distribution of local (element-wise) errors. Their research was
documented in a joint paper Repin and Valdman [41] and will be extended for elastic
problems with so-called friction boundary conditions and later to elastoplasticity as well
Repin and Valdman [42].

Another issue being studied is the computational efficiency of “functional estimates”
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Figure 10: Comparison of the new adaptive algorithm (blue line) and the original al-
gorithm based on the maximum refinement rule (red line). Note that using the new
algorithm, the energy of the elastoplastic solution is linearly reduced with each refine-
ment step.

even in the linear case. Let us consider the boundary value problem

−△u = f in Ω, u = 0 on ∂Ω.

Then, one can find a norm estimate of the form

||∇(u− v)||0 ≤ ||∇v − y∗||0 + CΩ||divy∗ + f ||0

which is valid for all y∗ ∈ H(Ω, div) and for all v ∈ H1
0 . The constant CΩ is known

from Friedrich’s inequality and can be computed independently. The interpretation of
this formula is that any “flux” function y∗ provides us with a guaranteed upper bound
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Figure 11: Flux function (x-component) using nodal (left) and Raviart-Thomas (right)
elements.



F1306 - Langer 17

for the energy error of the computed solution v. The right term in the inequality can
be minimized in a way, the upper bound becomes the smallest possible. The pictures
presented in Figure 11 demonstrate possible “fluxes” using nodal continuous and normal
component continuous (Raviart-Thomas) elements. Such minimization leads to a linear
system of equations as a part of the global nonlinear minimization process. J. Valdman
explored these linear systems and applied a multigrid based solver in order to obtain the
optimal convergence.

1.4 Collaboration Within and Outside the SFB

1.4.1 Internal Cooperations

There were cooperations with the following subprojects:

• Subproject F1301: Another basic research topic for hp-FEM has been the devel-
opment of a basis in which the element stiffness matrix is sparse. The sparsity is
known for tensor product elements like the square or cube using integrated Legen-
dre polynomials, see [47], but not for triangular and tetrahedral elements. In our
paper [4], we have defined a basis on the reference triangle in which the element
stiffness matrix has O(p2) nonzero entries. The definition of the basis functions uses
Jacobi polynomials. Moreover, explicit formulas for the remaining nonzero entries
are given. Using this result, the global stiffness matrix can be computed in O(p2)
flops if

– all elements are triangles and

– a convection-reaction-diffusion equation with piecewise constant or piecewise
polynomial coefficients is considered.

Moreover, the matrix vector multiplication can be performed in optimal arithmeti-
cal complexity.

The results have been extended to the reference tetrahedron in the paper [3] with
V. Pillwein from project F1301. The proof of the sparsity of the element stiffness
matrix, which is the central theorem of this paper, has been done for several families
of basis functions with a Mathematica program, see project F1301. In a proceedings
paper with V. Pillwein, another basis functions have been investigated in which the
proof in [3] has been necessary to modify.

• Subproject F1308: A. Hofinger brought some new ideas to the solution of multi-
yield minimization problems which are described in a joint publication Hofinger

and Valdman [25].

• Subproject F1309: This cooperation is naturally strong and includes the nu-
merical analysis as well as the implementation of finite element software including
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geometry and mesh handling. Apart from this J. Valdman was advised by R. Si-
mon on an implementation of a multigrid solver appearing in functional a-posteriori
estimates.

• Subproject F1315: A new system for solving system of polynomials Jüttler

and Bartoň [2] uses a polynomial system from Hofinger and Valdman [25]
as one of its benchmarks. A new system for solving system of polynomials Jüttler

and Bartoň [2] uses a polynomial system from Hofinger and Valdman [25]
as one of its benchmarks.

1.4.2 External Cooperations

• April 1 - July 31, 2007: P. G. Gruber investigated the solution of elastoplastic
problems based on mixed variational formulations together with J. Schöberl at
the Department for Mathematics CCES (Center for Computational Engineering
Science), RWTH Aachen.

The following cooperations have led to joint publications:

• Prof. C. Carstensen (Technical University Vienna, Austria) and Prof. M. Brokate
(Technical University Munich, Germany): Multi-yield plasticity, see Brokate,

Carstensen, and Valdman [5, 7]; A posteriori error estimates, see
Carstensen, Orlando and Valdman [12].

• Prof. S. Repin (Steklov Institute of Mathematics, St. Petersburg, Russia: functional
aposteriori error estimates Repin and Valdman [43].
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