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The long-term scientific goal of the SFB is the design,
verification, implementation, and analysis of

e numerical,
e symbolic, and
e graphical

methods for solving large-scale direct and in-
verse problems with constraints and their syn-
ergetical use in scientific computing for real-life
problems of high complexity. We have in mind so-
called field problems (usually described by Partial
Differential Equations (PDEs)) and algebraic prob-
lems (e.g. involving constraints in algebraic formula-
tion). The particular emphasis of this SFB is put on
the integration of graphical, numerical, and symbolic
methods on different levels:

The particular emphasis of this SFB is put on
the integration of graphical, numerical, and symbolic
methods on different levels. Numerical and symbolic
methods have been developed so far by two fairly dis-
joint research communities. The University of Linz
is one of the few places with strong groups both in
numerical and symbolic computing. Thus, the joint
work on numerical and symbolic methods is one of
the main focuses of the SFB.

The methodological coherence of the SFB can be
summarized as follows: In the subprojects F1302 -
F1305, new symbolic proving and solving algorithms
for various domains of mathematics (integers, real
number, complex numbers, general domains defined
by functors) have been developed that can be used
in connection with numerical methods for treating
a benchmark class of direct and inverse problems
described by partial differential equations with con-
straints, which is the subject of a second group of
subprojects (F1306, F1308 - F1311). Refined graph-
ical tools are used for the visualization and presen-
tation of the results, which is one of the subjects of
subproject F1301.

The integration of symbolic and numerical meth-
ods in the comprehensive view described above must
be seen as a long-term goal. In the first period of the
SEB project, we have concentrated

e on the interaction of the methods where this is
relatively immediate (e.g. in the preprocessing
and postprocessing phase of the application of
numerical methods)

e on training the co-workers of the project com-
ing from the symbolic and the numerical side to
work closely together and build up a common
language and expertise,

e on preparing the methods from symbolic com-
putation (e.g. computer-support in formal
proofs, algebraic constraint solving, algebraic
analysis of PDE solvability) that should later
be seamlessly integrated with the numerical
analysis.

A more precise discussion of this topic is given later
on in the section on the coherence within the SFB.

The scientific results obtained in the SFB enable
the participating institutes to rise their activities in
the knowledge and technology transfer to the indus-
try, especially, in Upper Austria. The highlights are
the foundation of the Software Competence Center
Hagenberg and the Industrial Mathematics Compe-
tence Center in 1999. A more detailed report about
these and other transfer activities is given in the sec-
tion “Transfer of Knowledge and Technologies”.

The following institutes of the Johannes Kepler
University of Linz are involved:

e Institute of Analysis and Computational
Mathematics,

e Institute of Measurement Technology,

e Institute of Industrial Mathematics,

e Institute of Mechanics and Machine Design,
e Institute of Symbolic Computation,

e Institute of Technical Computer Science and
Telematics.

For more information about our SFB please visit our
internet home page

http://www.sfb013.uni-linz.ac.at

or contact our office.
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The scientific part of Project F1301 is concerned with
the coordination of scientific software and the graph-
ical pre- and postprocessing. This includes in par-
ticular to provide new and to extend existing soft-
ware concepts. In 1999, we concentrated on the
further development of the numerical software pack-
age FEPP [6]. In particular, a parallel version of
FEPP has been established and the coupling of fi-
nite and boundary element discretizations has been
introduced.

1 Scientific Computing Tools

The applications considered within the SFB cover a
wide range including problems from elasticity and
electromagnetics. Most of these applications are
based on common principles which can be imple-
mented very efficiently using the advantages of C++.
The aim of the development of scientific software is
to provide modular tools which allow the fast im-
plementation of new problem classes and new algo-
rithms. In the current state, three tools are pro-
vided: the mesh generator NETGEN [5], the sim-
ulation code FEPP, and the visualization module
VIPP. The close interaction of the modules is es-

Figure 1: Geometry of the transformer.

sential for the efficient processing of extremely large
data sets. So the hierarchical data structures pro-
vided by the numerical schemes are used for real-time
interactive visualization. The problem solving envi-
ronment has been applied successfully to advanced
problems arising, e.g., in magneto-statics [3]. Fig-
ure 1 shows the geometry of a transformer with iron
core and 3 coils. The screenshot of the visualization
modul VIPP of FEPP in Figure 8 shows the mesh
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generated by NETGEN. The field is described by
curl(H) = J, div(B) = 0, B = uH where H,B,J
are the magnet field, magnetic induction and pre-
scribed currents, respectively. The numerical model
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Figure 2: Screenshot: coarse mesh.

is based on the vector potential B = curl(u) and a
discretization by edge elements. The uniqueness of
u is recovered by weak gauging div(u) = 0 resulting
in a mixed formulation [3]. A modified, but exact,
formulation is solved by multigrid methods.

2 Parallelization

As mentioned before, FEPP tackles a wide range of
problems arising in mathematical physics. Conse-
quently, various numerical schemes have to be pro-
vided including Finite and Boundary Element Meth-
ods. All these differences cause different needs for the
distribution of data as well as for the parallel gener-
ation and solution of the discrete systems. We have
developed a unifying parallelization concept which
minimizes those parts of the code which are specific
for some strategy of parallelization, see [2]. Hereby,
we observe that all the parallel techniques under con-
sideration lead to one and the same parallel iterative
algorithm applied to particular vector types which
correspond to the kind of data distribution. Then
the most essential operation of the parallel iteration
is the type-conversion of such vectors. This conver-
sion is hidden in the preconditioner or, more pre-
cisely, in the smoother if multigrid is used as pre-
conditioner. The calculation of scalar products is
the only remaining operation which has to be over-
loaded correctly. Moreover, the concepts of operator
overloading and inheritance provided by C++ are



exploited. The methods are especially designed for
massively parallel computers and workstation clus-
ters. They are based on algorithms described in the
book by G. Haase [1]. The speedup which describes
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Figure 3: Speedup results for the transformer.
the gain of using several prcessors instead of one, is
a measure for evaluating the efficiency of parallel al-
gorithms. Figure 3 shows speedup results for the ex-
ample from magneto-statics given above. We observe
that the speedup for the overall time performs well
until P = 16 and is no longer optimal for P = 60.
This loss of efficiency is due to the setup phase for in-
terface unknowns which shows rather bad scalability
in the current implementation. Taking the speedup
with respect to one iteration on the finest grid, we
observe even super-speedups, e.g., a speedup of 74 for
60 processors. The total wall-clock time for solving
the system with 1.691.370 unknowns was 54 seconds
using 60 300MHz processors of a SGI ORIGIN 2000.
Summarizing, we observe an optimal scalability of
our iterative solver. In the case of outer iterations,
e.g. for nonlinear problems, where the linear solver is
called repeatedly on a fixed mesh, the time required
for the setup phase can be neglected and the solver

which shows optimal efficiencies will dominate.

3 FEM-BEM Coupling

Finite Element Methods (FEM) and Boundary El-
ement Methods (BEM) are the most popular dis-
cretization techniques for the numerical solution of
partial differential equations. Each method has its
own advantages. So, non-linearities can be modelled
more eagsily by FEM whereas exterior problems fit
nicely into the framework of BEM since only the
boundary has to be discretized. We have derived a
formulation for 3D magneto-statics which is based
on vector—valued FEM (B = curl(u)) and scalar
BEM (H = V®). In a joint work [4] with O. Stein-
bach, University of Stuttgart, the BEM has been
implemented in FEPP. The coupled FEM-BEM dis-
cretization has been applied to a model of a perma-
nent magnet. Figure 4 shows the resulting magnetic
induction. Starting with 144 tetrahedra, 92 surface
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Figure 4: FEM-BEM solution.

elements and 48 nodes at the coupling boundary I' ;.
finer meshes are obtained by adaptive refinement re-
sulting in 175529 tetrahedra, 1350 surface elements
and 677 nodes on I'y. The overall CPU time on an
250Mhz SGI Octane was about 10 minutes. Hereby
optimal preconditioners based on multigrid methods
have been used yielding numbers of iterations inde-
pendent of the number of unknowns. Coupled FEM-
BEM discretizations will also be used in F1306 and
F1308 for solving exterior magneto-mechanical prob-
lems and inverse scattering problems, respectively.
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1 “Solving and Proving in
General Domains”

The subproject, also called “Theorema”, aims at
integrating computation and deduction in a coher-
ent software system that can be used by the work-
ing scientist for building and checking mathemat-
ical models, including the design and verification
of new algorithms. Currently, the system uses the
rewrite engine of the computer algebra system Math-
ematica for building and combining a number of
automatic/interactive provers (high-order predicate-
logic, induction for lists/tuples and natural num-
bers, etc.) in natural deduction style and in natural
language presentation. These provers can be used
for defining and proving properties of mathematical
models and algorithms, while a specially provided
“computing engine” can execute directly the logical
description of these algorithms.

In the previous phases of the development of the
system a number of provers were implemented and
integrated with each-other and with a common user-
interface. During last year, these components have
been improved w.r.t: efficiency, scope of application,
and user interface. Currently the system already al-
lows to treat complex mathematical knowledge in
complete exploration cycles - see [1] - both for prov-
ing and for computing. Also, new components have
been designed and implemented, as well a new gen-
eral proving strategy PCS: Proving — Computing —
Solving see [2], the integration in the system of spe-
cial provers (considered as “black-box” provers) and
special simplifiers, the enhancing of existing provers
via “failure analysis” and “cascade lemma genera-
tion” strategy and “depth simplification extension”
strategy, and proof simplification, see [2]. All these
new components are currently integrated in the sys-
tem in a smooth manner, based on the same rewrite
engine.

In the current state of the development cycle the
following new features are implemented:

e The system provides facilities for composing
and manipulating large mathematical text and
for structuring, in a hierarchical way, large
mathematical knowledge bases, the “Theorema,
Formal Text”; it provides also a “Command
Language” in order to process (proving, com-
puting or solving) knowledge.

e A more general Proving Strategy which inte-

grates the three phases of mathematical activ-
ities, namely proving, computing and solving
(PCS). This approach to proving is not limited
to general predicate logic provers, but it can be
easily extended to the design of special provers.
These new provers are applied to analysis (see
the Example in figure 5 which displays a proof
generated completely automatically by Theo-
rema) and set theory.

In the system are now integrated Special
provers like the Groebner-Basis Prover and the
Gosper-Zeilberger Prover; the Groebner Basis
method was invented by Buchberger and devel-
oped by Buchberger and his group at RISC.

Tools for the integration with external simpli-
fiers (QEPCAD, PolynomialSimplifier).

Tools for enhancing existing provers by meta-
strategies; in particular two strategies have
been implemented: The “Cascade lemma gen-
eration” and the “Extended Simplifier”. The
Cascade strategy analyzes a failing proof of a
proposition and tries to conjecture a lemma;
the Cascade strategy is then recursively ap-
plied to a new proof situation which includes
the new lemma until either a successful proof
of the original proposition is found, or it fails
and produces a list of the conjectured and
proved lemmas. Failure Analyzer and Con-
jecture Generators have been implemented for
natural numbers; experiments are done also
with tuples. The “Extended Simplifier” strat-
egy extends the simplifying power of a simpli-
fier for a certain class of terms (defined by a
set of function constants), to terms involving
new function constants by recursively simplify-
ing the subterms occurring inside a term whose
outermost symbol is one of the new constants.

Proof Simplification, realized by removing su-
perfluous branches and superfluous steps from
the proof objects generated by the provers, in
particular the predicate logic prover. Certain
deduction steps generate alternative branches
of proofs; by simplification of a proof, only the
branches which are effectively useful for the
success are shown. During the search for a



proof, some formulae may be generated which
finally are not necessary for proving the goal;
by simplification the deduction steps producing
these formulae are removed.

The Theorema system (as version 1.0) has been
distributed to a selected number of users from
the international research community which volun-
teered to beta-test the system: researchers from
the European project INTAS 96-760 (Uppsala, Kiev,
St.Petersburg) and from the CALCULEMUS consor-
tium (UK, Germany, Italy, France, Netherlands) are
evaluating the Theorema system. Currently there
are 35 registered users of the system and their com-
ments and suggestions are used for improving the
system. Additionally, the beta testers and new vol-
unteers have access to the newest version of the sys-
tem on the Internet at http://www.theorema.org.

Moreover, the system is in use for teaching pur-
poses:

e Prof. Buchberger
Lectures on “Thinking Speaking Writing” by
using Theorema as training tool, RISC, Hagen-
berg.

e Prof. F. Lichtenberger,
DI. W. Windsteiger
Lectures on “Algorithmische Mathematik 1”
and “Algorithmische Mathematik 2” by us-
ing Theorema, Regular Courses at the FHS-
Hagenber, 2 semesters.

e Unisoftwareplus
Planning to use Theorema for commercial ed-
ucational software.
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Formula (1.1), by (I) and by introducing a Skolem function,
implies:
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Similarly, formula(1.2) implies:
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Formula(2), using (1), isimplied by:
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We assume g > 0 and show
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We haveto find No*, such that
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Formula (10), using (t+g), isimplied by:
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n=Np*

Formula (11), using (d+), isimplied by:
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S+e=€g Nz=Np*
We havetofind 8p*, e1*, Nb* such that
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Formula (13), using (4) and (6), isimplied by:
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which, using (max), isimplied by:
14 v (n=mx[No[So"], Ni[er*]] A
n=N, *
S50* >0 Aer* >0) A (50* +€1* = €g).
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Summarizing, we reduced the proof to a solving problem.

We haveto find 50*, e1*, Np *such that (15) holds under
the current knowledge. The solution of this problem is:

0< 560" <eq,
€1* = €0 - 50",
No* = max [No [60* ], Nif[er*]].

Figure 5: Example: Limit of Sum



of the Reals
Josef Schicho

1 Quantifier Elimination for
Real Closed Fields

Many problems in mathematics, scientific, engineer-
ing and industrial applications can be reduced to
the problem of quantifier elimination over real closed
fields. One of the most important methods for algo-
rithmic quantifier elimination is Collins’ method of
cylindrical algebraic decomposition (CAD) [1]. Sev-
eral results have been obtained in connection with
this method.

One of the main steps in the CAD algorithm, the
so-called projection phase, is based on resultant tech-
niques for multivariate polynomials. In the project,
an effort was made to enrich these polynomials with
some additional structure in order to speed up the
algorithm. A prototype of this new method has been
implemented by Antonin Tesacek [8]. Experiments
have shown that one can indeed cut down the num-
ber of projected polynomials significantly.

On the other hand, Pau and Schicho [4] general-
ized the CAD method to the case of trigonometric
functions, which occur often in applications in me-
chanical engineering and control theory. The idea
is to use the well-known “tanhalf” transformation,
transforming an angle to the tangent of its half. The
main problem is to deal with the case where the tan-
gent is infinity, in a systematic way that is compat-
ible with the theory of cylindric algebraic decompo-
sitions.

2 Parametrization of Real Al-
gebraic Surfaces

The need to eliminate variables in the presence
of equational constraints leads to the problem of
parametrization of algebraic varieties. The solution
of this problem depends heavily on the dimension of
the variety. For surfaces, partial results have already
been obtained by Schicho [6]. Based on these re-
sults, Schicho considered “proper parametrizations”
[7], where the parameters can be expressed by ratio-
nal functions of the image point. The results were
quite satisfactory: the proper parametrization prob-
lem for real algebraic surfaces was completely solved.

The most expensive subtask of the parametriza-
tion problem is the analysis of singularities. This
can be done by Villamayor’s algorithm, which was
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recently implemented by Bodnar and Schicho. Fig-
ure 26 shows a parametric surface with a double
point of type As.

Figure 6: A Surface Singularity.

Another crucial step in the parametrization is to
exhibit a pencil of rational curves. Any such pencil
can be transformed to a pencil of conics. A special
case occurs when the pencil of conics is not unique.
For instance, the torus has precisely four such pen-
cils: the rotating circle, the orbits of rotation, and
two skew pencils. One of them is displayed in fig-
ure 7.

The research in the parametrization problem
turned out to be useful for other SFB-projects, espe-
cially in the interproject group “Geometry”, where
applications to problems in CAD/CAM have been
investigated [2].

3 Approximate Quantifiers

The theory of approximate quantifiers, which has
been developed by Stefan Ratschan in his thesis [5]
developed further. It captures now two possible
sources of errors, namely an error of uncertainty and
an error of irrelevance. This allows to model situa-
tions occuring in engineering and industrial applica-
tions more adequately. Logically, this distinction is
described in terms of set-valued truth functions.

Ratschan also provided a constraint program-
ming language and an implementation for these con-
cepts.
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Figure 7: A Skew Pencil of Conics.

4 Numerical Solution of In-
equality Constraints

As a case study for the sub-project “Exact Real
Number Arithmetic”, Kutsia and Schicho [3] devised
and implemented an algorithm for the solution of in-
equality constraints which is purely based on numer-
ical computation.

5 Exact Real Number Arith-
metic

The traditional ways of representing numbers sym-
bolically or numerically reach only a small subset of
the reals. Many computations cannot be performed
exactly within these subsets.

In exact real number arithmetic, real numbers
are described by “generators” that can generate ar-
bitrary many digits. Arithmetic is then realized as
operations on these generators. This approach goes
back to ideas of Brouwer and Bishop and has been

suggested by various authors. Pau, Ratschan, and
Schicho are currently working on the development of
a Maple package for exact real number arithmetic
which is especially dedicated to algebraic problems
(polynomial factorization, variable elimination, so-
lution of equations). This subproject resides in be-
tween symbolic and numerical computation, because
one can use ideas from symbolic as well as numerical
algorithms.
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1 Results of the Project

In this second year of the project we have made
progress in all the main project goals, i.e. in the
symbolic parametrization of curves and surfaces, in
the development of software for algebraic curves and
surfaces, and in the symbolic solution of partial dif-
ferential equations. A result in universal algebra was
achieved in [HeLa99).

1.1 Parametrization of curves and
surfaces

@i 15
x

Figure 8: Chinacolcardioid.

Every real algebraic curve which is parametriz-
able over the complex numbers, is in fact also
parame-trizable over the reals. We have investigated
how such a real parametrization of a real algebraic
curve can actually be determined. This problem
seems to be completely solved now [SeWi99]. So,
for instance, the cardioid curve (green) defined by

f(z,y) = = + 82%y? + 4y* — 4zy® + 42 — 42° = 0,

and also its offset curve (blue) with distance 1 can be
parametrized with real coefficients. A parametriza-
tion of the offset curve is

2(t2 — 1)(3t* + 10¢2 — 1)

=) = &+ 1) ’

2t(t% — t* — 13t* + 5)
(2 + 1)

y(t) =

Furthermore we have investigated the symbolic
parametrization of pipe and canal surfaces. These
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are important objects in computer aided geometric
design. The symbolic computation of formulas for
parametrizations of these surfaces is now understood
[HLSW99],[Land99).

Our achievements in this part of the project
have been presented at various lectures at confer-
ences and research institutions, compare [Wink99c],
[Wink99d], [Wink99e]. They are also described in
the overview paper [Wink99a].

1.2 The software system CASA

After having done a thorough analysis of the func-
tionalities and the interrelations of various subpack-
ages in our program system CASA (compare the re-
port for 1998), we have started to implement the
findings of this analysis.

All source files of CASA are now under revision
control. The documentation does no longer exist in
3 different versions; the CASA help files for Maple as
well as the BTEX form of the functions documenta-
tion are generated from one source. The documenta-
tion has been converted to an automatically readable
format; several Perl scripts have been written to sup-
port generation of online help and IATEX format. A
test suite has been added for each user function of
CASA.

Soon we will have a new version (CASA 2.4.3),
branching out to computation over fields of posi-
tive characteristic, applications in algebraic geomet-
ric coding theory, and parallel computation in curve
plotting and singularity analysis.

Ralf Hemmecke has presented some of these new
features in this talk [Hemm99).

1.3 Differential polynomials and sym-
metries of PDEs

The activity of Erik Hillgarter in the classification of
symmetry groups of 2nd order PDEs has been con-
tinued [Hill99]. Many of these groups can now be
treated algorithmically, and solutions can be deter-
mined.
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1 Symbolic Summation and
Combinatorial Identities

Scientific results have been achieved in various sub-
areas of the field of interest. Despite the fact that
these subareas overlap in several respects (theoreti-
cal background, techniques and tools, etc.), for the
sake of better transparency of the presentation, the
achievements are detailed in separate subsections.

1.1 Indefinite and definite summation

Over the last years the WZ method, in particular
Zeilberger’s algorithm, has been widely spread and
successfully applied to problems involving definite
hypergeometric sums. Concerning Mathematica im-
plementations various packages developed at RISC
(by Paule and Schorn, and by Riese) have become
standard references. Now, within the frame of the
SFB project, the first implementation in Macsyma
has been carried out by F. Caruso. Macsyma Inc. is
planning to incorporate the code into the standard
Macsyma library.

Around 1980, M. Karr developed an algorithmic
summation analogue (in the setting of suitable dif-
ference field extensions) to Risch-integration. De-
spite the fact that its domain of application poten-
tially is very general (e.g., including harmonic num-
bers that arise in the analysis of algorithms), Karr’s
method has not achieved the attention it deserves.
Now, within the SFB, C. Schneider developed a first
Mathematica prototype that implements Karr’s ma-
chinery in full generality.

In addition, Schneider succeeded to extend Karr’s
approach also to definite summation problems. To
this end, he needed to extend linear difference equa-
tion solvers to very general domains. This enables
to provide a new and sufficiently general algorith-
mic tool for attacking problems that lie beyond the
scope of the methods available so far. For ex-
ample, with Schneider’s package one cannot only
prove but also find the closed form evaluation of
an identity recently used by Fulmek and Kratten-
thaler for counting tilings of a hexagon; namely, if
H, :=1+4+1/2+---41/n denotes the n-th harmonic
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number then
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1.2 MacMahon’s Partition Analysis

In his famous book “Combinatory Analysis” (1916)
MacMahon introduced partition analysis as a com-
putational method for solving problems in connec-
tion with linear homogeneous diophantine inequali-
ties and equations, respectively. For several decades
this method has remained dormant. In recent SFB
work, carried out jointly with G.E. Andrews (Penn
State, USA), it has been demonstrated that partition
analysis is ideally suited for being supplemented by
modern computer algebra methods.

A Mathematica package Omega has been devel-
oped which can be used as a tool for solving prob-
lems with constraints in form of linear diophantine
inequalities or equations, respectively. As worked
out by Andrews and Paule, a variant of partition
analysis can be applied also to hypergeometric mul-
tisum identities. Applications of Omega range from
the preprocessing for automatic theorem proving to
enumeration problems in statistical physics. For ex-
ample, consider the generating function for solid par-
titions on the cube, namely > q*'* 1% where the
sum runs over all nonnegative integers satisfying in-
equalities a; > a; whenever an edge is directed from
a; to a; on the corresponding cube (see Figure 1).

As pointed out by MacMahon it is extremely hard
to compute the closed form expression by hand; now
with the Omega package this is fully automated and
a matter of seconds.

1.3 Additive number theory

The Rogers-Ramanujan identities belong to the most
outstanding identities in additive numbers; the first
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In the literature one finds many variations, variants
and generalizations; around 1980 some of these for-
mulae found important applications in statistical me-
chanics, e.g., within the context of R. Baxter’s hard
hexagon model.

Recently several algorithmic approaches have
been developed in order to assist the treatment of
such identities by computer algebra packages. With
Zeilberger’s algorithm polynomial versions can be
proved automatically. However, informally spoken,
all these methods start out with the sum side and
try to derive the corresponding expression in prod-
uct form.

In recent years, A. and J. Knopfmacher derived
an algorithm, the Extended Engel Expansion, that
leads to unique series expansions of Rogers-Ramanu-
jan type if starting from the product side. Various
examples related to classical partition theorems, in-
cluding the Rogers-Ramanujan identities, have been
given recently. In joint work with G.E. Andrews
and A. Knopfmacher it has been shown that the new
and elegant Rogers-Ramanujan generalization found
by Garrett, Ismail, and Stanton also fits into this
framework. This not only reveals the existence of
an infinite, parameterized family of extended Engel
expansions, but also provides an alternative proof of
the Garrett, Ismail, and Stanton result. A finite ver-
sion of it, which finds an elementary proof, can be
derived as a by-product of the Engel approach.

This achievement can be viewed as the starting
point of further investigations, for instance, of the
question whether the Extended Engel Expansion can
be turned into a proving machinery.
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1.4 Holonomic approximation

Holonomic functions form the theoretical basis for
many algorithmic investigations in the field. In a co-
operation with I. Gutman, a chemist from the univer-
sity of Kragujevac, this concept in the univariate case
has been utilized to predict the number of hexago-
nal systems consisting of 24 and 25 hexagons with
6 and 5 significant digits, respectively. Informally
speaking, a hexagonal system can be viewed as a
connected arrangement of hexagonal cells packed in
the same way as the typical honeycomb arrangement
in a beehive.

After embedding the problem into a suitable set-
ting the prediction has been produced within a few
seconds using computer algebra packages such as
gfun in Maple or GeneratingFunctions in Math-
ematica; the latter has been developed at RISC
by C. Mallinger. Remarkably the exact number of
hexagonal systems consisting of 23 hexagons, the
biggest number that has been computed so far, re-
quired 2.4 years of CPU time.

1.5 Symbolic methods for wavelet
construction

Wavelets are one of the most popular tools in signal-
and image processing. These functions are widely
used in many practical applications such as data
compression, or for the solution of partial differential
equations. Wavelets are special functions which of-
ten have a fractal character. This makes it relatively
difficult to work with them explicitly; for example,
point evaluation of a wavelet function may already
be a computationally expensive task. To work with
wavelets one uses the nice feature that they are de-
fined by a small number of parameters, the so-called
filter coefficients. In general, any algorithm relying
on wavelets only uses the filter coefficients and not
the wavelet function itself.

In cooperation with O. Scherzer and A. Schoiss-
wohl, the project group F1305 carried out a detailed
study of the basic equations for the filter equations.
In particular, it turned out that Grobner bases meth-
ods enable to compute closed form representations
of the wavelet coefficients. To this end a more eco-
nomic description of the algebraic variety defined by
2N + 1 Daubechies equations in 2N unknowns have
been found; namely, in terms of N algebraic equa-
tions in NV unknowns. Remarkably, various combi-
natorial identities play an important role in this pro-
cess. One expects that this approach extends to the
construction of new wavelets of more general type.

References
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This project benefits from the participation of re-
searchers with different scientific background. Mod-
ern numerical methods as adaptive multigrid meth-
ods have been brought together with challenging ap-
plications involving different physical fields.

1 Numerical Methods for 3D
Magneto-Mechanical Sys-
tems

The physics of magneto-mechanical systems is de-
scribed by instationary partial differential equations.
The Maxwell equations for the magnetic field in the
low frequency range reads as

1 = A "
Vx(;VxA)-i—yaa—t—yﬁx(VxA):

Jo=2Ve. (1)
Here, A denotes the magnetic vector potential, u the
magnetic permeability, v the electric conductivity,
# the velocity, J. a given current density and ® an
electric potential.

The Lamé equations for a linear isotropic mate-
rial give a relation between the mechanical displace-
ment d and acting forces:

E "
) ((V-V)d+ — QVV(V-J))
wol=fr @

In (2) fi; denotes the volume force, E the Young’s
modulus, v the Poisson ratio and p the specific den-
sity of the material.

Both equations are coupled by several terms,
namely the electromotive force, the Lorentz force and
variations of the magnetic field caused by mechanical
deformations, see [6].

The discretization of the weak forms of (1)
and (2) is done by the finite element (FE) method.
While standard nodal value elements are used for the
mechanical field, edge elements have to be used for
the approximation of the magnetic field. The me-
chanical field is of interest only in the solid parts of
the system, but the magnetic field is present also in
the surrounding air. Due to different physical effects
and the arising smoothness properties (mechanical
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waves, magnetic boundary layers) also different mesh
sizes are used for both fields.

The arising ordinary differential equations are
solved by time stepping methods. In each time step
the non-linear coupling terms are taken into account.
Due to the stiffness implicit schemes leading to a
sequence of large scale linear systems of equations
are required. For their efficient solution multigrid
(MG) methods are required. To obtain good perfor-
mance and robustness with respect to geometry and
parameters several multigrid components have been
designed and adapted [5], [4].

2 Application: Magnetically
Excited Plate

To wverify the developed calculation scheme and
to show its advantages compared to standard ap-
proaches, the structure in Fig. 25 is considered. It

Aluminum Plate

Support 2
Support 1

Copper Coil

Figure 10: Principal setup of the magnetically ex-
cited aluminum plate

consists of an aluminum plate above a copper coil. If
a transient electric current flows in the coil, a mag-
netic field is produced, which induces eddy currents
in the plate. The Lorentz force resulting thereof,
generates a mechanical displacement d: which addi-
tionally influences the behavior of the plate by elec-
tromotive force.

2.1 Numerical Simulation

The transient behavior of the plate is now simulated
by the developed MG tool and for comparison with
a standard approach. Since the coil is loaded by a
capacitor discharge which causes a very strong defor-
mation of the aluminum plate, the displacement of



the plate must be considered in the simulation pro-
cess. The MG simulation model consisted of a mag-
netic FE mesh with 356,587 edges and a mechanical
mesh of 26,580 degrees of freedom. The accumulated
calculation time for the necessary 400 time steps was
14 hours on an SGI ORIGIN 300 MHz within the
multigrid fe package FEPP. The simulation by means
of a conventional unigrid solver needed 137 hours.

2.2 Simulation Results

In order to verify the developed scheme, the sim-
ulated results were compared to measurements ob-
tained by a piezoelectric acceleration sensor. The
measured and simulated displacement d, in the cen-
ter of the plate is displayed in Fig. 11. A very good
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Figure 11: Displacement d, in the center of the alu-
minum plate

agreement between numerical simulation and mea-
surement can be observed.

3 Mesh Generation

The development on the automatic mesh genera-
tor NETGEN developed by J. Schoberl has been
continued. A view highlights are meshing possi-
bilities for thin structures, preprocessing capabil-
ities for coupled field problems and interfaces to
available CAD tools, see [http:\\www.sfb013.uni-
linz.ac.at\ ~joachim\netgen].

4 Algebraic Multigrid

One of the key issues in this project is the de-
velopment of Algebraic Multigrid (AMG) solvers.
Our motivation is to provide fast solvers for uni-
grid codes as well as to have fast solvers for prob-
lems on complicated geometries with a rather fine
coarse-grid, or problems where geometric multi-
grid fails (e.g.  non-aligned anisotropies). S.
Reitzinger develops the AMG package PEBBLES
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meeting these goals, see [http:\\www.sfb013.uni-
linz.ac.at\ ~reitz\pebbles.html].

On discretizations with anisotropic elements (e.g.
for resolving thin geometries, edge singularities or
boundary layers) the M-matrix property gets lost.
These causes essential difficulties for standard AMG
methods based on the assembled stiffness matrix.
For these problems the element preconditioning
method has been developed [3].

The AMG code PEBBLES was incorporated into
the coupled field finite element code CAPA and used
therein as a solver. A lot of real life problems in
2D and 3D have been tested. One coupled field ex-
ample was a transient simulation of a loudspeaker.
Here, the magnetic part (which geometry addition-
ally changes in time) was solved with AMG (see
[1]). The overall computation time could be re-
duced tremendously. Besides 3D nonlinear electro-
static and magnetostatic field problems were under
consideration in [2].

Recent developments in the AMG package was
the extension to matrix equations arising from sys-
tems of partial differential equations (as Lamé equa-
tion). A new approach was developed for 3D mag-
netic field problems, where the underlying discretiza-
tion is done by edge elements. The parallelization of
AMG is in progress together with project F1301.
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1 Newton-type methods in in-
verse scattering

Our aim is to solve 3D inverse scattering problems,
which consist in reconstructing a scatterer using
measurement data of scattered waves. Such prob-
lems arise in medical imaging, geophysical explo-
rations, and nondestructive testing. The scatterer
may either be an impenetrable obstacle or a local
inhomogeneity in the refractive index.

To solve inverse scattering problems, we apply
iterative regularization techniques, in particular reg-
ularized Newton methods. These methods require
several direct problems to be solved in each itera-
tion step. In our case this is already a quite de-
manding and time consuming task due to the large
size of the direct problems. However, as long as the
reconstructions of the unknown scatterer are poor,
it does not make sense to waste a lot of computer
time to highly accurate solutions of the direct prob-
lems. Based on our convergence and convergence
rate analysis of regularized Newton methods we have
developed theoretical results on ’optimal’ coupling
of direct solvers and the outer Newton iteration (cf.
[1, 2]). These results have been tested on 2D in-
verse obstacle scattering problems. We observed a
reduction of the total computation time roughly by
a factor 3 in this case. Moreover, we have exten-
sively tested and compared various kinds of iterative
regularization methods on these problems (cf. Fig.
12). Since we have made good progress with the im-
plementation of direct inhomogeneous medium prob-
lems using FEM/BEM coupling in cooperation with
Project F1306, we expect to be able to solve inverse
2D and 3D inhomogeneous medium scattering prob-
lems in the next future.

2 Solving ill-posed problems
by multigrid methods

Finite-dimensional problems are always well-posed in
the sense of stable dependence of a solution on the
data, although they may be ill-conditioned. There-
fore, discretization itself can be considered as a reg-
ularization method. After investigating the stabiliz-
ing effect of projecting a possibly nonlinear ill-posed
equation onto a finite-dimensional space — e.g. a
finite element space (cf. [4]), we considered the effi-
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cient solution of the resulting finite-dimensional lin-
ear and nonlinear systems of equations by multi-
grid methods. Here the ill-posedness of the under-
lying infinite-dimensional problems affects the sin-
gular system structure. As a consequence the use of
conventional pre- and post-smoothers such as Gauss-
Seidel iterations lose their smoothing effect: as op-
posed to well-posed problems (such as elliptic PDEs
or second kind integral equations), small singular
values typically correspond to high-frequency eigen-
functions. An alternative smoothing operator that
turns out to be appropriate for systems of equa-
tions arising from finite-dimensional projection of ill-
posed problems, was proposed by King (1991) and
further investigated within the present project (cf.
[3]). Under certain conditions we could show that
the resulting multigrid operator with W- or alternat-
ing cycle has a level-independent contraction num-
ber and therefore yields an efficient preconditioner
for the fast iterative solution of the class of systems
of linear equations under consideration. A further
possible application of this multigrid operator is to
use it in a full multigrid method, together with an
appropriate choice of the finest grid level in depen-
dence of the data noise level. It was shown within
the present project (cf. [3]), that this yields a regu-
larization method for the original ill-posed problem,
i.e., a stable approximation method for its solution,
which is convergent as the data noise goes to zero.
As a test example we chose the one-dimensional
linearized version of a parameter identification prob-
lem in groundwater filtration, where one wants to
determine the distributed filtration coefficient from
pointwise measurements of the piezometric head.
The performance of the proposed method turns out
to be quite satisfactory. Whereas the condition num-
ber of the resulting system matrix grows rapidly with
the dimension of the discretization space, the condi-
tion number of the multigrid-preconditioned matrix
grows slowly (cf. Figure 13). The total CPU time
needed for the solution of the equation system is sig-
nificantly smaller for the multigrid preconditioned
conjugate gradient method than for standard meth-
ods such as a direct solver or the diagonally precon-
ditioned conjugate gradient method (cf. Figure 14).
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1 Optimal Sizing

In many industrial applications the design of a ma-
chine or of mechanical structures has to fulfill various
constraints. In most cases even an optimal design
with respect to several restrictions is wanted. These
requirements are mainly induced directly by require-
ments of the individual buyer or indirectly by com-
petition on the world market. Unfortunately due to
lack of time the engineers designing a machine com-
ponent have to stop their design process after a few
iterations — in most cases only two or three — and
take the best design obtained so far because no more
time is left for drafts that would possibly meet the
requirements to a larger extent.

Tools supporting such a design process have to
fulfill mainly two goals:

e They have to be flexible enough to get rid of the
various requirements. Nevertheless they also
have to be robust to produce reliable results.

500K “Gog-01

W 1.005-01
3.00E-01
2.00-01
1.00E-01

1.00E-03

pause on/off d..drawing on/off cur..rotate shift+cur..move f£1/£2 zoom in/out
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Especially, it is desirable to spend only little
work when the requirements change.

e On the other hand these tools have to be fast.
The faster the tool, the more design drafts can
be optimized.

In the beginning we focussed our research ac-
tivities on geometric modeling and multilevel opti-
mal shape design algorithms applied to industrial
machine components [2]. Recently we have con-
centrated on Optimal Sizing Problems, the simplest
problems in shape optimization. Here the design pa-
rameter is the distribution of a quantity over a con-
stant cross section. Our model example is the op-
timization of a frame for which the thickness is the
design parameter. There, the mass of the frame shall
be minimized taking into account that the stresses in
the frame shall not exceed a certain limit. The thick-
ness distribution is approximated by a piecewise con-
stant function e.g. constant on each finite element of
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the coarsest grid.

Optimal sizing problems can be formulated as
nonlinear optimization problems with constraints in-
cludeing PDE constraints. The most typical aspect
is the appearance of a state equation, in our case
describing the deformation of the frame under load.
This state equation can also be interpreted as equal-
ity constraints for the optimization problem. There-
fore, the solution of the state equation can be elim-
inated in a formal way which leads to an equiva-
lent optimization problem which is easier manage-
able by standard optimization procedures. In this
transformed optimization problem only the design
parameters appear but no more the solution of the
state equation.

For solving this transformed optimization prob-
lem standard optimization routines can be used, e.g.
Sequential Quadratic Programming as in our code.
This method needs function and gradient evaluations
of the objective and the constraints, the need for Hes-
sian information is avoided by using Quasi-Newton
update formulas.

The current implementation of our optimizer is
based on dense matrix linear algebra and therefore,
only well suited for small to medium size optimiza-
tion problems. But in order to close the gap to
topology optimization which is of high practical im-
portance, new optimization methods for large scale
problems have to be developed.

2 Calculation of Gradients

The currently used optimization routine is based on
an SQP method using a Quasi-Newton update for-
mula for estimating the Hessian of the objective.
Therefore, only evaluations of the objective and the
constraints and their gradients are required. As these
functions may become very complicated, the imple-
mentation of analytic derivatives is more or less im-
possible. Furthermore it would be not well suited for
the use in a design process, as one would then loose
the flexibility of the code completely.

Four different strategies for calculating gradients
have been investigated:

e The use of Finite Differences is for most people
the first method they think of for getting an ap-
proximation to the gradient. In a critical way
these depend on the choice of the increment
used. In order to increase the stability extrap-
olation methods for controlling the step length
were combined with a finite difference scheme.
This works fine, but the computational effort
is very high, especially for a large number of
design parameters (see also [2]).

o Automatic Differentiation (cf. [1]) follows a
completely different approach. Here, the start-
ing point is a computer program that calculates
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numerical values for a function. First a sym-
bolic evaluation graph mapping the design pa-
rameters to the functional value is built. Like
symbolic differentiation, AD operates on this
evaluation graph by systematic application of
the chain rule, familiar from elementary differ-
ential calculus. However, in the case of AD, the
chain rule is applied not to symbolic expres-
sions, but to actual numerical values, which
avoids the exponential growth of the evaluation
complexity of symbolic differentiation. This
approach works fine also for many design pa-
rameters, as the computational effort for the
gradient is independent of the number of de-
sign parameters, but it requires huge memory
and disk capabilities for storing the evaluation
graph.

¢ Both previously mentioned methods are black
box methods to some extent and do not take
into account the special structure of the prob-
lem. But this is done by the Adjoint Method
known from shape optimization. Here, one gets
many partial derivatives by solving only one
adjoint problem. Unfortunately, one may have
to handle and implement huge expressions for
the remaining partial derivatives which makes
this approach only useful for rather simple
functions. More complicated objectives require
symbolic methods.

e In order to make the adjoint method more flex-
ible and also better usable for complex objec-
tives, we combined it with automatic differen-
tiation. This new method brings the strengths
of both approaches together and results in an
Hybrid Method which calculates many partial
derivatives by solving one adjoint problem and
the remaining ones by using automatic differ-
entiation. It also reduces the large memory and
disk requirements of automatic differentiation
severely. The computational effort for calculat-
ing the gradient is comparable to three function
evaluations, independent of the number of de-
sign parameters.

In the future the hybrid method shall be generalized
from optimal sizing problem to shape optimization
problems which have an even more complex structure
of the objective.
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1 Denoising of Images

Esther Radmoser, Otmar Scherzer
(Institut  fir  Industriemathematik),
Joachim Weickert (Lehrstuhl fiir Bild-
verarbeitung, Univ. Mannheim)

One of the most active fields of research in mod-
ern image analysis is modeling and application of
partial differential equations. For image process-
ing we have developed connections between regu-
larization theory and partial differential equations
[14, 12, 13]. These coherence allow to exchange ideas
from different mathematical areas. A joint paper of
E. Radmoser, O. Scherzer, J. Weickert [12] (Univer-
sity of Mannheim, Germany), presented at the Scale
Space Conference’ 99, was selected for an extended
version in a special issue of the ten most important
contribution to this conference [13].

Figure 19: 3D Ultrasound data (left),denoised (right)

The expertise obtained in this part of the project
is transferable to many problems in inverse problems.

2 Recovery of discontinuous
conductivities: a variational
approach

Luca Rondi (Institut fiir Industriemath-
ematik)

We propose a variational approach for the inverse
problem of impedance tomography with discontinu-
ous conductivities. The problem is highly unstable.
To stabilize the computations of the conductivity we
propose a new technique that originates from image
segmentation. This is joint work with Fadil Santosa
(University of Minessota, USA).
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F 1310: Estimation of Discontinuous Parame-
ters in Differential Equations

Walter Hinterberger, Esther Radmoser, Luca
Rondi, Otmar Scherzer, Armin Schoisswohl

3 Optical Flow and Image In-
terpolation

Walter Hinterberger, Otmar Scherzer
(Institut fiir Industriemathematik)

Optical flow is the motion field in a video se-
quence. It is used for video compression as well as in
computer vision. The knowlege of the motion helps
to reduce the amount of data and thus is useful for
compressing video sequences.

Figure 20: Slices of MR data of two different brains
(top) and the optical flow field (bottom).

We use the optical flow for image interpolation,
to generate visually attractive video sequences be-
tween two given images. Problems of this type occur
when the image acquisition is slow or expensive. We
developed appropriate interpolation models based on
systems of partial differential equations [10].

4 Construction of wavelets us-
ing computer algebra meth-
ods

Frédéric Chyzak (INRIA Rocquencourt,
France), Peter Paule, Burkhart Zimmer-
mann (RISC), Otmar Scherzer, Armin



Figure 21: Interpolated sequence between a circle
and a cross.

Schoisswohl (Institut fiir Industriemath-
ematik)

Many problems in signal and image processing
and in partial differential equations can be handled
efficiently with wavelet-functions.

Wavelets are typically defined by a small num-
ber of coefficients. We are concerned with the sym-
bolic calculation of the coefficients of the Daubechies
wavelets on the real line [7, 8, 3]. The constitu-
tive equations for the filter coefficients can be trans-
formed into an algebraic system that can be solved
symbolically using Grobner basis elimination.

Starting from the analytically known filter coeffi-
cients for the wavelets on the real line we developed
a matrix analytical approach for the construction of
(bi)orthogonal wavelets on intervals that puts the
constructions in the literature [4, 11, 5, 6] in a unified
framework. Our approach can be implemented with
computer algebra methods, thus avoiding numerical
instabilities in usual implementations.

A paper describing this work has been accepted
for publication in Experimental Mathematics (cf. [2]).

5 Inverse Problems

Moreover, there have been successful collaborations
within the group of Prof. Engl (Project 1308). We
mention the publications Burger and Scherzer [1] and
Engl and Scherzer [9].
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H. Irschik

F 1311: “Structural Dynamics of Elasto-Plastic
Multi-Body Systems: Integrated Symbolic and
Numerical Computations”

J. Gerstmayr, W. Brunner, A.K. Belyaev

H. Holl, U. Pichler

1 Virtual Virials

The project started in October 1998.

Since we intend to develop a unified approach for
problems of multi-body dynamics and of nonlinear
continuum mechanics, a preliminary study has been
performed with respect to the material description
of the nonlinear field theories of mechanics. Re-
ferring to an undistorted reference configuration, a
generalization of the principle of virtual work and
of the Betti reciprocal theorem has been developed,
first for static problems. In this study, performed
by H. Irschik and A. K. Belyaev, Finger’s virial has
been introduced into a tensorial formulation utiliz-
ing Da Silva’s astatic tensors of deformable bodies.
The virial theorem then has been extended to a for-
mulation termed the Principle of Virtual Virials. In
order to obtain a better understanding of the foun-
dations of the structural theories to be implemented
in the multi-body system, the Principle of Virtual
Virials has been used to derive beam type equations
of motion from the three-dimensional field equations
without using any approximation. The virial formu-
lation presently is extended to kinetic equations, and
its connections to inelastic problems are studied.

2 Elastic-Inelastic Analogy

We include plasticity into the multi-body system by
means of an analogy between plastic strains and ther-
mal expansion strains. In order to consider geometric
nonlinearities, we developed an extension of Maysel’s
formula of thermoelasticity to the nonlinear material
description mentioned above. In these studies, per-
formed by W. Brunner, J. Gerstmayr, H.J. Holl, H.
Trschik, U. Pichler, we made use of the previously
developed generalisation of the Principle of Virtual
Virial. Both, isotropic and anisotropic bodies have
been studied, and thermally loaded beams with a v.
Karman type of nonlinearity have been considered as
example problems. As a further result of these con-
siderations, we performed a symbolic and numerical
computational study on bifurcation and jump phe-
nomena in thermally loaded beams.
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Figure 22: Visualisation of the Plastic Zones in the
Pendulum.

3 Elasto-Plastic Pendulum

In the next step of our investigations, such struc-
tural elements have been subjected to large rigid
body movements, additionally to their deformation
from the undistorted reference configuration. We
used the elasto-plastic pendulum with distributed
mass and stiffness as a benchmark problem. A
shadow reference configuration has been considered,
co-rotating with the pendulum and oriented towards
the tip of the pendulum. Only small deformations
or second-order nonlinearities then need to be in-
troduced for practical purposes. Within this formu-
lation, a non-linear system of differential-algebraic
equations (DAE) has been derived by the above Prin-
ciple of Virtual Virials for the case of a beam-type
pendulum. Linear eigenfunctions have been used
first as virtual deflections. Special emphasis has been
given to the convergence of the solution by splitting a
quasi-static drift and enforcing also dynamic bound-
ary conditions to be solved exactly. This turned out
to be of special importance for an accurate calcula-
tion of stresses and plastic parts of strain. The lat-
ter act as driving sources (in the sense of the above
mentioned thermal analogy) and enter the system of
DAE:s for the flexible and rigid-body co-ordinates as
disturbances, to be calculated from the non-linear
constitutive equations of plasticity. In these investi-
gations performed by J. Gerstmayr, H. Irschik, A.K.
Belyaev and H. Holl, we first studied the case of
a crank-slider-type pendulum with a guided rigid-
body motion. Additionally to plasticity, we intro-
duced ductile damage in order to study low-cycle fa-



tigue and rupture in the machine element. We then
extended the formulation to the case of an elasto-
plastic pendulum which is released from rest and
is driven by its own weight, the stiffness and yield
stress being weakened by a high-temperature envi-
ronment. The rigid-body rotation of the pendulum
now represents an additional generalized coordinate
of the problem. It extends the system of ordinary
differential equations for the flexible coordinates to
a system of DAEs. An implicit scheme, based on a
Runge-Kutta method and including the iterative cal-
culation of plastic sources, has been developed and
successfully applied. It turned out that in our for-
mulation only a low number of generalized coordi-
nates is necessary to obtain an accurate result for
the time-varying distribution of stresses and plastic
zones. It is emphasized that this advanced problem
of dynamic plasticity has not been studied in the
open literature so far. In order to obtain compara-
tive results, W. Brunner and J. Gerstmayr therefore
extended an algorithm for rigid multi-body systems
with respect to elasto-plastic massless springs. A
large amount of rigid elements is necessary to model
the elasto-plastic pendulum, and a high numerical ef-
fort has to be used in this formulation. Nevertheless,
the results of the above formulation could be well re-
produced by the latter method, which also represents
a genuine formulation of our group.
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Figure 23: Decay of Vibrations due to Plasticity.

4 Multi-Body Systems

In our present investigations, we recently succeeded
to extend the system of DAEs for the elasto-plastic
pendulum to a multi-body system made of elasto-
plastic beam type elements. In this formulation,
the flexible beams are connected by rigid or hinge-
type joints. The system of nonlinear DAEs is auto-
matically generated from the single beam-equations
and transformed into a system of nonlinear equa-
tions, with the use of some optional implicit time
integration formula. These equations are suitable to
our self-developed Modified-Newton-Algorithm. Ad-
ditionally some control algorithms are implemented

21

for an active damping of the vibrations of the elasto-
plastic multi-body system. So far, our formulation is
restricted to systems moving in a single plane. We
are just now studying improvements of the formu-
lation, e.g. by using Hermitian polynoms instead
of eigenfunctions, thus omitting the numerically te-
dious splitting of the quasi-static parts.
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Computing

1 Project F1301

The work within the Project F1301 was concerned
with the further enhancement of parallel solvers and
their implementation in the FE package FEPP. The
Projects F1306, F1308, F1308 which require fast di-
rect field solvers will benifit from these developments.

Furthermore, the implementation of the Bound-
ary Element Methods offers new perspectives for the
discretization of field problems. In particular exte-
rior field problems can be treated very efficiently us-
ing boundary elements or coupled finite element —
boundary element discretizations. In particular the
Projects F1306 and F1308 will benefit from this de-
velopment. Together with F1308, inverse scattering
problems will be considered which give rise to prob-
lems on unbounded domains.

2 Project F1302

Cooperation with the Project F1305 (symbolic sum-
mation and combinatoric identities): In several
meetings were identified specific proof techniques
and computation methods which are now fully inte-
grated in the Theorema software system in relation
to the treatment of the domains of natural numbers.
In particular, the implementation of the Gosper-
Zeilberger Summation Algorithm (Project F1305) is
now integrated in the Theorema software system,
and, in cooperation with the other components of
the system, are already capable to produce reason-
ing about summation formulae.

Cooperation with the Project F1303 (proving
and solving over reals) and with the Project F1306
(advanced numerical methods): A set of problems
about the characterization of multidimensional sys-
tem of equations using quantifier elimination in real
closed fields and proving/computing by rewriting
were chosen. An experimental link between the The-
orema system and the Quantifier Elimination via
Partial Cylindrical Algebraic Decomposition (QEP-
CAD) Algorithm has been realized and it is currently
under a test phase. Cooperation with Project F1308
(large scale inverse problems): We started to develop
coherent and formally consistent text in the Theo-
rema system for the mathematical foundations of the
methods used by this subproject. The contents fol-
lows the models used in the “Lecture notes on partial
differential equations” (Prof. Engl).
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3 Project F1303

Multigrid methods and domain decomposition algo-
rithms are of major importance in the solution of
large scale numerical field problems. The analysis
of convergence involves Hilbert space techniques. It
is interesting to observe that many existing proofs
in this theory can be given in a formalization of the
theory of Hilbert spaces, using only a small number
of axioms.

For a particular class of subspace correction
methods, Schicho and Schéberl reduced the con-
vergence analysis to a quantifier elimination prob-
lem over the theory of real closed fields. This
problem was indeed tractable with existing software
(QEPCAD, which was written by H. Hong). Thus,
the convergence rate could be deduced in a semi-
automatic way. This was done in the interproject
working group “Computer Supported Proving”.

The determination of a general symbolic solu-
tion of an equational constraint—which has been
studied intensively in project 1303—is equivalent to
the problem of parametrization of algebraic varieties,
which is studied in the subproject 1304. Applications
to problems in CAD/CAM have been investigated in
the interproject working group “Geometry”.

As one of the most promising activities of the
project 1303, Ratschan, Schicho, and Pau started to
devise and implement algorithms for algebraic prob-
lems in the frame of exact real number arithmetic.
This is a computational model of the reals, where a
number is represented by a “generator” which can
produce arbitrary many digits. It turned out that
we could utilize ideas from symbolic as well as from
numerical algorithms for the solution of various prob-
lems.

4 Project F1304

The main activity for advancing the coherence of the
SEFB was the organization of the workshop SNSC’99.
Prof. Winkler has organized the SFB-Workshop on
“Symbolic and Numerical Scientific Computation”
(SNSC’99), August 18-20, 1999, in Hagenberg.

In this workshop renowned scientists presented
their views of the interaction of symbolic and numer-
ical computation for the solution of scientific prob-
lems, namely Chandrajit Bajaj (University of Texas,



Austin TX, USA), Keith O. Geddes (University of
Waterloo, Kanada), Vladimir Gerdt (Joint Institute
for Nuclear Research, Dubna, Russland), Erich Kalt-
ofen (North Carolina State University, Raleigh NC,
USA), Anders Lennartson (Konigliche Technische
Hochschule, Stockholm, Schweden), Fritz Schwarz
(Gesellschaft fiir Mathematik und Datenverar-
beitung, Bonn/St.Augustin, Deutschland), Wenda
Wu (Beijing Municipal Computing Center, Beijing,
China) and Franz Ziegler (Technische Universitit
Wien).

In addition to these overview lectures, researchers
from the SFB and also from other institutions pre-
sented talks on their new results.

60 scientists participated in SNSC’99. The ab-
stracts of the talks are collected in [Wink99b].

5 Project F1305

Many of the results achieved with respect to summa-
tion methods are directly related to Project F1302
“Proving and Solving in General Domains”. For ex-
ample, the Paule/Schorn package (an extended ver-
sion of Zeilberger’s algorithm implemented in Math-
ematica) has already been incorporated as a prover
and solver into the Theorema package.

F. Caruso’s PhD work, namely the study of
possible combinations of numeric and symbolic ap-
proaches to solving linear systems of equations over
multivariate rational functions is globally related to
the numerics groups of the SFB.

Significant collaboration (a first joint paper
meanwhile has been accepted by Experimen-
tal Mathematics) has been carried out between
O. Scherzer (project F1310) and his student
A. Schoisswohl, and the group of Paule (F. Chyzak
and B. Zimmermann; the latter will be employed by
the SFB after completing his diploma thesis in spring
2000). Namely, as described in the general presen-
tation of the 1999 results, it turned out that certain
parameters that are needed for the construction of
wavelets can be computed in a purely symbolic fash-
ion. This enables to generalize wavelet construction
mechanisms; further developments involving also the
group of U. Langer (project F1306) are envisioned.

Another aspect that reflects the coherence within
the SFB is the “Special Function Interest Group”
(leader: Paule). For instance, the four lectures
on holonomic functions given by F. Chyzak were
attended by SFB workers from different projects
such as F1302, F1304, F1305, F1306, F1308, F1309,
F1310, and F1311.

6 Project F1306

The cooperations with Project F1301 and Project
F1309 are naturally strong and include numerical
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analysis as well as implementation of finite element
software.

A joint goal with project 3 is the development of
automatic proving techniques for problems in Hilbert
spaces as occur in the analysis of multigrid and do-
main decomposition methods. The key idea is to
reduce the variational problem in the infinite dimen-
sional Hilbert space to a space of small, fixed dimen-
sion where quantifier elimination algorithms devel-
oped in project 3 are applicable. We have already re-
covered the theorem estimating the convergence rate
of the multiplicative Schwarz method involving two
subspaces.

Successful joint research with project 8 is the de-
sign and analysis of a mixed variational formulations
for the inverse problem of parameter identification.
A technique for analyzing the total error consisting
of the data error, regularization error and the finite
element discretization error with low order elements
was developed. Numerical experiments has been car-
ried out within the finite element package FEPP.

For a nonlinear problem arising from image recov-
ering a multigrid algorithm was developed together
with project 10. It was implemented into the pack-
age FEPP.

The relation to project 11 is based on one hand
side on the formulation and discretization of non-
linear problems arising in computational mechanics.
On the other hand side, we strongly work together on
the development of the finite element mesh genera-
tion code NETGEN which is used in several projects.

7 Project F1308

Continuing our cooperation with project F1306 we
use a reformulation of the projection-regularized
Newton method for the inverse groundwater filtra-
tion problem in two dimensions as a mixed varia-
tional problem, which allowed us to achieve a signifi-
cant reduction of the requirements on the discretiza-
tion (cf. [2]). Some first numerical experiments with
the finite element package FEPP confirm our theo-
retical results.

Further progress was also made in implementing
a coupled FEM/BEM method within FEPP. This
will be used as a direct solver for the inverse inho-
mogeneous medium scattering problem.

In another cooperation with project F1306 we
considered a nonlinear inverse problem for the heat
equation, namely the problem of finding a cooling
function to be applied to the boundary of some body
(e.g., some steel billet) such that a prescribed tem-
perature distribution is achieved inside the body
(e.g., for fulfilling certain quality requirements in
steel making). An implementation of a regularized
Newton method for this inverse problem in the finite
element package CAPA yielded quite interesting re-
sults (cf. [1]).
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8 Project F1309

The intensive cooperation with the Projects F1301
and F1306 concerning the development of FEPP was
continued. This led to a native integration of the rou-
tines needed for the optimization into our finite ele-
ment code. Also the cooperation with the Projects
F1303 and F1304 concerning the handling of con-
strained geometry was continued.

9 Project F1310

Cooperations with Prof. Peter Paule (Project 1305:
Symbolic Summation and Combinatorial Identities)
and Prof. Heinz Engl (Project 1308: Large Scale
Inverse Problems). Both cooperations led to joint
publications.

10 Project F1311

In order to numerically solve the differential al-
gebraic equations (DAEs) which are gained from
the field equations of a flexible multibody system,
expert-knowledge has been transfered from projects
F1306 and F1309. The introduction of p-version fi-
nite elements into the existing formulation has been
discussed with J. Schéberl (project F1306) and was
sucessfully implemented.

The existing automatic 3D mesh-generator NET-
GEN (written by J. Schoberl) was extended in co-
work by J. Gerstmayr and J. Schéberl with an inter-
face to STL-format files, which opens the possibil-
ity to use more complex models in the FE calcula-
tions, and has various interfaces to CAM programs
like Pro-Engineer and ABAQUS. Objects simply de-
scribed by surface-triangles (STL-format), not use-
able for a FE calculation but easily gained from 3D-
primitives, can be handled by the mesh-generator. A
modeller for this STL-format objects is in develop-
ment, which could be used to test the 3D-FE pro-
grams of different projects. With the use of these
tools, we will be able to extend the existing multi-
body system code to a three dimensional formula-
tion.
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Computing

e Visualization Library:

Any project using the field simualtion of FEPP
can make use of the visualization library devel-
oped by G. Kurka in Project F1301. These are,
in particular, Projects F1306 and F1309.

Parallelization Library:

Any project using the field simualtion of FEPP
can make use of parallel implementations of the
algorithms developed by M. Kuhn in Project
F1301. These are, in particular, Projects
F1306, F1308 and F1309.

Theorema Software:

At the SFB—Workshop in Strobl all the SFB
groups had the possibility to inspect the func-
tionality of the Theorema software in live in-
teractive presentations on the computer and
to discuss various ways of interaction with
the other sub-groups. The main conclusion
was that the software will evolve into a ver-
sion which should be useful for the current
work of the mathematicians from the other dis-
ciplines in order to investigate mathematical
models (e.g. by automating parts of the proofs,
by direct execution of algorithm specifications,
and by providing an intelligent environment for
creating mathematica texts). Moreover, the
work in this subproject will be directed towards
analysing and integrating the proof techniques
specific to the models which are currently used
by the other subgroups: natural numbers, sets,
real numbers, algebraic domains.

Additionally, several meetings were organized
with the participation of only few groups, in or-
der to facilitate a proper focus on the concrete
research cooperation opportunities:

— Meetings with Project F1305: We identi-
fied several proof techniques and compu-
tation methods which will be integrated
in the Theorema software in relation to
the treatment of the domains of natural
numbers. Currently our induction provers
are already capable to produce reasoning
about simple summation formulae.

— Meetings with Project F1303 and F1306:
We selected a set of problems about the
characterization of multidimensional sys-
tem of equations using quantifier elim-
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ination in real closed fields and prov-
ing/computing by rewriting.

e Proving Techniques:

In project 1306, multigrid methods and domain
decomposition methods are considered. The
convergency analysis requires Hilbert space
techniques. It was observed that many existing
proofs in this theory can be given by a formal-
ization of the theory of Hilbert spaces using
only small number of axioms. In some cases,
one can further reduce to a problem in the the-
ory of real closed fields, which is investigated
in project 1303. Using software developed by
the proposer of the project, we could in one
particular example automatically produce the
precise convergency rate.

Actually, quantifier elimination techniques
have been used in the analysis of numerical al-
gorithms in other contexts. We want to con-
tinue this joint approach in order to find more
such applications.

Geometry:

Initiated by Project F1304, a discussion on
geometric problems has started with other
Projects (F1306, F1309). In particular we
are discussing topologically correct numerical
traces of curves, so-called a-shapes of curves,
and also transformation problems in construc-
tive solid geometry.

Construction of Wavelets:

About half of the results achieved with re-
spect to summation methods in Project F1305
are directly related to Project F1302 ”Proving
and Solving in General Domains”. F. Caruso’s
work, namely the study of possible combina-
tions of numeric and symbolic approaches to
solving linear systems of equations over mul-
tivariate rational functions is globally related
to the numerics groups of the SFB. - Sub-
stantial collaboration (see SFB-Report 99-14)
was carried out between O. Scherzer (Project
F1310) and his student A. Schoisswohl, and
the group of Paule. Namely, it turned out
that certain parameters that are needed for the
construction of wavelets can be computed in a
purely symbolic fashion. This enables to gen-
eralize wavelet construction mechanisms; fur-
ther developments involving also the group of



U. Langer (Project F1301 and F1306) are en-
visioned.

Inhomogeneous Medium Problem:

In cooperation between Project F1301, F1306
and F1308, we are working on the inhomo-
geneous medium problem. The direct prob-
lem and its derivative will be implemented us-
ing a FEM-BEM coupling (in 2 and later in
3 space dimensions). To effectively compute
the solution for many directions of the incident
wave, we plan to investigate an extrapolation
method.

Parameter Identification Problem:
Currently the projection regularized Newton
method for the parameter identification prob-
lem is being implemented in the finite el-
ement package FEPP in a cooperation be-
tween Projects F1306 and F1308. To this end
several algorithmic aspects have been consid-
ered, especially the solution of the the finite-
dimensional linearized problem Py, F'(a,)s, =
Py, (u® — F(ay)) in each Newton step. Here
the question of the choice of the ansatz func-
tions for s, is of major relevance. The the-
ory suggests the use of basis functions that
lie in the range of F'(a,)* and are there-
fore quite smooth (H3, in our example). It
turned out (and could also be theoretically sup-
ported) that the reformulation of the Newton
step equation as a mixed variational equation
makes it possible to release these smoothness
conditions so that hat functions can be used to
approximate s,.

Handling of Constraints:

In a cooperation between the projects F1303,
F1304 and F1309 a concept for parameteriz-
ing geometrical shapes was developed. This
approach is based on recording the generation
steps. Each primitive operation has several pa-
rameters. How the individual primitives are
related to each other is included using con-
straints. Using symbolic methods, it is possible
to eliminate constraints and reduce the number
of parameters considerably.

There are, however, good reasons not to real-
ize this approach within the SFB. First, there
are already similar implementations available
in modern CAD systems. Second, a new im-
plementation must not use the existing soft-
ware because these are proprietary and quite
expensive. Third, one would have to write a
layer of a CAD-system from the scratch, which
is a big effort. Finally, the problem which arose
in F1309 and motivated this approach could be
solved by ad hoc methods. Thus, we decided to
retain from a realization of this approach after
a thorough investigation.
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e Bounded Variation Regularization:

Cooperation between F1310 and J. Schéberl
from Project 1306: Development of analytical
results for bounded variation regularization in
a multi-grid setting.

Blind Deconvolution:

Cooperation between F1310 and M. Burger
from project F1308: Analysis of regularization
methods for blind deconvolution and blind sep-
aration problems arising in image and signal
processing. Convergence analysis of the al-
ternating minimization method for the itera-
tive solution of the regularized problems, and
development of a network-based discretization
method using ideas from Project F1308.

Symbolic Summation and Combinatorial
Identities:

Cooperation between F1310 and P. Paule from
Project F1305.



Computing

1 Cooperations with other Re-

search Institutions

University of Stuttgart: Dr. O. Steinbach
has an expertice in the field of Boundary El-
ement Methods. As a result of the cooper-
ation, Boundary Element discretizations have
been implemented in the package FEPP (see
Project F1301).

University of Chemnitz (SFB 393): The
SEFB F013 has strong cooperations with the
SFB 393 ”Numerische Simulation auf mas-
siv parallelen Rechnern” at the University of
Chemnitz, especially to the research groups of
Prof. A. Meyer, Dr. M. Jung, Dr. T. Apel,
Prof. R. Schneider, Prof. B. Heinrich.

So the cooperation with Prof. R. Schneider
will be intensified. The aim of this cooperation
is the development of advanced Finite Element
— Boundary Element solvers based on wavelet
discretizations for integral operators.

Doz. Thomas Apel (Univ. Chemnitz) and Dr.
J. Schoberl work together on mixed finite ele-
ment methods on anisotropic meshes. A joint
paper (with Prof. S. Nicaise) is submitted.

University of Kentucky (Lexington,
USA): There are a close cooperation on par-
allelization issues between Prof. C. Dou-
glas (Lexingtion) and the working group of
Prof.U. Langer. Dr. G. Haase and Prof.
U. Langer visited the University of Lexing-
ton in September 1999, and, together with
Prof. C. Douglas, they have been working on
a joint book project about parallel algorithms
(F1301).

Lawrence Livermore National Labora-
tory (Livermore, USA): Prof. U. Langer
and Dr. G. Haase (F1301, F1306) spent one
week at the LLNL and worked with P. Vas-
silevski and his colleagues on algebraic multi-
grid methods, parallelization techniques and
scientific computing tools.

SFB F011 ”AURORA” (Vienna): There
are a cooperation on parallelization issues be-
tween Prof. Uberhuber (TU Vienna) and the
working group of Prof.U. Langer.
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National and International Cooperations

e Wolfram Research: Developer of the mathe-

matical software system Mathematica. We are
in close contact by providing them with the
results of our research and with suggestions
about the existing and possible facilities of the
Mathematica system. (See also the section on
technology transfer).

The CALCULEMUS Consortium
Consists of a net of Universities and Research
Institutes with the common goal of integrat-
ing the functionalities of existing mathemat-
ical software and theorem proving systems:
IRST Trento Italy, Univ. Edinburgh UK, Univ.
Karlsruhe Germany, RISC-Linz Austria, Univ.
Nijmegen Netherlands, Univ. 3 Rome Italy,
Univ. Saarbriicken Germany, INRIA Lorrain
France. The consortium organizes yearly a
scientific meeting - see [?], and last year ap-
plied successfully for an European TMR re-
search network and for a grant from the Eu-
ropean Science Foundation.

The INTAS Consortium 96-760

Consists of a net of Universities and Re-
search Institutes with the common goal of in-
tegrating rewrite techniques and efficient the-
orem proving: RISC-Linz, Univ. Uppsala,
Univ. Kiev, Glushkov Institute of Cyber-
netics Kiev, Steklov Institute of Mathematics
St.Petersburg.

University of Vienna

Cooperation with the working group of Prof.
Mathias Baaz on analysis and simplification of
automatically generated proofs.

University of North Carolina: Prof. H.
Hong (Univ. North Carolina) and J. Schicho
(F1303) have been working together on prob-
lem of quantifier elimination and on the gener-
alization of resultants. Dr. J. Schicho visited
the University of North Carolina in April 1999.

University of Passau: In the winter term
99/2000, Prof. Volker Weispfenning (Univ.
Passau) and J. Schicho (F1303) organized a
joint seminar on computer algebra and quan-
tifier elimination, taking place in Passau and
in Hagenberg. The participants are: Prof.
Volker Weispfenning (Univ. Passau), Dr.



Isolde Mazucco (Univ. Passau), Hirokazu Anai
(Univ. Passau), Andreas Dolzmann (Univ.
Passau), Thomas Sturm (Univ. Passau), Dr.
J. Schicho (SFB 1303), Dr. Stefan Ratschan
(SFB 1303), Petru Pau (SFB 1303), Mohamed
Shalaby (SFB 1303).

Genova and Leipzig: Ralf Hemmecke trav-
eled to Genova and Leipzig for discussing in-
volutive bases with Robbiano, Sturmfels, and
Apel.

GMD in Bonn: Erik Hillgarter spent a
few days at GMD in Bonn and worked with
Schwarz on the symmetry analysis of pdes.

Madrid: Franz Winkler continued his
joint work with Sendra (Madrid) on the
parametrization problem.

University of Witwatersrand: Following
an invitation of Prof. Arnold Knopfmacher,
Prof. Paule was visiting researcher from 1.—
24.3.99 at the “Centre for Applicable Analysis
and Number Theory”, University of Witwater-
srand, Johannesburg, South Africa. A joint pa-
per, described in the annual report 1999, was
produced.

University of Erlangen-Niirnberg: From
October 1999 to February 2000 Prof. V. Strehl
visited the group of Prof. Paule for a sabbat-
ical. Despite the fact that his visit was spon-
sored by the Auslandsbiiro of the J. Kepler
University, several topics relevant to the SFB
work have been investigated. Detailed results
will be reported in the annual report 2000.

Technical University of Vienna: Ao. Prof.
Helmut B6hm (TU Vienna), Dr. J. Schéberl
(F1306) and Dipl.-Ing. H. Gerstmayr (F1311)
work together on Finite Element Mesh Gener-
ation for Microstructures.

Christian Albrechts University Kiel:
Prof. Carsten Carstensen (University Kiel)
and Dr. J. Schéberl (F1306) work together on
a posteriori error estimates for plate problems.
A joint paper is in preparation.

University Innsbruck/Technical Univer-
sity Tampere: Prof. Rolf Stenberg (Univer-
sity Innsbruck) and Dr. J. Schoberl (F1306)
(F1306) work together on multigrid methods
for plate problems. A joint paper is in prepa-
ration.

Technical University of Dresden:
Prof. Dr. A. Griewank and Olaf Vogel
worked together with Wolfram Miihlhuber
(F1309) on the efficient use of AD for optimal
sizing problems. Both visited the group of
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Prof. Langer in June 1999 and gave a 3 weeks
course on AD. Wolfram Miihlhuber visited the
Technical University of Dresden in November
1999.

University of Mannheim: W. Hinterberger
(F1310), J. Weickert (Univ. Mannheim), and
O. Scherzer (F1310) have been working on op-
tical flow problems.

Dipl.-Ing. E. Radmoser (F1310), J. Weickert
(Univ. Mannheim), and O. Scherzer (F1310)
worked on coherences between regularization
methods and diffusion filtering in image pro-
cessing.

(Guests

Prof. Dr. John WHITEMAN,

Brunel University of West London, 13.01. -
14.01.1999, Talk on ” Adaptive finite element
methods for problems of viscoelastic solid de-
formation, with applications to polymer pro-
cessing” .

Prof. Dr. Craig C. DOUGLAS,
University of Kentucky, 29.01. - 01.02.1999,
Discussion on Parallelization.

Dr. Olaf STEINBACH,

Universitt Stuttgart, 12.03. - 24.03.1999,
Talks on "BEM fr Randwertprobleme mit
nichtlinearen Randbedingungen”, ” A posteri-
ori Fehlerschtzer fr direkte Randelementmeth-
oden”.

Prof. Dr. Dietrich BRAESS,

Universitt Bochum, 22.03. - 26.03.1999,
Talk on "Ein Mehrgitterverfahren fr Mortar-
Elemente”.

Prof. BERHUBER,

Dipl. Ing. GANSTERER,

Dipl. Ing. HAUNSCHMID,

Universitt Wien, 22.03.99, Seminar on Paral-
lelization.

Dipl. Ing. Pavel SOLIN,

Universitt Prag, 19.04. - 24.04.1999, Talk on
”On the Finite Volume Semi-Discretization of
Compressible Euler Equations”.

Prof. Dr. Hans-Georg ROOS,

Universitt Dresden, 7.06. - 11.06.1999, Talk
on ”Grenzschichtangepate Gitter: Charakter-
isierung, gleichmige Fehlerabschtzungen, Su-
perkonvergenz”

Prof. Dr. Rolf STENBERG,

Universitt Innsbruck, 19.05. - 22.05.1999,
Talk on ”Stabilized finite element methods for
Reissner-Mindlin Plates”.



Prof. Sergej NEPOMNYASCHIKH,
TU Chemnitz, 09.08. - 15.08.1999.

Dr. Ralf HIPTMAIR,
Universitt Thingen, 21.09. - 22.09.1999, Talk
on ”Diskretisierung der Maxwell Gleichungen”

Dipl. Ing. Pavel SOLIN,
Universitt Prag, 01.10. - 31.10.1999, Visualisa-
tion for instationary field computations.

Dr. Maxim A OLSHANSKII,

Moscov State University, 04.10. - 18.10.1999,
Talk on ”A Preconditioned Iterative Tech-
nique for the Linearized Incompressible Navier-
Stokes Problem”.

Prof. Carsten CARSTENSEN,
Universitt Kiel, 21.10. - 22.10.1999, 11.12. -
12.12.1999, Cooperations on error estimators.

Prof. Dr. Markus GROSS,

ETH Zrich, 30.11. - 02.12.1999, Talk on
”Modellierungsmethoden in der Chirugiesimu-
lation”.

Prof. Mathias Baaz,

University of Vienna, March 24, 1999, Prof.
Baaz gave the talk “Logical Tools for the Anal-
ysis of Proofs” within the weekly “Theorema
Seminars”, RISC, Hagenberg.

N. Preining,

University of Vienna, March 24, 1999, Prein-
ing gave the talk “Sketches as Proofs” within
the weekly “Theorema Seminars”, RISC, Ha-
genberg.

Dr. G. Moser,

University of Vienna, March 24, 1999, Dr.
Moser gave the talk “Cut Elimination” within
the weekly “Theorema Seminars”, RISC, Ha-
genberg.

Prof. J. Millan and Dr. G. Millan,
University of Caracas, Venezuela. Visit from
June to Aug. 1999, using Theorema for repre-
senting mathematical models for linear control
systems.

D.I. Mijail Borges-Quintana,

University of Havana, Cuba, from May 6 to
June 24, 1999 and from October 5, 1999 to
September 30, 2000, D.I. Borges is PhD stu-
dent in Cuba and he participates in the The-
orema project with the purpose of formalizing
mathematical models for integer programming.

Prof. Doina Tatar,

University of Cluj, Romania, from May 18 to
May 24, 1999, Predicate logic proving (resolu-
tion, semantic tableaux).
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Prof. Alexander Letichevsky,

Glushkov Inst. of Cybernetics, Kiev, Ukraine,
from September 22 to September 24, 1999,
Rewrite based predicate proving, natural de-
duction.

Vladimir Orevkov,

Steklov Inst. of Mathematics, St.Petersburg,
Russia, from November 21 to November 23,
1999, Complexity of predicate logic proving
(esp. sequent calculus).

Dr. Boris Konev,

Steklov Inst. of Mathematics, St.Petersburg,
Russia, from May to June 1999, Predicate logic
proving (meta-variables).

Dipl.-Ing. Talal Salame: University Bonn,
14.1. - 16.1.1999. Dipl.-Ing. Talal Salame vis-
ited Dr. Josef Schicho and applied for a posi-
tion.

Prof. Hoon Hong: University of North Car-
olina, 15.3. - 17.3.1999. Prof. Hoon Hong dis-
cussed with Dr. J. Schicho (1303) about gen-
eralizations of results.

Prof. Jaime Gutierrez: University of
Cantabria, 23.9. - 30.9.1999. Prof. Jaime
Gutierrez and J. Schicho (1303) worked to-
gether on the problem of algebraic simplifi-
cation of sine-cosine equations. Prof. Jaime
Gutierrez also gave a talk on this topic.

Dr. Thomas Breuer: Universitit Aachen,
10.10. - 13.10.1999. Dr. Thomas Breuer ap-
plied for a position. He gave a talk on the
Computeralgebra-System GAP.

Prof. Rob Corless: University of Western
Ontario, 16.10. - 20.10.1999. Prof. Rob Cor-
less gave a talk on symbolic-numeric algorithms
for polynomials.

Dr. I. Kotsireas: University of Western On-
tario, 27.11. - 30.11.1999. Dr. I. Kotsireas and
J. Schicho worked together on a problem of ce-
lestial mechanics. Dr. 1. Kotsireas also gave a
talk on a numerical algorithm for multivariate
factorization.

R. Liska: (Technical University of Prague,
symbolic/ numerical computation in finite dif-
ference modelling in fluid flows),

H. Pottmann : (Technical University of Vi-
enna, computer-oriented geometry),

M. Borges: (Universidad de Oriente, Cuba,
Grobner basis techniques in coding theory),

F. Pauer: (Universitit Innsbruck, Grébner
bases in rings of differential operators),



Z. Li : (GMD Bonn, rational solutions of
Riccati-like pdes).

Dr. F. Chyzak: INRIA-Paris, 20.11.-4.12.99.
After the period of SFB work (October 1998—
February 1999) Dr. Chyzak visited Prof.
Paule’s group in order to continue joint re-
search. It is planned to intensify the contacts
to Dr. Chyzak’s home institution, the “Algo-
rithms” group at INRIA-Paris (Prof. Ph. Fla-
jolet and Prof. B. Salvy).

Prof. M.Z. Nashed:
Delaware) 8.6. — 18.6.1999

(University of

Dr. L. Rondi: (University of Trieste) 9.6. —
10.6.1999

Dr. J. Weickert: (University of Mannheim)
2.3. —4.3.1999

Dr. A.K. Belyaev: State Technical Univer-
sity of St. Petersburg, 7.3.1999 - 15.3.1999 and
16.11.1999 - 1.12.1999. Dr. A.K. Belyaev gave
a talk on ” Thermodynamic Rationale for Heat
Conduction Equation and Dynamic Boundary
Value Problem for Piezothermoelastic Materi-
als” and gave special courses on ”Modellbil-
dung in der Mechatronik” and on ”Dynamik
Komplexer Konstruktionen”.

Lectures at other Universi-
ties

Dr. J. Schicho: Lecture on “Exact Real
Number Arithmetic” given at the University
of Innsbruck, 22.11.99.

Prof. Buchberger

Lectures on “Theorema: A New Kind of Math-
ematical System”, given at the University of
Timisoara, Romania, April 14, 1999.

Prof. Buchberger

Lectures on “Groebner Bases: Theory and
Applications”, given at the University of
Timisoara, Romania, April 16, 1999.

Prof. Buchberger

Lectures on “Theorema: A New Kind of Math-
ematical System”, given at the University of
Cluj-Napoca, Romania, April 19, 1999.

Prof. Buchberger

Lectures on “Can Computer Replace Mathe-
maticians?”, given at the Symposium ”Sym-
bolic Computation”, TU Wien, April 28, 1999.

Prof. Buchberger

Lectures on “Theorema: A New Kind of Math-
ematical System”, given at the University of
Debrecen, Hungary, May 20, 1999.
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Prof. Buchberger

Lectures on “Groebner Basen: Die ersten
Jahren”, given at the Colloquium ”100.
Geburtstag von Wolfgang Groebner”, Univer-
sitaet Innsbruck, May 28, 1999.

Prof. Buchberger

Lectures on “Theorema: A Progress Report”,
given at the GMD Bonn, Institut fuer Algo-
rithmen, Bonn, Germany, June 15, 1999.

Prof. Buchberger

Lectures on “Moeglichkeiten und Grenzen
mathematischer Modellierung”, given at the
Sommerakademie der Pro Scientia ueber
"Modell und Wirklichkeit”, Tainach, Kaern-
ten, September 2, 1999.

Prof. Buchberger

Lectures on “Mathematik am Computer:
Die Naechste Ueberforderung?”, given at
the Lehrerfortbildungsseminar bei der OMG-
Tagung, Graz, September 24, 1999.

Prof. Buchberger

Lectures on “Mathematik: Altes Eisen oder
Schluesseltechnologie?”, given at the Fortbil-
dungsseminar fuer “European Women in Man-
agement”, Hagenberg, October 6, 1999.

Prof. Buchberger

Lectures on “Theorema: A System for Sup-
porting Mathematical Proving”, given at the
North Carolina State University, Department
of Mathematics, USA, October 22, 1999.

Prof. Buchberger

Lectures on “Theorema: A System for Sup-
porting Mathematical Proving”, given at the
University of Illinois at Urbana-Champaign,
Department of Mathematics, USA, October 22,
1999.

Prof. Buchberger

Lectures on The “Theorema Project: The Cur-
rent State”, given at the Mathematica Devel-
oper’s Conference, Wolfram Research Interna-
tional, Urbana-Champaign, USA, October 23,
1999.

Prof. Buchberger

Lectures on “Theorema A System for Sup-
porting Mathematical Proving”, given at the
Canergie Mellon University, Department of
Mathematics, Pittsburgh, USA, October 22,
1999.

Prof. Buchberger

Lectures on “Computer-Mathematik in der
Schule”, given at the Schulung fuer AHS-
Lehrer (6 Stunden), RISC, Hagenberg, Decem-
ber 13, 1999.



Prof. F. Lichtenberger,

DI. W. Windsteiger

Lectures on Lectures on “Algorithmische
Mathematik 1”7 and “Algorithmische Mathe-
matik 2” by using Theorema, Regular Courses
at the FHS-Hagenber, 2 semesters.

M. Kuhn
?Parallel Tterative Solvers based on Distributed
Data”, Talk at the Fachgebiet Theorie Elek-
tromagnetischer Felder, University Darmstadt,
June, 1999.

M. Kuhn

?Parallel Iterative Solvers for 3D Magnetic
Field Problems”, Talk at the Oberseminar Nu-
merik, University Stuttgart, November 1999.

M. Kuhn

"Highly Efficient Parallel Iterative Solvers
based on Distributed Data”, Talk at the Uni-
versity of Tiibingen, November 1999.

M. Kuhn

?Parallel Iterative Solvers for 3D Magnetic
Field Problems”, Talk at the MPI Leipzig, De-
cember 7, 1999.

M. Kuhn

”Coupling of FEM and BEM for 3D Mag-
netic Field Problems”, Talk at the University
of Chemnitz, December 10, 1999.

Dr. G. Haase, Prof. U. Langer: Lecture
on “Scientific Computing Tools for 3D Mag-
netomechanical Field Problems” given at the
Lawrence Livermore National Laboratory, Liv-
ermore, USA, September 7, 1999.

Dr. G. Haase, Prof. U. Langer: Lecture
on “Scientific Computing Tools for 3D Mag-
netomechanical Field Problems” given at the
University of Kentucky, Lexington, USA, Sep-
tember 15, 1999.

Prof. U. Langer: Lecture on “Mathematis-
che Werkzeuge des Wissenschaftlichen Rech-
nens” given at the Max-Planck-institute for
Mathematics in the Sciences, Leipzig, Ger-
many, January 12, 1999.

Prof. U. Langer: Lecture on “Mathema-
tische Werkzeuge des Wissenschaftlichen Rech-
nens” given at the University of Salzburg, Aus-
tria, January 18, 1999.

Prof. U. Langer: Lecture on “Parallele nu-
merische Verfahren fiir stationdre Magnetfeld-
probleme” given at the ETH Ziirich, Switzer-
land, May 12, 1999.
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Prof. U. Langer: Lecture on “Parallele nu-
merische Verfahren fiir partielle Differentialgle-
ichungen mit Anwendungen in der Magnetfel-
drechnung” given at the Karl-Franzens-Univer-
sity of Graz, Austria, June 7, 1999.

Prof. U. Langer: Lecture on “Scientific
Computing Tools for 3D Magnetomechanical
Field Problems” given at the University of
Houston, USA, September 16, 1999.

Prof. U. Langer: Lecture on “Scientific
Computing Tools for 3D Magnetomechanical
Field Problems” given at the Texas A&M Uni-
versity, College Station, USA, September 17,
1999.

R. Hemmecke: Talk “CASA — A Maple
Package to Investigate Algebraic Curves” given
at the Univ. Duisburg (Dec. 1999)

F. Winkler: Invited Talk “Advances and
Problems in Algebraic Computation” at
AAA’58 (58. Arbeitstagung tiber Allgemeine
Algebra), TU-Wien (June 1999)

F. Winkler: Talk “Algebraisches Rechnen -
Resultate und Probleme” at Inst. f. Comput-
erwissenschaften, Univ. Salzburg (June 1999)

Prof. P. Paule: “Symbolic Summation: Re-
cent Progress”, SFB Workshop in Hagenberg,
Symbolic and Numerical Scientific Computa-
tion (SNSC’99), 18.-20.8.99 [report on new re-
sults of SFB Project F1305 “Symbolic Summa-
tion and Combinatorial Identities”];

Prof. P. Paule: “The Renaissance of MacMa-
hon’s Partition Analysis”, Euroconference: Al-
gebraic Combinatorics and Applications, 12.—
19.9.99, Goessweinstein, Germany [invited key
note];

Prof. P. Paule: “The Renaissance of MacMa-
hon’s Partition Analysis”, The Renaissance of
Combinatorics’99, 12.-14.10.99, Nankai Uni-
versity, China [invited key note];

Prof. P. Paule: “Algorithmic aspects of ¢-
hypergeometric summation”, Symbolic Com-
putation, Number Theory, Special Functions,
Physics and Combinatorics, 11.-13.11.99, Uni-
versity of Florida, USA [invited talk];

A. Riese, “Treating g-identities with the com-
puter”, Symbolic Computation, Number The-
ory, Special Functions, Physics and Combina-
torics, 11.-13.11.99, University of Florida, USA
[invited computer algebra demo];



e C. Schneider: “A Mathematica implemen-
tation of Karr’s Summation Algorithm”, Con-
ference: Seminaire Lotharingien de Combina-
toire, Schoenthal, Germany, March 1999 [con-
tributed talk].

¢ Prof. Irschik: was the organizer of the spe-
cial session ”"Coupled Field Problems” at the
1999 ASME Mechanics and Materials Con-
ference at Virginia Institute of Technology,
Blacksburg, VA

e Prof. Irschik served as the organizer of the
GAMM-Minisymposium ”Hyperbolic Equa-
tions with Source Terms” at the GAMM-
Tagung in Metz, 1999
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1 Software Competence Cen-
ter Hagenberg

The strong cooperation between the Theorema
Group and Wolfram Research International, and the
planned integration of the software system Theorema
within Mathematica lead Wolfram Research Interna-
tional to join the Software Competence Center Ha-
genberg (SWCC). The work program of the SWCC
section related to Wolfram Research includes prac-
tical applications of the models developed using the
Theorema system.

2 Industrial Mathematics
Competence Center

In addition to the Software Competence Center Ha-
genberg, which is a competence center in the sense
of the Kplus program of the Austrian Federal Gov-
ernment and created by the cooperation of groups
that are involved with the SFB (RISC Hagenberg,
Industrial Mathematics Institute), a new Industrial
Mathematics Competence Center has been initiated
by Prof. Heinz Engl (Industrial Mathematics Insti-
tute Linz, MathConsult GmbH) and Prof. Manfred
Deistler (Institute of Econometrics, Operations Re-
search, and System Theory Vienna). Being finan-
cially supported by the Ministry of Economic Affairs,
the government of Upper Austria and the city gov-
ernment of Linz, its pilot phase started in July 1999.
Currently it is building up personnel and infrastruc-
ture for a successful application to a full competence
center to be co-funded by government and industry.
Within this framework we will continue and further
develop the extensive cooperation with industry on
a growing number of projects with industry part-
ners from a variety of branches. Among them is a
joint project of VOEST Alpine Industrieanlagenbau,
the Industrial Mathematics Institute and MathCon-
sult on COREX, an ecologically beneficial process
for iron production, which has been developed by
VAL This project, which started in the framework of
the Christian Doppler Laboratory for Mathematical
Modeling and Numerical Simulation in Linz in 1997,
could be successfully completed at the end of 1999.
In a 3D process simulation model of the COREX
reduction shaft, the gas and solid flow, the energy
balances, the chemical reactions and the dust depo-
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sition can be calculated (the figure below shows the
mass fraction of FeO in iron ore (0 - 89% )).
in

3 Competence Center

Mechatronics

In the field of the pilot-project for the Competence
Center in Mechatronics two projects were success-
fully finished in coherence with SFB-project F 1311,
namely ”Mechatronic Approach for the Quality
Insurance of a New Edge Forming Machine” and
”Bindefestigkeitspriifung von Lagerschalenverbund-
material mittels nichtlinearer FE”. In both projects
large plastic deformation has been treated.

In coorperation with the industry further re-
search was done by H. Holl, J. Gerstmayr and H.
Irschik in the simulation of a hot-strip mill. A
numerical simulation was performed with use of
an implicit Runge-Kutta time-integration library,
which was developed in SFB-project F1311.

Due to a positive evaluation of the pilot-project a
proposal for the Linz Competence Center in Mecha-
tronics (K+) was prepared. In this Competence
Center project Prof. Irschik serves as Area Coor-
dinator for the project DYNACON. Contents of the
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Figure 24: Stress in the Bearing Brass Specimen.

K+-Area DYNACON are shortly described in the
following. Modern methods of Advanced Dynamics
and Control in Mechanical Systems encompass mod-
eling, simulation and control of mechanical struc-
tures and machines in the framework of the mod-
ern theory of dynamic systems, with special empha-
sis on flexible structures and machines, especially
in problems of automotive engineering, robotics and
in rotating machinery. The classical modeling of
structures and machines by rigid body dynamics is
combined with continuum mechanics based investi-
gations by finite element methods. Thus, problems
of strength and fatigue of materials are treated si-
multaneously, together with the dynamic analysis.
Both, symbolic and numerical computations are in-
volved to derive problem and application oriented
models by substructure techniques and order reduc-
tion. Based on these lower order models, control
of motion, vibrations, structure-born noise and tem-
perature is treated. The application of advanced dy-
namics to the derived models is promoted by com-
puting techniques employing powerful nonlinear dy-
namics concepts. The complete models are used for
the purpose of simulation and for the validation and
stability analysis of the active and passive controller
design. The K+ proposal has been accepted in Jan-
uary 2000, the financial support is still lacking.

4 Wolfram Research

Through close contact our group is influencing the
development of the Mathematica software in order
to include facilities which are useful for automatic
reasoning, improved graphical interface, mathemat-
ical training, etc. Prof. B. Buchberger and D.I. K.
Nakagawa visited the headquarters of Wolfram Re-
search and started a new sub-project of Theorema in
cooperation with Wolfram Research for implement-
ing the new concept of “logicographic symbols” in
Theorema based on new interactive graphics tools
of Wolfram. We are official beta testers of versions
3 an 4 and also accredited Mathematica developers
(access to the Mathematica Developers Kit). We in-
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tegrated the Theorema manual in the Mathematica
help browser.

5 Unisoftware Plus

Official Austrian Mathematica resellers. Contacts
with the Theorema group for using the Theorema
software system in order to produce educational soft-
ware.

6 Coaster

The European project Coaster (IVth Frame Telem-
atics Programme, no. F0425), 1998-1999, aims at
building commercial software for students. In this
project Theorema provided the educational content
for study in mathematical logic. The partners come
from France, Belgium, Spain, and Greece.

7 Theorema

The subproject, also called “Theorema’, aims at
integrating computation and deduction in a coher-
ent software system that can be used by the work-
ing scientist for building and checking mathemat-
ical models, including the design and verification
of new algorithms. Currently, the system uses the
rewrite engine of the computer algebra system Math-
ematica for building and combining a number of
automatic/interactive provers (high-order predicate-
logic, induction for lists/tuples and natural num-
bers, etc.) in natural deduction style and in natural
language presentation. These provers can be used
for defining and proving properties of mathematical
models and algorithms, while a specially provided
“computing engine” can execute directly the logical
description of these algorithms.

The Theorema system (as version 1.0) has been
distributed to a selected number of users from
the international research community which volun-
teered to beta-test the system: researchers from
the European project INTAS 96-760 (Uppsala, Kiev,
St.Petersburg) and from the CALCULEMUS consor-
tium (UK, Germany, Italy, France, Netherlands) are
evaluating the Theorema system. Currently there
are 35 registered users of the system and their com-
ments and suggestions are used for improving the
system. Additionally, the beta testers and new vol-
unteers have access to the newest version of the sys-
tem on the Internet at http://www.theorema.org.

8 Loudspeaker Simulation

The numerical simulation code CAPA has been ex-
tended within the work of Project F1306. CAPA
has been used successfully for industrial applications.



For example, the dynamical behaviour of electrody-
namical loudspeakers has been fully simulated based
on the underlying partial differential equations. Nu-
merical results and measured data matched very
well. The optimization process resulted in an im-
proved tone quality of the electrodynamical loud-
speaker. (Cooperation with Harmann Audio Elec-
tronic Systems GmbH.)
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Figure 25: Principal setup of the magnetically ex-
cited aluminum plate

9 Optimal Sizing of Injection
Moulding Machines

The optimization project F1309 achieved a new qual-

ity by directly combining the optimization algo-

rithms with the solvers developed in project F1306.
The resulting optimization software is so fast that we

5.00E-01

Figure 26: Thickness distribution of a frame.

can use hundreds of design parameters making it re-
alistic to minimize the weight of an injection mould-
ing machine by changing the thicknesses in its sup-
porting parts. The resulting mass reduction is con-
siderable and, therefore, our industrial partner, the
ENGEL Group Schwertberg, will use these results to
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produce new machines by means of a different tech-
nology. This cooperation will be continued.

10 Image Compression

Wavelets on the interval are very useful for data com-
pression of image data. The use of such wavelets
significantly reduces artifacts of compressed images
near the boundaries. The use of computer algebra of-
fers new possibilities in the construction of wavelets.
Some of the results obtained in this SFB-project
F1310, in particular wavelets on the interval, are of
interest for data compression to reduce so-called edge
artifacts and gain higher compression rates. We sug-
gested the company Kretztechnik AG to implement
wavelets on the interval into the 3D data compression
algorithms which were developed in a former coop-
eration with the Industrial Mathematics Institute.



