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1.1 Abstract

Shape optimization tries to modify the shape of an object in such a way that the result-
ing object is optimal with respect to a certain objective. This goal got more and more
important also in industrial applications. In most cases the industrial design process is
to be automatized so that the whole design phase is accelerated. In this subproject we
focused on the development, analysis and implementation of numerically efficient algo-
rithms for solving optimal design problems including hierarchical shape optimization, see
Subsection 1.3.3, and multilevel topology optimization, see Subsection 1.3.1, as well as
their applications to real-life problems. Last but not least we investigated the relevant
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geometry and mesh handling, see Subsection 1.3.2. Applying similar methods as in topol-
ogy optimization resulted in efficient simultaneous (all-at-once) methods for parameter
identification problems. These results have been obtained in a very fruitful cooperation
with Subproject F1308. We further investigated efficient techniques for solving the re-
sulting KKT systems, in particular we are interested in the use of multigrid methods as
preconditioners or as an iterative method itself, see Subsection 1.3.4.

Finally, let us summarize the contributions to the goals formulated in the proposal
three years ago in the Table below:

Attained Goals References

Geometry and Mesh Handling [50], [55], [51], [34], [35]
Hierarchical Shape Optimization [50], [51], [52], [53], [55], [56]
Techniques in 3D
Adaptive Multilevel 3D Topology [97], [96], [98], [26], [25], [95], [99],
Optimization Techniques [100], [51], [52], [53]
KKT Solver [92], [87], [99], [86]
Synergies [56], [55], [100], [25], [26], [76], [77]
Ph.D. Theses [98]
Software

| NETGEN www.sfb013.uni-linz.ac.at/software.html
| FEPP www.sfb013.uni-linz.ac.at/software.html
| NGSolve www.sfb013.uni-linz.ac.at/software.html
| Optimization tools www.sfb013.uni-linz.ac.at/software.html

In summary, we published 7 papers in refereed journals, 7 papers in refereed proceedings
and 5 technical reports. In addition 1 Ph.D. Thesis were completed during the third
funding period.

1.2 Scientific Background and Current State of Research

Optimal design can be seen in a wider context of inverse problems in which we know the
behaviour of a system, usually from physical measurements, and using this knowledge
we are looking for the structure of the system and/or for the distribution of sources.
A typical inverse problem is computer tomography in medicine. An introduction to
this field is given in the textbook by Kirsch [47]. Inverse problems are known to be
ill–posed, so they have to be treated by regularization techniques, see Engl, Hanke,

and Neubauer [32]. Some connections between optimization and inverse problems are
presented by Neittaanmäki, Rudnicki, and Savini [62].

In this subproject we are especially interested in structural optimization where we
change the structure of an object, which is interacted in some physical equilibrium,
in order to achieve a required behaviour. Here structure means either material prop-
erties, topology or shape of the object, boundary or interfaces. Various issues of
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structural optimization are covered in Banichuk [3], Bendsøe [11], Cherkaev [27],
Kalamkarov [44], Olhoff and Taylor [64], Pedersen [66], Rozvany [78, 79, 80],
Save and Prager [81, 82], Xie and Steven [110] and Allaire [1]. Applications
in plasticity are given, e.g., by Yuge and Kikuchi [112], in electromagnetism, e.g.,
by Hoppe, Petrova, and Schulz [41], and, for instance, in ergonomics by Ras-

mussen et al. [74]. An optimal design of microstructures is presented by Jacobsen,

Olhoff, and Rønholt [43].

If we are interested in finding topology of a structure – it is usually the ques-
tion where to put holes and where to put material – we speak about topology opti-
mization. Some of the relevant literature is Bendsøe [10, 11], Bendsøe and Sig-

mund [13], Borrvall [16], the review articles Eschenauer and Olhoff [33] and
Rozvany [80] and the citations in all the mentioned literature. Additionally to the
above literature, other topics strongly related to topology optimization can be found,
e.g., in Svanberg [103, 104] and Bruyneel, Duysinx, and Fleury [21] concerning
convex programming, in Stolpe and Svanberg [101] and Bendsøe and Sigmund [12]
about material interpolation schemes and in Sigmund and Petersson [91] and Bour-

din [19] about restriction methods. Some applications in electromagnetism are presented
by Hoppe, Petrova, and Schulz [42], Yoo and Kikuchi [111]. More theoretical
issues are given by Stadler [94] or by Sigmund and Petersson [71].

In the design process the second step after topology optimization is shape optimiza-
tion, where we tune the shape of the boundary or interfaces. The basic literature on shape
optimization is given by Begis and Glowinski [8], Murat and Simon [61], Piron-

neau [72], Haslinger and Neittaanmäki [39], Haslinger and Mäkinen [38],
Sokolowski and Zolesio [93], Börner [15], Delfour and Zolesio [28], Kawohl

et al. [46], Mohammadi and Pironneau [60]. Besides the basic textbooks, one can
find a lot of theoretical analysis in Bucur and Zolesio [22], Peichl and Ring [67, 68],
Petersson and Haslinger [70], Petersson [69]. Papers focused on applications in
electromagnetism are, for example, Di Barba et al. [5], Brandstätter et al. [20],
Marrocco and Pironneau [58], Takahashi [106].

There are several interesting optimization techniques that have appeared just recently.
Within the second SFB period Burger and Mühlhuber [23, 24] solved simultaneously
for both the design and state variables, i.e., they minimized at the same time the cost
functional as well as the quadratic energy functional of the direct problem. Other papers
dealing with this simultaneous approach are Hoppe [41] and Maar and Schulz [57].
This approach results in a saddle point problem. Some solution theory concerning saddle
point problems can be found in Schulz [88], Zulehner [113, 114] and in Schöberl

and Zulehner [85].

Another challenging issue in optimization is adaptivity. A hierarchical approach in
shape optimization was used in the SFB by Lukáš [49, 54]. This approach aims at
developing an adaptive optimization method in order to control the error of approxi-
mation of the cost functional. We refer to the quite recent papers by Ramm, Maute,

and Schwarz [73] and Schleupen, Maute, and Ramm [84] that make use of the
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FE–adaptivity in both topology and shape optimization. A multilevel approach was also
used in inverse problems, see Scherzer [83] and Kaltenbacher [45].

1.3 Results and Discussion

In this section we discuss in more details the given problems, our experiences and the
obtained results. The first part is concerned with topology and shape optimization prob-
lems in structural optimization and magnetostatics, including also our work on geometry
and mesh handling strategies. In the last part of this section we discuss several techniques
for constructing efficient solver for KKT systems, which arise in all-at-once optimization
approaches.

1.3.1 Adaptive Multilevel 3D Topology Optimization Techniques

An Adaptive Multilevel Approach to the Minimal Compliance Problem
Minimizing compliance turned out to be a standard problem in topology optimiza-
tion. However, it already contains the most basic, but non-trivial difficulties like mesh-
dependent solutions, local minima and checkerboard phenomena (see Bendsøe and

Sigmund [9]. Due to this ill-posedness we need regularization. In our algorithm we com-
bine two filter methods, which are the cornerstones of our adaptive multilevel approach.

An ideal formulation of the minimal compliance problem looks like the following:

ℓ(u) =

∫

Γt

t · u ds → min
ρ,u

(1a)

subject to a(ρ;u,v) = ℓ(v), ∀ v ∈ V0, (1b)∫

Ω

ρ(x) dx ≤ m0, (1c)

ρ(x) ∈ {0, 1}, a.e. in Ω. (1d)

In our acutal computations the state equation (1b), describing the corresponding elastic-
ity problem, is formally eliminated and hidden in the objective functional. The energy
bilinearform on V0 × V0 contains a variable material tensor and is given by

a(ρ;u,v) =

∫

Ω

ε
(
u(x)

)
: C
(
ρ(x)

)
ε
(
v(x)

)
dx,

where V0 = H1
Γu

(Ω;Rd) denotes the set of kinematically admissible displacement fields.
The constraint (1d) is relaxed and replaced by 0 < ρmin ≤ ρ(x) ≤ 1, where ρmin is greater
that 0 to assure the elipticity of the bilinearform. In order to penalize intermediate values
is to introduce the following nonlinear material tensor:

Cq

(
ρ(x)

)
=

ρ(x)

1 + q
(
1 − ρ(x)

)C0,
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which is called RAMP (Rational Approximation of Material Properties) and was men-
tioned in Rietz [75] and treated thoroughly in Stolpe and Svanberg [101].

It is well known fact that topology optimization problems lack existance of solutions.
Therefore we introduce two filter methods to regularize the problem. The first is called
the mesh-independence filter and was first proposed in Sigmund [90]. Here, the discrete
element sensitivities of an discrete objective Jh(ρh) are modified as follows:

∂̂Jh

∂ρh
k

=
1

ρh
k

∑n

i=1 Hi,k

n∑

i=1

Hi,kρ
h
i

∂Jh

∂ρh
i

, (2)

where the convolution operator Hi,k with filter radius R is defined as

Hi,k = max
{
0, R − dist(i, k)

}
, for i, k = 1, . . . , n.

The second filter method is called Regularized Intermediate Density Control (RIDC) and
is discussed in detail in Borrvall and Petersson [17]. Here an additional constraint
is added to the optimization problem:

PS(ρ) =

∫

Ω

(
1 − S

(
ρ(x)

))(
S
(
ρ(x)

)
− ρ
)

dx ≤ εP , (3)

where S : L2(Ω) → L2(Ω) is an integral operator defined as

S(ρ) =

∫

Ω

φ(x,y)ρ(y) dy, ∀ x ∈ Ω, (4)

with the kernel

φ(x,y) = C(x) max

(
0, 1 − |x − y|

R

)
. (5)

Our basic motivation for a multilevel algorithm is to solve the problem efficiently and
to save computational costs. This is achieved by solving the problem firstly on a coarse
grid to get a first coarse design for rather cheap computational costs. Then we will use
this first coarse design as an initial design on a finer grid and repeat the optimization on
the finer grid, and so on. Elements inside a region, solely occupied by material or void, far
away from the structure’s boundary, are very unlikely to be affected by the optimization
on finer levels. Far more interesting is the interface between material and void, i.e. the
boundary of the structure. It is much more efficient to identify this interface and only
refine elements along this interface, instead of an uniform refinement. For identifying the
interface the filter operator S, defined in (4), turns out to be a useful tool. We mark the
element τi to be refined, if ∣∣(Φρh

)
i
− ρh

i

∣∣ ≥ δ1 > 0, (6)

for some δ1 with 1 ≫ δ1 > 0. In (6) Φ ∈ Rn×n denotes the convolution matrix corre-
sponding to the integral kernel φ. In Figure 1 we see an example of the application of
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Figure 1: Sketch, coarse solution, identified boundary and refined mesh of the cantilever prob-
lem in 2D.

Algorithm 1 An adaptive multilevel approach

Initialize start value ρH
0 , e.g. like ρH

0 = m0/|Ω|
Choose the parameters δ1 and δ2 with 0 < δ1 ≪ 1 and 1 < δ2 respectively.
l = 0;

Coarse grid solution ρH with MIF and RAMP;
Determine ε0

P by ε0
P = P H

S (ρH);
while design not satisfactory do

Mesh-refinement along the interface of void and material. Possible reduction of
εP :

εl+1
P = δ3ε

l
P , 0 < δ3 ≤ 1;

Fine grid solution ρh using RIDC;
l = l + 1;

end while

this refinement idea to the cantilever example in 2D.

The complete algorithm is summarized in Alg. 1. The approach described above was
tested with several benchmark examples and we got very good results from all of them.
Following a standard finite element procedure the ground structure Ω is partitioned into
n = O(h−d) (n = nel = nρ) triangles τi (or tetrahedrons for d = 3), where h is the
discretization parameter. The density ρ is approximated by a piecewise constant finite
element function ρ̃, i.e. ρ̃ is constant over every triangle τi. The displacement field u is
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approximated using continuous element-wise quadratic functions. For solving the discrete
optimization problems the method of moving asymptotes was used. In Table 1, we list
the computational data of the 3D cantilever beam example. For more details we refer

Figure 2: The cantilever beam in 3D: Sketch, coarse grid solution and fine grid solution.

l Nel Nu tstate t∇ topt tfil tit Iter.

level 0: 1725 9774 1.4 0.2 0.0 0.0 1.7 96
level 1: 8857 41307 11.4 1.2 0.2 0.2 13.4 93
level 2: 49437 214374 76.6 6.7 1.0 10.2 108.5 55
level 3: 189288 794628 330.5 26.1 3.9 160.7 691.8 45

Table 1: Computational features from the 3D cantilever beam example.

to Stainko [96] and to the corresponding chapter in Stainko [98].

Phase-Field Relaxation to Topology Optimization with Local Stress Con-
straints
In structural optimization there are two design - constraint combinations of particular
importance, namely the maximization of material stiffness (minimizing the compliance)
at given mass and the minimization of mass while keeping a certain stiffness. The first
combination, also known as the minimal compliance problem, seems to be mathemati-
cally well understood and various successful numerical techniques to solve the problem
have been proposed. The treatment of the second problem is by far less understood and
until now there seems to be no approach that is capable of computing reliable (global)
optimal designs within reasonable computational effort. The main source of difficulties
in this problem is a lack of constraint qualifications for the set of feasible designs, defined
by the local stress constraints.

The starting point of our analysis is a reformulation of the equality constraints de-
scribing the elastic equilibrium and the local inequality constraints for the stresses into
a system of linear inequality constraints as recently proposed by Stolpe and Svan-

berg [102]. A remaining difficulty is that the arising problem also involves 0-1 constraints
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in addition to the linear inequalities. Instead of solving mixed linear programming prob-
lems we propose to use a phase–field relaxation of the reformulated problem. Due to the
well-known ill-posedness of topology optimization problems we might add a perimeter
penalization to the objective functional. The phase–field relaxation consists in using a
linear material interpolation function, and additionally, a Cahn-Hillard type penalization
functional is used to approximate the perimeter.

Let Ωmat = {x ∈ Ω | ρ(x) = 1} ⊂ Ω ⊂ Rd (d = 2, 3), denote the optimal design,
which is of course initially unknown. Furthermore, let Γt0 ⊂ Γt describe the part of the
boundary Γt where the traction forces are zero, i.e. t = 0. Then, the stress constrained
topology optimization problem that we are going to investigate in this work states as
follows:

J(ρ) =

∫

Ω

ρ(x) dx → min
ρ,u

(7a)

subject to divσ = 0, in Ωmat, (7b)

σ − Cε(u) = 0, in Ω, (7c)

u = 0, on Γu, (7d)

σ · n = t, on Γt, (7e)

σ · n = 0, on
(
∂Ωmat \ Γt

)
∪ Γt0 , (7f)

ρ(x) ∈ {0, 1}, a.e. in Ω, (7g)

Φmin ≤ Φ
(
σ(x)

)
≤ Φmax, a.e. in Ωmat, (7h)

umin ≤ u(x) ≤ umax, a.e. in Ω. (7i)

In the bound constraints (7h), Φ denotes a proper stress criterion. For Φ(σ) = σ we
have that σmin ≤ σ ≤ σmax and we shall call this criterion total stress. Alternatively,
e.g., we can use the von Mises stress criterion, but for sake of simplicity we will use total
stresses throughout this report.

For the reformulation of the set of constaints we introduce a β > 0, such that

β
∣∣σij(x)

∣∣ ≤ 1, a.e. in Ω, i, j = 1, . . . , d, (8)

and an additional variable s, such that s(x) = σ(x) if ρ(x) = 1 and s(x) = 0 if ρ(x) = 0,
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i.e. s = ρσ. Then the equivalent reformulation of the set of constraints looks like:

divs = 0, in Ω, (9a)

σ − Cε(u) = 0, in Ω, (9b)

u = 0, on Γu, (9c)

s · n = t, on Γt, (9d)

s · n = 0, on Γt0 , (9e)

−(1 − ρ)1 ≤ β(σ − s) ≤ (1 − ρ)1, in Ω, (9f)

ρ(x) ∈ {0, 1}, a.e. in Ω, (9g)

ρ(x)σmin ≤ s(x) ≤ ρ(x)σmax, a.e. in Ω, (9h)

umin ≤ u(x) ≤ umax, a.e. in Ω. (9i)

All the constraints in (9) are linear with respect to the vector of unknowns (ρ,u, σ, s),
except for ρ(x) ∈ {0, 1} almost everywhere in Ω. We now replace the 0-1 constraint
ρ(x) ∈ {0, 1} by the following continuous version ρ(x) ∈ [0, 1]. Moreover, we approximate
a perimeter term by the Cahn-Hilliard term and add it to the objective:

Jǫ(ρ) = γ

∫

Ω

ρ(x) dx +
ǫ

2

∫

Ω

∣∣∇ρ(x)
∣∣2 dx +

1

ǫ

∫

Ω

W
(
ρ(x)

)
dx. (10)

The term
∫
Ω

W (ρ(x) dx favorites those designs which take values close to 0 or 1 (phase
separation), while the term

∫
Ω
|∇ρ(x)|2 dx penalizes the spatial inhomogeneity of ρ.

The theorem of Modica and Mortola tells that the minimizers of (10) converge to the
minimizers of

∫
Ω

ρ(x) dx in the sense of Γ-convergence (see Modica and Mortola [59]).
The resulting relaxed paremeter dependendent problem is now given by the objective
functional (10) and by the constraints (9), where (9g) is replaced by 0 ≤ ρ(x) ≤ 1. The
problem is now solved for a decreasing sequence of the parameter ε → 0. For the relaxed
problem it is now possible to show the existance of solutions in the corresponding set of
feasible designs.

After a standard finite element discretization we end up with a large scale optimization
problem, that now fulfills constraint qualifications. We solved the discrete optimization
problems using Ipopt, which is a free available optimization code realizing a primal-dual
interior-point optimization method (see Wächter et al [109]). This new approach
to stress constrained topology optimization resulted in a joint paper of Burger and

Stainko [26].

An Optimal Solver to a KKT-System
Over the last two decades interior-point methods turned out to be efficient optimization
methods for solving large-scale nonlinear optimization problems. Most of the computing
time is actually spent to the solution of linear systems arising from the linearization of
the primal-dual optimality conditions. Instead of solving the nonsymmetric systems, a
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Figure 3: Optimal designs of the 4 level ǫ-continuation with ǫ0 = 0.1, ǫ1 = 0.05, ǫ2 = 0.025,
and ǫ3 = 0.0125, respectively.

symmetric system like (
A BT

B 0

)(
△x
△y

)
=

(
f
g

)
(11)

can be achieved by some elimination steps. Multigrid methods certainly belong to the
most efficient methods for solving large-scale systems, arising from discretized partial
differential equations. While the construction of such methods for symmetric and posi-
tive definite systems is quite standard, this is not the case for saddle point problems. A
successful construction of a solver with optimal complexity for linear systems like (11)
would yield a significant speedup for an interior-point method. One of the most impor-
tant ingredients of an efficient multigrid method is an appropriate smoother, i.e. a simple
iterative smoothing procedure. Here we consider a multiplicative Schwarz-type iteration
method as a smoother in a multigrid method. Each iteration step of such a multiplica-
tive Schwarz-type smoother consists of the solution of several small local saddle point
problems, i.e. small local versions of the problem (11).

After several eliminiation steps, the optimality system of the interior-point formu-
lation of the stress constrained topology optimization problem turns into the following
symmetric saddle point problem




Kρρ Kρu Kρs 0
K

T
ρu Kuu Kus 0

K
T
ρs K

T
us Kss DT

0 0 D 0







△ρh

△uh

△sh

△λh
0


 = fh, (12)

where the block matrices of the coefficient matrix are combinations of the finite element
matrices from the finite element formulation of the primal-dual optimality conditions. We
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start the introduction of the multiplicative Schwartz- type smoother with a decomposition
of the spaces

V =

l∑

i=1

V i and Q =

l∑

i=1

Qi.

Moreover, we have to introduce linear operators for each subspace to set up the local
sub-problems:

PV i : Rni → Rn and PQi
: Rmi → Rm, for i = 1, . . . , l, (13)

with ni, mi denoting the dimensions of the local subspaces Vi and Qi, respectively. The
matrices PV i and PQi

denote prolongation operators with the associated restriction op-
erators PV

T
i and PQ

T
i
, respectively. Now we define the multiplicative Schwarz smoother

based on the above subspace decomposition as the following procedure: Set w0 = 0 and
r0 = 0 and compute
(

wi

ri

)
=

(
wi−1

ri−1

)
+ PiK̂

−1

i PT
i

((
f
g

)
− K

(
wi−1

ri−1

))
, for i = 1, . . . , l, (14)

where K̂i denotes the coefficient matrix of the local saddle point problem. Finally we
define the multiplicative smoother as

SM

(
uk

pk

)
=

(
uk

pk

)
+

(
wl

rl

)
. (15)

We refer to Schöberl and Zulehner [85] for a theoretical analysis for the convergence
and smoothing properties of the additive smoother.

For the numerical results we choose Ω = (0, 1)×(0, 1) and decompose it into a regular
triangulation T k

h = {τi | i = 1, . . . , nk} for each level k of a hierarchy of l nested meshes
with 3 ≤ k ≤ l. That means that level k = 3 is the coarsest grid where the corresponding
linear system is solved exactly. For each level k we assemble the block matrices that finally
build up the saddle point system (12). In order to test the multiplicative patch smoother
(14) - (15) we solved the saddle point system (12) on a hierarchy with an increasing
number of meshes. We set fk = 0 and used randomly chosen starting values for △x0

k for
the exact solutions △xk. For constructing the local subproblems we decomposed the grid
T k

h into mk overlapping patches, where mk denotes the number of nodes on level k. Each
patch consists of the at most 6 surrounding triangles for each node. We approximated the
density ρ, the displacements u, and the Lagrangian multiplier λ0 with linear elements and
the stresses s with constant elements. The corresponding subspaces Vi, for i = 1, . . . , mk,
consist now of the degrees of freedom of the node i, related to the approximations of the
density and the displacement components, and the degrees of freedom in the surrounding
elements, related to the stress components. The subspaces Qi, for i = 1, . . . , mk, consist
of the unknowns at node i with respect to the approximation of the Lagrangian multiplier
λ0. Figure 4 shows an example of a patch, where the places marked with a ’�’ indicate
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Figure 4: Patch of a local saddle point problem.

the unknowns of the constant elements and the places marked with a ’•’ indicate the
unknowns of the linear elements. For the actual numerical tests we used a W-cycle with s
smoothing steps (s/2 pre- and s/2 post-smoothing step. We stopped the iteration process
when the initial defect was reduced by a factor of 10−8, measured by the Euclidean norm.
In Table 2 we list the convergence data for the following choice of parameters: ǫ = 10−4,
µ = 10−6, and νh

i = 1 for i = 1, . . . , 8. The table shows the typical multigrid convergence
behavior, i.e., convergence rates that are asymptotic independent of the grid level and an
asymptotic constant number of iterations. A more detailed description of this solution

Smoothing steps
Level Unknowns 2 4

Iterations Conv. Factor Iterations Conv. Factor

4 725 39 0.621 19 0.376
5 2853 25 0.478 14 0.258
6 11333 24 0.460 13 0.226
7 45189 22 0.427 12 0.210
8 180485 22 0.425 12 0.211

Table 2: Convergence rates for a W-cycle and an error reduction by a factor of 10−8 (ǫ = 10−4,
µ = 10−6, νh

i = 1 for i = 1, . . . , 8).

approach can be found in Stainko [99].

Topology optimization for magnetostatics: setting
We treated topology optimization governed by a nonlinear magnetostatic problem. Let
us consider a fixed computational domain Ω ⊂ R

d, where d = 2, 3. Let Ωd ⊂ Ω be
the subdomain where the designed structure can arise. The set of admissible material
distributions is denoted by Q := {ρ ∈ L2(Ωd) | 0 ≤ ρ ≤ 1}. We need to penalize the
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intermediate values. To this end we introduce the following penalization:

ρ̃p(ρ) :=
1

2

(
1 +

1

arctan(p)
arctan(p(2ρ − 1))

)
, p > 0

which, unlike SIMP nor RAMP, penalizes 0 and 1 equally, see also Fig. 5. Further, we

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ

p=1
p=10
p=100
p=1000

ρ̃p

Figure 5: Penalization of intermediate values

consider the following nonlinear magnetic reluctivity:

ν(η, ρ̃) :=

{
ν0 + (ν(η) − ν0)ρ̃, in Ωd

ν0, otherwise,

where ν(η) := ν1 + (ν0 − ν1)
η8

η8+ν−1

0

is due to Kř́ıžek and Neittaanmäki [48], p. 134,

and ν0, ν1 are the reluctivities of the air and ferromagnetics, respectively. Finally, we
consider a cost functional I : L2(Ω) × Q 7→ R, possibly involving penalization of state
constraints. Given a maximal volume Vmax of the designed structure, the 3D topology
optimization problem governed by the nonlinear magnetostatics then reads as follows:





minρ∈Q I(curl(u), ρ̃(ρ))
w.r.t. ∫

Ωd

ρ̃(ρ) dx ≤ Vmax

∫
Ω

ν (‖curl(u)‖ , ρ̃(ρ)) curl(u) · curl(v) dx =
∫
Ω

J · v dx in H0,⊥(curl; Ω),
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where J ∈ L2(Ω) is a divergence–free current density and where the ansatz space
H0,⊥(curl; Ω) contains such functions v ∈ L2(Ω) that, in a weak sense, curl(v) ∈ L2(Ω)
and n× v = 0 along ∂Ω and that are additionaly L2–orthogonal to the kernel of curl.

For the numerical solution, the 3D problem is discretized by the finite element method
using the lowest order edge Nédélec elements on tetrahedra, while we use the lowest
order nodal Langrange elements on triangles in case of the 2D reduced problem. The
design material distribution is elementwise constant. In Figure 6 there are 2D (a quarter
of the geometry) and 3D (an eigth of the geometry) optimal designs depicted for the
electromagnet benchmark problem described below. The 2D problem was solved for
55104 design and 66877 state variables using a multilevel method described below, as
well. The 3D problem was solved for 14000 design variables and 33323 state ones. Let
us note that we have not employed any regularization technique, however, referring to
Figure 6 (left) it seems to be useful.

Figure 6: Optimal 2D and 3D shapes

Topology optimization for magnetostatics: sensitivity analysis
The outer optimization problem is solved using the steepest descent method whereas
the nonlinear state problem is eliminated by means of nested Newton iterations with a
bisection line–search. We need to provide the gradient of the state solution u w.r.t. the
elementwise constant design material function ρ. To this end we differentiate (by hand)
the state solution procedure described in Algorithm 2There we denote by Anonlinear(u , ρ)
and Alinear(ρ) the stiffness matrices assembled for the design ρ, while in the latter case
the linear reluctivity is considered, i.e., νlinear(η) := η. Let further f denote the assembled
right hand side of the state problem and u , ρ, and I the vector counterparts of u, ρ, and
I, respectively.

In Figure 7 there is the nonlinear reluctivity depicted. We can see that only the pole
heads, as being close to the coils, behave nonlinearly. Since we are computing the cost
functional in the air, the nonlinearities don’t have any influence to the resulting optimal
design.

Let us now consider the linear magnetostatic state problem. We use a coupling of the
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Algorithm 2 Solving the nonlinear state problem
Given ρ

Solve Alinear(ρ) · u0 = f

Assemble f 0 := f −Anonlinear(u0, ρ)
for i = 1, . . . , k do

Solve Anonlinear′

u(u
i−1, ρ) ·w i = f i−1

Line search τ i := argminτ

∥∥f −Anonlinear(u i−1 + τw i, ρ)
∥∥

u i := u i−1 + τ iw i

f i := f −Anonlinear(u i, ρ)
Store w i and τ i

end for
Store uk

Calculate objective I (uk, ρ)

Algorithm 3 Adjoint Newton method for the nonlinear state problem

Given ρ, uk, {w i}k
i=1 and {τ i}k

i=1 stored in the previous call of the Newton method
λ := I ′

u(uk, ρ)
ωnonlinear := 0
for i = k, . . . , 1 do

u i−1 := u i − τ iw i

Solve Anonlinear′

u(u i−1, ρ)T · η = λ

Assemble ωnonlinear := ωnonlinear + τ iAnonlinear′′

uρ
(u i−1,w i, ρ)T · η

Assemble λ := λ + τ iAnonlinear′′

uu(u i−1,w i, ρ)T · η
end for
Solve Alinear(ρ)T · η = λ

Assemble ωlinear := Alinear′

ρ
(u0, ρ)T · η

Calculate the gradient of the objective I ′
ρ
(uk(ρ), ρ) := ωnonlinear + ωlinear

outer steepest–descent optimization iterations with the nested multigrid preconditioned
conjugate gradient (PCG) method. The idea is to use the information about the coarsely
optimized design as well as the coarse grid preconditioner, see Algorithm 3

Unlike the minimal compliance problem, here the design hardly changes when starting
too far from the intermediate value 0.5, see the locking effect in Figure 8. Therefore, one
has to shrink the optimal coarse design to a small interval close to 0.5 and use this as the
initial guess at the next level. Unfortunately, it makes the coarse preconditioner useless
in some first iterations of the steepest descent at this actual level. The algorithm is then
still quite effective in 2D, see Table 3, however, we have not managed to do so in 3D.
This motivates us to focus our effort on applying shape optimization after a coarsely
optimized topology design is available.
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Figure 7: Nonlinear magnetic reluctivity

Algorithm 4 Steepest descent iterations coupled with nested multigrid PCG

Discretize at the first level ; h1, ρ1
init,A

1(ρ1
init)

Solve by the steepest–descent method and the nested direct solver ; ρ1
opt

Store the first level preconditioner C 1
opt := A1(ρ1

opt)
−1

for l = 2, . . . do
Refine hl−1

; hl

Increase the penalty
Prolong ρl−1

opt ; ρl
init

Solve by the steepest–descent method and the nested multigrid solver ; ρl
opt

Store the l–th level preconditioner C l
opt

end for

1.3.2 Geometry Handling

The main issue of this topic is to find a proper hirarchical geometric representation and
related numerical techniques for dealing with shapes of the structures which arise from
topology optimization. Here we mainly cooperate with the subproject F1315. So far we
had several meetings with Bert Jüttler, Mohamed Shallaby, and Pavel Chalmoviansky and
discussed preliminary results. A joint paper with Pavel Chalmoviansky is in preparation.

Implicit shape representation: B–spline wavelets
First, we attempted to use implicit representation of the shapes which gives us a strong
connection between topology and shape optimization as well as to the level–set methods.
The research was initiated by Ph.D. thesis Shallaby [89]. He provides techniques
for implicitization of shapes using tensor–product B–splines. Moreover, a hierarchical
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Figure 8: Locking in the coarsely optimized design

level design vars. state vars. steepest desc. iters. PCG iters. total time
(rel. prec. 10−2)

1 861 1105 7 2s
2 3444 4282 6 3 9s
3 13776 16855 13 3 80s
4 55104 66877 40 5–10 29min 17s

Table 3: Steepest descent coupled with multigrid for 2D topology optimization

representation of complex 2D geometries is supported by means of wavelet techniques.
In Shallaby [89] he presents a hierarchical construction which starts from the finest
geometry and the details (wavelet coefficients) are neglected at coarser levels. Still, since
within our multilevel framework we proceed from the coarse to finest geometry, one has
to develop the method the other way round. One can use a p–refinement of the B–
splines, see Figure 9, however, the hierarchy then is not nested. Therefore, we prefer an
h–refinement instead using a lower order, e.g., bilinear B–splines.

It is natural to use this representation with a level set type method. After several
meetings with Martin Burger, we started to work on using the phase field method. In
particular, we only added the following phase field penalization term to the objective:

Pp(ρ) := p

∫

Ωd

ρ2(1 − ρ2) dx.

This term penalizes the intermediate values instead of the arctan–like penalization ρ̃p(ρ).
However, this method had taken too long before the convergence was achieved. Typically,
after 800 iterations the method was still in progress with the intermediate results depicted
in Figure 10. A similar numerical evidence was also observed by Martin Burger. Due to
that our work concerning phase–field method as well as implicit shape representations
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Figure 9: B–spline implicit shape representation of the order 0, 1, 2 and their 0 level sets

has stalled.

Figure 10: Design development after 800 iterations of the phase field method

Parameteric shape representation using Bezier curves
Next, we discussed the geometric issues with Pavel Chalmoviansky and we realized that
Béziér curves or surfaces have two nice properties that make them superior to be used.
First, one can introduce new control nodes so that the Béziér curve or surface is the same,
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i.e., we have a nested hierarchy of them. Second, just a few such refinements makes the
control polygon close enough to the Béziér shape itself. Therefore, it is sufficient to work
with polygons only. In Figure 11 there are 3D pole heads of the electromagnet modelled
by the Bézier surfaces.

Figure 11: Pole heads modelled by Bézier surfaces in a nested hierarchy

Approximation of shapes arising from 2D topology optimization
Another issue that have been tackled is an integration of topology and shape optimization.
As we suggested in the Proposal 2003, first we want to solve a rather coarsely discretized
topology optimization problem, then, we identify the boundary and/or interfaces of the
resulting structure, approximate the shapes using the Bézier parameterization, and fi-
nally, proceed on with the multilevel shape optimization.

In particular, so far we have tested an approximation of a 2D single topology. Given
a coarsely optimized material distribution function ρh ∈ Q and given a number of sets of
admissible shapes Uh

1 , . . . ,Uh
n , we are looking for the optimal Bézier parameters by means

of the least squares:

min
αh

i
∈Uh

i

∫

Ωd

(
ρh − χ

(
Ω1(α

h
1 , . . . , α

h
n)
))2

dx,

where Ω1(α
h
1 , . . . , α

h
n) is the domain occupied with the ferromagnetics (the reluctivity

ν1) the boundary of which is controlled by the shapes, and where χ : R
d → {0, 1} is its

characteristic function. The result is depicted in Figure 12. For more details we refer
to Chalmoviansky and Lukas [55]. Note that a similar issue has recently appear in
F1306 project, see Nübel, Düster, and Rank [63]

1.3.3 Adaptive Multilevel 3D Shape Optimization Techniques

Let α ∈ U describe the boundary of the ferromagnetic domain Ω1 so that Ω0 := Ω \ Ω1

is the air domain. We consider the following shape optimization problem governed with
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Figure 12: Approximation of shapes arising from 2D topology optimization

the 3D linear magnetostatics:





min
α∈U

I(curl(u), α)

w.r.t. ∫
Ω0(α)

ν0curl(u) · curl(v) dx +
∫

Ω1(α)

ν1curl(u) · curl(v) dx =

=
∫
Ω

J · v dx in H0,⊥(curl; Ω),

where all the remaining symbols have the same meaning as in the case of topology
optimization in magnetostatics. The problem is discretized by means of the finite element
method. The mesh is deformed in accordance to the shape changes by means of solution
to an artificial discretized linear elasticity problem. The 2D and 3D results are depicted
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level design vars. state vars. Newton iters. PCG iters. total time
(rel. prec. 10−2)

1 4 17653 2 3 4min
2 16 34750 2 3 8min
3 64 93265 2 3 1h 7min

Table 4: Newton method coupled with multigrid for 3D shape optimization

in Figure 13.

Figure 13: Optimal 2D and 3D shapes of the pole heads of the electromagnet

Newton method coupled with geometric multigrid
The algorithm is similar to Algorithm 4while now we use the Newton outer iterations.
The numerical performance for the 3D problem can be seen in Table 4. Note that there
was also a 0–th level, where we only assembled the coarsest grid preconditioner for the
initial design which is then efficiently used by the multigrid.

1.3.4 Multigrid Methods for KKT Systems

Another part of our investigation was concerned with multigrid methods for solving
large-scale systems of discretized mixed variational problems. The main applications
considered here are optimization problems in function spaces with constraints in form
of partial differential equations (PDEs). The necessary first-order optimality conditions
on a solution of such a problem can be written as a mixed variational problem, usually
called the optimality system or Karush-Kuhn-Tucker (KKT) system.

In particular, we considered elliptic optimal control problems. In such problems the
primal unknown, say x, consists of two parts: a function y, the so-called state, and a
function u, the so-called control. The problem is to find x = (y, u) from appropriate
function spaces that minimizes a given cost functional subject to a constraint, the so-
called state equation, which, for each control u, is an elliptic boundary value problem in y.
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The corresponding KKT system involves another (dual) unknown, say p (the Lagrangian
multiplier or the adjoint state), and consists of three components: the state equation,
the adjoint state equation, which, for each state y, is an elliptic boundary value problem
in p, and the control equation, which is typically an algebraic relation between u and p.

In principle, there are two different approaches to take advantage of the multigrid idea.
One way is to use an outer iteration, typically a preconditioned Richardson method (pos-
sibly accelerated by a Krylov subspace method), applied to the discretized problem. For
typical preconditioners of KKT systems in elliptic optimal control, see, e.g., Batterman

and Heinkenschloss [6], Battermann and Sachs [7], Biros and Ghattas [14]
and Hazra and Schulz [40]. These preconditioners usually rely on efficient solvers
or preconditioners for the underlying PDEs and on the construction of a good precon-
ditioner for the corresponding Schur complement, which is the reduced Hessian of the
Lagrangian. Multigrid techniques (as an inner iteration) can be used for (some or all
of) these components, see, e.g., Dreyer, Maar, and Schulz [30], Hackbusch [36].
We recently contributed to this approach, see Schöberl and Zulehner [87] and the
description at the end of this section.

The other way is to use multigrid methods directly applied to the discretized problem
as an outer iteration based on appropriate smoothers (as a sort of inner iteration). For
PDE-constrained optimization problems this approach is also known as one-shot multigrid
strategy, see Ta’asan [105]. One of the most important ingredients of such a multigrid
method is an appropriate smoother.

So far, the multigrid convergence analysis for KKT systems of PDE-constrained opti-
mization problems is not as developed as for elliptic PDEs. One line of argument exploits
the fact that the KKT system is a compact perturbation of an elliptic problem. This
guarantees the convergence of the multigrid method if the coarse grid is sufficiently fine,
see Borzi, Kunisch and Kwak [18]. A second strategy is based on a Fourier analysis,
which, strictly speaking, covers only the case of uniform meshes with special boundary
conditions (and small perturbations of this situation), see, e.g., Borzi, Kunisch and

Kwak [18], Arian and Ta’asan [2].
A typical elliptic optimal control looks like the following: Let Ω be a bounded convex

polygonal domain in R
2. Let L2(Ω) and H1(Ω) denote the usual Lebesgue space and

Sobolev space, respectively. The goal is to find the state y ∈ H1(Ω) and the control
u ∈ L2(Ω) such that

J(y, u) = min
(z,v)∈H1(Ω)×L2(Ω)

J(z, v)

with cost functional

J(z, v) =
1

2
‖z − yd‖2

L2(Ω) +
ν

2
‖v‖2

L2(Ω)

subject to the state equations

−∆y + y = u in Ω,
∂y

∂n
= 0 on Γ,
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where Γ denotes the boundary of Ω, yd ∈ L2(Ω) is the desired state and ν > 0 is the
weight of the cost of the control.

By introducing the adjoint state p ∈ H1(Ω) we get the optimality system, see, e.g.,
Tröltzsch [107] and the weak formulation leads to the following mixed variational
problem: Find x = (y, u) ∈ X = Y ×U with Y = H1(Ω), U = L2(Ω) and p ∈ Q = H1(Ω)
such that

a(x, w) + b(w, p) = 〈F, w〉 for all w ∈ X,
b(x, q) = 0 for all q ∈ Q

with

a(x, w) = (y, z)L2(Ω) + ν(u, v)L2(Ω),

b(w, q) = (z, q)H1(Ω) − (v, q)L2(Ω),

〈F, w〉 = (yd, z)L2(Ω),

where w = (z, v) with z ∈ Y , v ∈ U , and (·, ·)H is the standard scalar product in a
Hilbert space H , whose norm is denoted by ‖ · ‖H .

Let (Tk) be a sequence of triangulations of Ω. We consider the following discretization
by continuous and piecewise linear finite elements:

Xk = Yk × Uk = {(z, v) ∈ C(Ω̄) × C(Ω̄) : z|T , v|T ∈ P1 for all T ∈ Tk},
Qk = {q ∈ C(Ω̄) : q|T ∈ P1 for all T ∈ Tk},

where P1 denotes the polynomials of total degree less or equal to 1. Then we obtain the
following discrete variational problem: Find xk ∈ XK and pk ∈ Qk such that

a(xk, wk) + b(wk, pk) = 〈F, wk〉 for all wk ∈ Xk,
b(xk, qk) = 0 for all qk ∈ Qk

By introducing the standard nodal basis, we finally obtain the following saddle point
problem in matrix-vector notation:

Kk

(
xk

p
k

)
=

(
f

k

0

)
with Kk =

(
Ak BT

k

Bk 0

)

where

Ak =

(
Mk 0
0 νMk

)
and Bk =

(
Kk −Mk

)
.

Here Mk denotes the mass matrix representing the L2(Ω) scalar product on Yk and Kk

denotes the stiffness matrix representing the H1(Ω) scalar product on Yk.

Schwarz-type Smoother
One of the most important ingredients of a multigrid method is an appropriate smoother.
A first approach for constructing such smoothers is to combine standard smoothers ap-
plied to the components elliptic state and adjoint equations complemented with a special
relaxation method for the control equation, see, e.g., Arian and Ta’asan [2].
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A second class of smoothers are point smoothers, where the variables are grouped
pointwise (with respect to the nodes of the underlying mesh) and one or several sweeps
of point-block Jacobi or point-block Gauß-Seidel sweeps with respect to this grouping are
performed, see, e.g., Borzi, Kunisch and Kwak [18].

A natural extension of point smoothers are patch smoothers: The computational
domain is divided into small (overlapping or non-overlapping) patches. One iteration
step of the smoothing process consists of solving local mixed problems on each patch one-
by-one either in a Jacobi-type or Gauß-Seidel-type manner. This results in an additive
or multiplicative Schwarz-type smoother. The technique was successfully used for the
Navier-Stokes equations, see Vanka [108]. The general construction and the analysis of
patch smoothers for mixed problems was discussed in Schöberl and Zulehner [85],
where a particular patch smoother was proposed for the Stokes problem. A straight
forward application of this construction to KKT systems for elliptic control problems
fails, since an essential feature exploited in the multigrid convergence analysis of the
Stokes problem was the positivity of (1,1)-block everywhere, whereas in optimal control
problems the (1,1)-block is usually positive only on the kernel of the (2,1)-block.

We describe here only the main idea of constructing such a Schwarz-type patch
smoother for elliptic optimal control problems. For more details we refer to Simon

and Zulehner [92]. Since the smoothing procedure involves only one level k of the
hierarchy of spaces, we will simplify the notation by dropping the subscript k and omit-
ting underlining the vectors. So we discuss iterative methods (as smoothers) for linear
systems of equations of the form:

K
(

x
p

)
=

(
f
g

)
with K =

(
A BT

B −C

)
, (16)

where x ∈ R
n, p ∈ R

m.
For setting up local sub-problems a set of linear operator is introduced:

Pi : R
ni → R

n, Qi : R
mi → R

m, for i = 1, . . . , N,

where the dimensions ni and mi are typically much smaller than the dimensions n and
m of the original spaces, respectively. Under some proper conditions we have complete
space decompositions

R
n =

N∑

i=1

Pi(R
ni) and R

m =

N∑

i=1

Qi(R
mi),

and, additionally, the prolongations Pi determine a special partition of unity.
For each index i = 1, . . . , N , local matrices Âi, Bi and Ŝi have to be chosen, which

determine local matrices K̂i of the form

K̂i =

(
Âi BT

i

Bi BiÂ
−1
i BT

i − Ŝi

)
.
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With the help of the local saddle point matrices K̂i the following iterative method
is constructed: Starting from some approximations x(j) and p(j) of the exact solutions x
and p of (16) we consider iterative methods of the form:

x(j+1) = x(j) +
N∑

i=1

Pis
(j)
i , p(j+1) = p(j) +

N∑

i=1

Qir
(j)
i ,

where (s
(j)
i , r

(j)
i ) ∈ R

ni × R
mi solves a local saddle point problem of the form

K̂i

(
s
(j)
i

r
(j)
i

)
=

(
P T

i [f − Ax(j) − BT p(j)]
QT

i [g − Bx(j) + Cp(j)]

)
for all i = 1, . . . , N .

The crucial point for the analysis of the smoothing property is, that the local matrices
are related to the global matrices via some proper commutativity conditions. This itera-
tive method can then be written equivalently as the following preconditioned Richardson
method:

x(j+1) = x(j) + s(j), p(j+1) = p(j) + r(j),

where (s(j), r(j)) solve the equation

K̂
(

s(j)

r(j)

)
=

(
f
g

)
−K

(
x(j)

p(j)

)
with K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
. (17)

So the additive Schwarz-type iterative method can be represented as an symmetric
inexact Uzawa method. Let M denote the associated iteration matrix, given by

M = I − K̂−1K,

which controls the error propagation for the iterative method.

Multigrid convergence analysis
A classical technique for analyzing the convergence of multigrid methods relies on
two properties: the approximation property and the smoothing property, see Hack-

busch [37]. The approximation property measures the effect of the coarse grid correction,
whereas the smoothing property measures the effect of the smoothing procedure, respec-
tively, usually measured in properly chosen discrete norms. The smoothing property can
be translated to the following condition in matrix-notation:

‖KMk‖L ≤ η(m)‖K‖L,

for some function η(m) which is independent of the level k, and

η(m) → 0 for m → ∞,

and L is a symmetric and positive definite matrix which represents the mesh-dependent
(L2-like) norm.
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It was shown in Schöberl and Zulehner [85] that, given a symmetric and positive
definite matrix Â and Ŝ, satisfying

Â ≥ A and Ŝ ≥ C + BÂ−1BT ,

the following estimate holds:

‖KMm‖L ≤ η0(m)‖D‖L,

where K is given by (16), K̂ is given by (17), D is given by

D =

(
Â − A 0

0 Ŝ − C − BÂ−1BT

)
,

L is an arbitrary symmetric and positive definite matrix, and

η0(m) =
1

2m−1

(
m − 1

[m]/2

)
≤





√
2

π(m−1)
for even m

√
2

πm
for odd m.

Here
(

n

k

)
denotes the binomial coefficient and [x] denotes the largest integer smaller than

or equal to x ∈ R.
That means, the smoothing property is satisfied for the additive Schwarz-type method,

if the local problems are constructed in such a way that the associated global matrices
Â,B and Ŝ satisfy the conditions

Â ≥ A and Ŝ ≥ C + BÂ−1BT (18)

and if, additionally, the following scaling condition holds:

‖D‖L ≤ cR‖K‖L with D =

(
Â − A 0

0 Ŝ − C − BÂ−1BT

)
(19)

for some constant cR independent of the level k.
In Schöberl and Zulehner [85] this strategy was successfully applied to the Stokes

problem, discretized by the Crouzeix-Raviart mixed finite element method. For the
global matrix Â a constant multiple of diag A was chosen. Special local matrices were
constructed and all requirements of the analysis could be verified. In particular, the
scaling condition (19) could be shown. For a typical class of problems from optimal
control, like the one presented above, the same choice of Â leads to a violation of the
scaling condition (19). We will now show how the construction must be modified to keep
the right scaling without losing any of the other requirements.

Let N be the number of nodes of the triangulation T . For each i = 1, . . . , N repre-
senting a node of the triangulation, let Ni be the set of all indices consisting of i and the
indices of all neighboring nodes. Then the associated local patch consists of all unknowns
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y and u which are associated to node with indices from Ni and the unknown of p which is
associated to the node with index i, see Figure 14 for an illustration of a local patch. The
corresponding prolongations are the canonical embeddings into R

m and R
n, respectively.

Additionally, an appropriate scaling is required which takes into account the local overlap
depth of the components of the primal variables.

y u p

Figure 14: local patch

Next we have to choose a matrix Â. It seems to be natural to choose

Â =
1

σ
diag A =

1

σ

(
diag M 0

0 ν diag M

)

with a suitable parameter σ > 0. But in order to prove the smoothing property, we have
to check, if the estimate (19) is fulfilled. This is not the case with this definition of Â for
parameters σ = O(1). Instead we choose

Â =
1

σ

(
diag K 0

0 ν diag M

)

with σ small enough to ensure
Â ≥ A.

The local matrices are then constructed by restricting the global matrices to the local
patches.

By determining the structure of the patches and the local problems, the smoothing
procedure is defined. For this additive Schwarz smoother, the smoothing property holds
with a smoothing rate η(m) = O(1/

√
m). In Simon and Zulehner [92] we were also

able to prove the approximation property, which finally led to a rigorous convergence
analysis of the corresponding multigrid method.

We tested the multigrid method on the unit square and homogeneous data yd =
0. Randomly chosen starting values were used. The discretized problem was solved
by a multigrid iteration with a W-cycle and m/2 pre- and m/2 post-smoothing steps.
The multigrid iteration was performed until the Euclidean norm of the solution was
reduced by a factor ǫ = 10−8. Table 5 contains the total number of unknowns, the
number of iterations and the (average) convergence rates depending on the level and the
number of smoothing steps. It shows a typical multigrid convergence behavior, namely
the independence of the grid level and the expected improvement of the rates with an
increasing number of smoothing steps.
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smoothing steps
level nh + mh 5+5 7+7 10+10 15+15

5 3 267 46 0.668 30 0.538 21 0.411 17 0.330
6 12 675 48 0.679 34 0.578 24 0.455 17 0.330
7 49 923 49 0.685 35 0.587 25 0.467 17 0.333
8 198 147 49 0.685 35 0.588 25 0.469 17 0.333
9 789 507 49 0.685 35 0.589 25 0.469 17 0.334

Table 5: Convergence rates for the additive Schwarz smoother

smoothing steps
level nh + mh 5+5 7+7 10+10 15+15

5 3 267 21 0.410 19 0.372 16 0.307 12 0.208
6 12 675 22 0.420 20 0.382 16 0.310 12 0.214
7 49 923 22 0.423 19 0.378 16 0.311 12 0.213
8 198 147 22 0.423 20 0.383 16 0.313 12 0.213
9 789 507 22 0.423 20 0.383 16 0.314 12 0.214

Table 6: Convergence rates for the multiplicative Schwarz smoother

Table 6 shows the convergence rates with the multiplicative version of the smoother.
As expected, the rates are significantly better than the rates for the additive smoother.
The number of smoothing steps which are necessary to achieve convergence on all levels
is much smaller than in the additive version. However, a theoretical analysis for the
convergence and smoothing properties is still missing.

In a more recent work we considered the reduced KKT system by eliminating the
control u. The resulting system can be seen as a positive definite, but nonsymmetric
system (already in matrix-vector notation):

(
νK −M
M K

)(
y
p

)
=

(
f
g

)
.

Actually, this is the system, which was solved in Borzi, Kunisch and Kwak [18] using
the point smoother for the multigrid method. But it can be equivalently formulated as a
symmetric but indefinite system:

(
νK −M
−M −K

)(
y
p

)
=

(
f
−g

)
,

which fits perfectly in the class of symmetric saddle point problems, considered in
Schöberl and Zulehner [85]. Here we do not need the augmentation technique,
presented above, since the upper left block is coercive on the whole space. Setting up the
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proper local problems, we can again write the whole smoothing procedure as a precon-
ditioned Richardson method in a global way. Furthermore, we introduce an additional
overrelaxation parameter ω, leading to the following iteration:

(
y(j+1)

p(j+1)

)
=

(
y(j)

p(j)

)
+ ωK̂−1

[(
f
−g

)
−K

(
y(j)

p(j)

)]
.

Using a convergence result for the relaxed method together with an extension of
Reusken’s Lemma, see Ecker and Zulehner [31], it can be shown that for all relaxation
factors ω ∈ (0, 2) the smoothing property is fulfilled. As a matter of fact numerical
experiments show a better performance if we choose a relaxation parameter ω > 1, e.g.,
ω = 1.6, see Table 7 and Table 8.

smoothing steps
level nh + mh 1+1 2+2 3+3 5+5

5 2 178 27 0.502 14 0.267 10 0.156 7 0.068
6 8 450 27 0.502 14 0.264 10 0.156 7 0.068
7 33 282 27 0.502 14 0.265 11 0.162 7 0.069
8 132 098 27 0.502 14 0.265 10 0.158 7 0.069
9 526 338 27 0.502 14 0.265 11 0.163 7 0.069

Table 7: Convergence rates using relaxation parameter ω = 1

smoothing steps
level nh + mh 1+1 2+2 3+3 5+5

5 2 178 16 0.301 9 0.127 7 0.067 5 0.023
6 8 450 16 0.302 9 0.128 7 0.066 5 0.024
7 33 282 16 0.302 10 0.135 7 0.067 5 0.024
8 132 098 16 0.302 10 0.135 7 0.067 5 0.024
9 526 338 16 0.302 10 0.135 7 0.068 5 0.024

Table 8: Convergence rates using relaxation parameter ω = 1.6

Symmetric Indefinite Preconditioners for KKT Systems
In Schöberl and Zulehner [87] we contributed to the first approach and considered
large scale sparse linear systems of equations in saddle point form

(
A BT

B 0

)(
x
p

)
=

(
f
g

)
, (20)
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where A is a real, symmetric and positive semi-definite n-by-n matrix with

(Aw, w) > 0 for all w ∈ ker B with w 6= 0, (21)

and (x, w) denotes the Euclidean scalar product, B is a real m-by-n matrix with full rank
m ≤ n, and BT denotes the transposed matrix of B. These conditions guarantee that
the matrix

K =

(
A BT

B 0

)

is non-singular. A well-known class of preconditioners is given by

K̂ =

(
Â BT

B BÂ−1BT − Ŝ

)
,

where Â and Ŝ are symmetric and positive definite matrices, see Bank, Welfert

and Yserentant [4]. Estimates for the extreme eigenvalues of K̂−1K were derived in
Zulehner [114] under the assumption that A is positive definite on the whole space.
However, the estimate for the smallest eigenvalue degenerates, if directly applied to the
case considered here. This gap is closed in this paper:

Theorem 1 Assume that A ≥ 0, condition (21) is satisfied, and rank B = m. Let Â > 0
and Ŝ > 0 with

(Aw, w) ≥ α (Âw, w) for all w ∈ ker B and Â ≥ A, (22)

and
Ŝ ≤ BÂ−1BT ≤ β Ŝ (23)

with constants α and β with 0 < α ≤ 1 and 0 < β ≤ 1. Then

λmax(K̂−1K) ≤ β +
√

β2 − β = β (1 +
√

1 − 1/β)

and

λmin(K̂−1K) ≥ 1

2

[
2 + α − 1/β −

√
(2 + α − 1/β)2 − 4α

]

≥ α

[
2√

1 − 1/β +
√

5 − 1/β

]2

> 0.

By slightly strengthening the conditions (22) and (23) to

(Aw, w) ≥ α (Âw, w) for all w ∈ ker B and Â > A (24)

and
Ŝ < BÂ−1BT ≤ β Ŝ, (25)
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the scalar product
((

x
p

)
,

(
w
q

))

D

= ((Â − A)x, w) + ((BÂ−1BT − Ŝ)p, q). (26)

is well-defined, and the standard conjugate gradient method can be applied to the pre-
conditioned system

K̂−1K
(

x
p

)
= K̂−1

(
f
g

)
(27)

with respect to the scalar product (26). It is well-known, that the error e(k) for the k-th
iterate (x(k), p(k))T measured in the corresponding energy norm can be estimated by

e(k) ≤ 2qk

1 + q2k
e(0) with q =

√
κ(K̂−1K) − 1

√
κ(K̂−1K) + 1

,

where κ(K̂−1K) denotes the relative condition number:

κ(K̂−1K) =
λmax(K̂−1K)

λmin(K̂−1K)
.

From Theorem 1 the following upper bound for the relative condition number follows:

κ(K̂−1K) ≤ 2(β +
√

β2 − β)

2 + α − 1/β −
√

(2 + α − 1/β)2 − 4α
≡ κ(α, β)

≤ β

α
(1 +

√
1 − 1/β)

[√
1 − 1/β +

√
5 − 1/β

2

]2

.

This shows that the convergence rate q can be bounded by α and β only. If the precon-
ditioners are chosen such that α and β are independent of certain parameters like the
mesh size h of some discretization or some involved regularization parameter ν, then the
convergence rate is also robust with respect to such parameters.

We applied the general result to the following optimization problem with PDE-
constraints, where Ω ⊂ R

d is an open and bounded set:

Find the state y ∈ H1(Ω) and the control u ∈ L2(Ω) such that

J(y, u) = min
(z,v)∈H1(Ω)×L2(Ω)

J(z, v),

subject to the state equation with distributed control u

−∆y + y = u in Ω,
∂y

∂n
= 0 on ∂Ω,
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where the cost functional is given by

J(y, u) =
1

2

∫

Ω

(y − yd)
2 dx +

ν

2

∫

Ω

u2 dx.

By discretising the associated KKT system by a standard finite element method, we
finally obtain the following saddle point problem in matrix-vector notation:

Ahxh + BT
h p

h
= f

h
,

Bhxh = 0,

with

Ah =

(
Mh 0
0 ν Mh

)
and Bh =

(
Kh −Mh

)
,

where Mh denotes the mass matrix representing the L2(Ω) inner product on Yh, and Kh

denotes the stiffness matrix representing the bilinear form (on Y ) of the state equation,
here (∇y,∇q)L2(Ω) + (y, q)L2(Ω), on Yh.

The suggested preconditioner

K̂h =

(
Âh BT

h

Bh BhÂ
−1
h BT

h − Ŝh

)
for Kh =

(
Ah BT

h

Bh 0

)

is given by

Âh =
1

σ
X̂h =

1

σ

(
Ŷh 0

0 ν M̂h

)
and Ŝh =

σ

τ

1

ν
Ŷh (28)

with real parameters σ > 0 and τ > 0, where Ŷh is a preconditioner for the stiffness
matrix Yh =

√
ν Kh +Mh of the bilinear form

√
ν (∇y,∇q)L2(Ω) +(

√
ν +1) (y, q)L2(Ω) and

a simple preconditioner M̂h for the mass matrix Mh.
It is reasonable to assume that

(1 − qX) Ŷh ≤ Y h ≤ Ŷh and (1 − qX) M̂h ≤ Mh ≤ M̂h,

for some small value qX ∈ [0, 1). The factor qX describes the quality of the preconditioners
Ŷh and M̂h.

It can be shown that the conditions (24) and (25) are satisfied with

α = σ (1 − qX)
2

3
and β = τ

for parameters σ and τ satisfying

σ < 1 and τ >
4

3(1 − qX)2
.
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In particular, assuming that qX ≈ 0, we can except α ≈ 2/3 and β ≈ 4/3 for σ ≈ 1 and
τ ≈ 4/3, leading to a rough estimate of the condition number κ ≈ κ(2/3, 4/3) ≈ 4, which
implies a convergence factor q ≈ 1/3 for the conjugate gradient method.

This was confirmed by numerical experiments for Ω = (0, 1)3, where Ŷh is one V-cycle
of the multigrid method with m1 forward Gauss-Seidel steps for pre-smoothing and m1

backward Gauss-Seidel steps for post-smoothing (in short V (m1, m1)) for the second-
order elliptic differential operator represented by the bilinear form

√
ν (∇y,∇q)L2(Ω) +

(
√

ν + 1) (y, q)L2(Ω). For M̂h we use m2 steps of the symmetric Gauss-Seidel method (in
short SGS(m2)). Table 9 shows that the number of iterations does not depend on the
level of refinement. L denotes the level of refinement, n + m the total number of all
unknowns y

h
, uh and p

h
, k the number of iterations needed to satisfy the stopping rule

r(k) ≤ ε r(0) with ε = 10−8,

and t the total cpu time in seconds.

Table 9: Dependence of the number of iterations on the mesh size for fixed ν = 1.
level L number of unknowns n + m iterations k cpu time t (in seconds)

3 1,107 14 0.06
4 7,395 15 0.61
5 53,955 15 6.96
6 412,035 16 62.04
7 3,200,227 15 559.16

Table 10 shows that the number of iterations does not depend on the regularization
parameter ν either. The results are given for refinement level L = 5.

Table 10: Dependence of the number of iterations on ν for fixed refinement level L = 5.
ν iterations k

10−4 15
10−2 14

1 15
102 14
104 15

1.4 Collaboration Within and Outside the SFB

1.4.1 Cooperations Inside the SFB / Internal Cooperations

• 1304: D. Lukas (F1309) and N. Bila (F1304) were looking for a use of symme-
tries for a dimensional reduction of the magnetostatic state problem. However,
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the reduction is based on Fourier analysis and only a constant material is allowed.
Moreover, only geometrical, e.g. cylindrical, symmetries were proposed to be ex-
plored, which would surely lead to analytical solutions well-known from physics.

• 1308: A very successful cooperation was established with Subproject F1308. Here
we devoloped a new approach to topology optimization, with local stess constraints,
one of the hottest topics in this field. We successfully combined an all-at-once
formulation, reformulation of constraints and a phase–field regularization to a new
solution method. This approach is described in more detail in the above Subsection
1.3.1 and resulted in a joint paper Burger and Stainko [26].

D. Lukas (F1309) and M. Burger (F1308) tried to employ a phase-field method for
an interface shape optimization. However, both collaborators independently shared
the numerical evidence of an extremely slow convergence. Moreover, one has to tune
sensitively the value of the phase-field penalty with respect to the penalization of
inequality constraints. Therefore, this joint work has stalled.

• 1315: D. Lukas (F1309) with M. Shallaby (F1315) attempted to use an implicit
B-spline geometry representation contructed in a wavelet hierarchy for multilevel
interface shape optimization. This approach lead to a higher-orderpolynomial repre-
sentation of the material function. Howver, due to a very technical implementation
this approach was not realized, and we rather focused on a hierarchical parameteric
representation of shapes, see the joint paper Lukas and Chalmoviansky [55].

Furthermore, Pechstein and Jüttler [65] proposed new monotonicity-
preserving interproximation of B-H – curves that is used in our Maxwell-code for
solving non-linear magnetic field problems. The corresponding software product
was bought – and is currently used – by the Robert Bosch GmbH Stuttgart.

1.4.2 Cooperations Outside the SFB / External Cooperations

• Prof. Dr. Zdeněk Dostál (VSB-Technical University of Ostrava, Czech Repub-
lic):
Z. Dostal is a professor of applied mathematics and the head of the Department
of Applied Mathematics at TU Ostrava. We cooperate on development of opti-
mal complexity augmented Lagrangian algorithms for equality and box constrained
quadratic programming with the aim to efficiently solve KKT systems arising in
optimal control and topology optimization.

In augmented Lagrangians the augmented penalty (regularization) parameter is
traditionally increased, since the regularized solutions are known to converge to
the original one. However, this makes the resulting augmented operators less well-
posed. In the approach of Dostál [29] there are two important differences. Firstly,
the augmented parameter is increased only in cases when the Lagrange functional
does not grow more than of a given amount (semi-monotonicity), which is due to a
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careful analysis. Secondly, we solve the inner linear systems only up to a precision
proportional to the violence of the equality constraint. Then, one can prove a
well–controlled bound of the augmented Lagrange parameter which depends only
on the smallest eigenvalue of the Hessian. This implies a uniform equivalence of
all the Hessians of the augmented quadratics. A similar well-controlled estimate is
given to the number of outer iterations. Thus, in a combination with a multigrid
preconditioning to the primal and dual inner products as well as to the Hessian,
we get the linear complexity, provided the linear complexity of the matrix-vector
products.

• Dr. J. Krauss (RICAM):
J. Kraus is a specialist on algebraic multigrid (AMG) solution techniques. We
cooperate on applications of AMG as a state problem solver in optimal interface
shape design. Traditionally in the nested approach, design perturbations causes
perturbations of grid and, consequently, of the state stiffness matrix, which has
to be re-preconditioned. However, this approach can be performed unless the grid
deformation is too bad. Another approach is to keep the grid and allow jumping
material coefficients. From our first results it turns out that AMG preconditioning
is an efficient technique for the latter approach.

• Prof. Dr. M.P. Bendsøe (Technical University of Denmark):
R. Stainko continued the scientific cooperation with Prof. Bendsøe, which always
led to fruitful discussions about the topic of topology optimization. Moreover,
Prof. Bendsøe invited R. Stainko to DTU to give a talk in their TOPOPT seminars
about the approach to local stress constraints.

• Prof. Dr. O. Sigmund (Technical University of Denmark):
We also continued our cooperation with Prof. Sigmund. Together with
Prof. Bendsøe and other researchers he forms the so called TOPOPT group at
the DTU, where in regular meetings a lot of knowledge concerning applied topol-
ogy optimization and theory is exchanged. The fruitful scientific relation resulted
in a post-doc position for R. Stainko at the DTU, invited by Prof. Sigmund.

• Dr. M. Stolpe (Technical University of Denmark):
During his stays at DTU, R. Stainko started a cooperation with Dr. Stolpe, whose
idea of constraint reformulation is one of the cornerstones of the new approach of
Dr. Burger and R. Stainko. M. Stolpe combines a huge knowledge about optimiza-
tion theory and structural optimization and is an invalueable contact partner for
hot and up-to-date topics like stress constrained optimization.

• Prof. Dr. A. Rösch (University Duisburg-Essen, Germany): R. Simon cooperated
with him on error estimates and superconvergence properties for optimal control
problems, Rösch and Simon [76, 77].
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[62] P. Neittaanmäki, M. Rudnicki, and A. Savini. Inverse Problems and Optimal Design
in Electricity and Magnetism. Oxford University Press, 1995.
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[76] A. Rösch and R. Simon. Linear and discontinuous approximations for optimal
control problems. Numerical Functional Analysis and Optimization, 26(3):427–448,
2005.
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