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This Annual Report gives a summary of SFB results
achieved in 2005.

Also in its eighth year of funding, the overall sci-
entific goal of the SFB is the design, verification, im-
plementation, and analysis of numerical, symbolic,
and geometrical methods for solving

• large-scale direct and inverse problems
with constraints

and their synergetical use in scientific computing for
real life problems of high complexity. This includes
so-called field problems, usually described by partial
differential equations (PDEs), and algebraic prob-
lems, e.g., involving constraints in algebraic formu-
lation.

As pointed out in the Annual Report 2004, con-
cerning the fine structure of the Scientific Concept
and of the Long Term Goals of the SFB, we perma-
nently have made adaptations in order to focus more
properly on our overall objective. These adjustments
have been driven by the advice and the suggestions
of the referees, by our experience made during the
SFB work, but also by the changing requirements in
the international research community.

To achieve the goal of a proper combination of
numerical and symbolic scientific computing, again
strong emphasis has been put on supplementary
measures, like joint internal seminars between nu-
merical and symbolic groups or a new target-oriented
structure of the SFB status seminars. This way
the coherence between the numerical and symbolic
groups has been further improved. A whole network
of concrete links between numerics, symbolics, and
geometry has been established and expanded.

The scientific results obtained within the SFB by
the participating institutes gave rise to various activ-
ities concerning knowledge and technology transfer
to the industry, especially, in Upper Austria. The
highlights are the foundation of the Software Com-
petence Center Hagenberg and the Industrial Math-
ematics Competence Center in 1999. For more de-
tails see the sections describing the scientific progress
achieved within the subprojects of the SFB.

On the academic level, the efforts of the insti-
tutes participating in the SFB to combine numerical-
symbolic scientific computing with applied mathe-
matics led to the foundation of the Johann Radon In-
stitute for Computational and Applied Mathematics

(RICAM) by the Austrian Academy of Sciences as a
Center of Excellence in Applied Mathematics. Out-
standing internationally recognized activities under
the lead of RICAM have been organized:

• Special Semester on Computational Mechanics

• Special Semester on Gröbner Bases and Re-
lated Methods

The following institutes of the University of Linz are
currently involved in the subprojects of the SFB:

• Institute of Applied Geometry,

• Institute of Computational Mathematics,

• Institute of Industrial Mathematics,

• Institute of Symbolic Computation.

For further information about our SFB please visit
our internet home page

http://www.sfb013.uni-linz.ac.at

or contact our office.

Linz, July 2006 Peter Paule
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F 1301: Scientific Part of the Service Project

Prof. Dr. P. Paule

Prof. Dr. J. Schöberl, Dr. V. Levandovskyy

DI V. Pillwein, Mag. B. Zimmermann

In the third funding period of the SFB the major
objectives of the scientific part of subproject F1301
are: (i) the development of computer algebra tools
(e.g., for symbolic integration and summation of spe-
cial functions) in connection with high order finite
element methods; (ii) the development of (non–com-
mutative) Gröbner bases software that can be ex-
ploited by other subprojects. In all these areas sig-
nificant progress has been achieved.

1 High Order Finite Elements

Basis functions minimizing the condition
number. In [1] the construction of basis functions
minimizing the iteration number is described. The
resulting shape functions ϕi are compositions of cer-
tain orthogonal polynomials involving integration
and linear combinations. Using his symbolic sum-
mation package Sigma [11] C. Schneider derived re-
currence relations allowing an efficient computation
of the functions ϕi.

Inner shape functions using integrated Jacobi
polynomials. In [2] shape functions for triangu-
lar p-FEM are described which are constructed using

products of specific Jacobi polynomials P
(α,β)
n . The

parameters α, β are chosen to obtain a sparse system
matrix in the case of a constant coefficient function
and a polygonally bounded domain. For the case of a
curved domain or a non constant coefficient function
an efficient preconditioner is derived.

The idea of this design was carried over to tetra-
hedral finite elements. To obtain the correct parame-
ters α, β in the definition of the basis functions and
especially to prove the sparsity of the system ma-
trix, the assistance of computer algebra software was
needed. With a Mathematica program we proved the
nonzero pattern of the interior block of the system
matrix, i.e.,

Ki,j,k,l,m,n 6= 0 ⇔ |i − l| ∈ {0, 2},
|i− l + j −m| ≤ 4 and |i− l + j −m + n− k| ≤ 4.

Currently we are investigating the numerical proper-
ties of these basis functions as well as the construc-
tion of an efficient preconditioner for the system ma-
trix.

A Mathematica FEM package. In order to
have a platform for numerical–symbolic interaction
V. Pillwein developed the Mathematica package

Fem2D.
Within this program the RISC symbolic summation
package (including Sigma, MultiSum, . . . ) can be
invoked directly.

Orthogonal polynomials, which are widely used in
the design of fe-basis functions, can be represented
in different ways such as using their recursive de-
scription or hypergeometric sum representation. In
a symbolic framework one can exploit this variety
and study the benefits of different representations.

In the example described above, carefully chosen
Jacobi polynomials were used in the construction of
new shape functions. The Mathematica FEM pack-
age allows to generalize this idea to a systematic ap-
plication of CA in the designing process. In Fem2D

it is possible to implement families of basis functions
leaving some parameters unknown, which are later
specified according to desired numerical properties.
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Figure 1: Nonzero pattern of the system matrix
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Figure 2: Elastic beam (solution by Fem2D)

3



2 Symbolic Integration of

Special Functions

The particular need within F1301 for a symbolic
integration algorithm that can do definite integrals
arising in connection with high order finite element
methods such as

∫ 1

−1

(x−1)d−1(P
(d−2,−1)
i )′(x)(P

(d−2,−1)
j )′(x) dx (1)

involving Jacobi polynomials P
(α,β)
n (x) led B. Zim-

mermann to a new symbolic algorithm for doing defi-
nite integrals of a large class of special functions that
depend on a discrete parameter.

A function is called elementary if it is obtained by
composing exponentials, logarithms, algebraic func-
tions, and field operations. Risch gave a complete
algorithm for the symbolic integration of elementary
functions. Given an elementary function f , it decides
if an elementary function g exists such that f = g′.
If such a g exists, it returns it. Note that Risch’s
algorithm does not apply to integrals such as (1) for

two reasons. First, the Jacobi polynomials P
(α,β)
n (x)

appearing in (1) are not elementary (when n is unde-
termined); in fact, most of the classical special func-
tions from mathematical physics are not elementary.
Second, Risch’s algorithm is restricted to indefinite
integration problems, while (1) is definite.

A recent algorithm that applies to a wide class
of non-elementary special functions is Manuel Bron-
stein’s Poor Man’s Integrator [3]. It is a variant of
Risch–Norman’s parallel integration method, based
on a new structure theorem of Manuel Bronstein.

Within the frame of F1301, B. Zimmermann ex-
tended Bronstein’s Poor Man’s Integrator to definite
integration problems where the integrand depends
on a discrete parameter n. Given such an integrand
f(x; n) and a natural number r, his algorithm looks
for coefficients c0(n), c1(n), . . . , cr(n) and a function
g(x; n) such that

c0(n)f(x; n) + · · · + cr(n)f(x; n + r) = g′(x; n);

this relation implies the linear recurrence

c0(n)s(n) + · · · + cr(n)s(n + r) = g(b; n) − g(a; n)

for the definite integral s(n) :=
∫ b

a f(x; n)dx under
consideration.

Zimmermann’s extension of the Poor Man’s In-
tegrator is inspired by Doron Zeilberger’s extension
of Gosper’s algorithm for hypergeometric summation
(Zeilberger’s algorithm). The same method was used
by C. Schneider [11] in his extension of Karr’s sum-
mation algorithm to definite summation. In all three
cases, the key is to observe that the underlying al-
gorithm has the special property that it can be ap-
plied to an input f(x; n) := c0(n)f0(x; n) + · · · +
cr(n)fr(x; n), where c0(n), . . . , cr(n) are initially
undetermined coefficients and f0(x; n), . . . , fr(x; n)
are given. These coefficients show up as additional

variables in the linear equation system which the un-
derlying algorithm solves. That way, the underlying
algorithm determines them, in addition to determin-
ing a suitable g(x; n) such that f(x; n) = g′(x; n).
To find recurrences for integrals, one uses this with
fi(x; n) := f(x; n + i) for i = 0, . . . , r.

The new algorithm works in a field of of ratio-
nal functions F = K(Xu+1, . . . , Xu+v) where K =
k(X1, . . . , Xu) with k a field. F is endowed with a
shift σ and a derivation D, which commute with each
other, and such that the field of constants of D is K
and that k is in the field of constants of σ. Each
indeterminate Xi corresponds to some term which
possibly involves n and x, the shift σ corresponds to
the shift n 7→ n+1, and the derivation D corresponds
to the partial derivative ∂

∂x . For any P-finite func-
tion f(x; n) one can construct such a suitable field
F which models the field of functions generated by
all the shift-derivatives of f(x; n). Given f1, . . . , fr

in F , the new algorithm returns a basis for the K-
vector space of all (c1, . . . , cr, g) ∈ K × F ′ such that
c1f1 + · · ·+crfr = g and F ′ is an elementary exten-
sion of the differential field (F, D). As the algorithm
is based on Bronstein’s heuristic Poor Man’s Inte-
grator, it may, in rare occasions, return a basis for a
proper subspace of this K-vector space.

So far, the best computer algebra methods for
definite symbolic integration of special functions
were based on elimination in Ore Algebras by
Gröbner basis methods (e.g. [4])). These methods
are restricted to P-finite integrands, and they are
known to terminate for the class of holonomic in-
tegrands, which form a subclass of the class of P-
finite integrands. While Zimmermann’s extension
also handles any P-finite integrand and terminates
on holonomic input, it can handle a wider class of in-
puts. The class of inputs which it can handle is closed
under composition – unlike the class of P-finite func-
tions. It contains certain non-P-finite functions such
as the tangent function and Lambert’s W function.

The new algorithm is not yet published; it will
appear in a forthcoming Ph.D. thesis [13].

3 Applications of Gröbner
Bases

3.1 Implementations of Gröbner
Bases

In the algebraic treatment of systems of equations in-
volving linear operators (like partial differentiation,
partial difference and so on), the choice of coefficient
domain leads us to different algebraic structures. For
the case of constant (scalar) coefficients, the under-
lying system algebra is commutative. If the coeffi-
cients are polynomial in the variables of the system,
we obtain a non–commutative G–algebra (e.g. [8]).
Numerous algorithms, based on Gröbner bases for
these two cases, are implemented in the specialized
Computer Algebra System Singular [7]. The sys-
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tem is freely available for the non–commercial use
and, moreover, is widely known for its performance.
In 2004, the Singular team was awarded with the
Richard D. Jenks Memorial Prize for Excellence in
Software Engineering for Computer Algebra. The
non–commutative subsystem Singular:Plural [6]
handles the algebras arising from systems with poly-
nomial coefficients, including algebras with addi-
tional polynomial identities. For example, the al-
gebra of linear differential operators with polyno-
mial coefficients in trigonometric functions is real-
ized as a factor algebra. Let A be the algebra gener-
ated by {sin, cos, ∂} over K subject to the relations
∂ · sin = sin · ∂ + cos, ∂ · cos = cos · ∂ − sin and
sin ·cos = cos ·sin. Then, we consider the two–sided
ideal T = 〈sin2 + cos2 − 1〉 ⊂ A, compute its two–
sided Gröbner basis (which is just {sin2+cos2−1} in
this case) and pass to the factor algebra A/T , where
the further computations will take place.

Generalization of Gröbner Bases. In order to
treat the case of rational functions in the variables as
the coefficient domain, we employ the notion of an
Ore localization. Our aims are to extend the Gröbner
bases theory to the Ore–localized G–algebras, not
restricting ourselves to the case of so-called Ore al-
gebras ([4], [5]), to investigate the criteria for dis-
carding the critical pairs and to implement efficiently
Gröbner bases and related algorithms (involving ad-
vanced ones as in e.g. [8]) in the framework of Sin-

gular. One of the most important tasks is to pro-
vide powerful algorithms and their efficient imple-
mentation for the complicated arithmetics over rings
of quotients of non–commutative domains.

Intercommunication packages. With the help
of recent packages, the fast and functionally rich im-
plementation of algorithms, relying on Gröbner bases
in Singular, became available to the general pur-
pose systems. The package, allowing Mathematica

to exchange data and to call Singular externally, is
being developed by Manuel Kauers, F1305.

3.2 Symbolic Generation and Stabil-
ity Analysis of Finite Difference
Schemes

For the linear PDEs with constant coefficients the
process of generating finite difference schemes may
be performed symbolically, with the help of Gröbner
bases for submodules of free modules over a commu-
tative polynomial ring. We propose a more efficient
method than the one proposed in [12]. Our method
can be applied, in particular, for higher spatial di-
mensions without significant loss of performance. It
can be shown that applying several symbolic ap-
proaches we are able to reproduce all the classical
finite difference schemes. The input data consist of
equations and corresponding approximation rules for
the partial derivatives, written in terms of polyno-
mials in partial difference operators like Tx, where

Tx • u(xj , tn) = u(xj+1, tn) for discrete indices j, n.
For the equation utt−λ2uxx = 0 with some initial

conditions, we apply the 2nd order central approxi-
mations for both x and t in the vector operator form,
e. g. (−△x2 ·Tx, (1−Tx)2)•(uxx, u)T = 0. With this
symbolic data we form a submodule of a free mod-
ule involving partial difference operators. By using
Gröbner bases, we eliminate certain module compo-
nents from a given module and obtain a submodule,
corresponding to the operators, which depend only
on u and not on its derivatives.

We denote d := λ△t/△h, and obtain the scheme,
written in terms of operators,

d2T 2
xTt − TxT 2

t + (−2d2 + 2)TxTt − Tx + d2Tt = 0.

Using specially developed visualization tools
(e. g. a Singular library discretize.lib), in
a semi–automatic way we are able to present the
scheme above in the more convenient nodal form,
namely as

un+2
j+1−2un+1

j+1 +un
j+1 = λ2 △t2

△h2
·(un+1

j+2 −2un+1
j+1 +un+1

j ).

With our methods we are able to generate all the
classical linear schemes (as it has been noted in [12])
as well as more complicated schemes, including the
schemes with parametric switches.

Using the efficient implementation of Gröbner
bases, these 1–dimensional examples both in time
and space can be computed in seconds.

Von Neumann Stability Analysis. Also, the in-
vestigation of von Neumann stability of a given finite
difference scheme can be done by symbolic methods.
Moreover, for (un-)conditionally stable schemes we
can perform the dispersion analysis. For both appli-
cations the system Singular is used for polynomial
computations, mappings and the translation of the
output to the special (nodal) form, used in the lit-
erature on finite difference schemes. Mathematica

is used for computing the Cylindrical Algebraic De-
composition, arising in the final stage of both stabil-
ity and dispersion analysis.

In the example above, we employ the stability
morphism from the ring R = K(d)[Tx, Tt], send-
ing Tt 7→ g and Tx 7→ sin + i · cos to the ring
S = K(d)[i, sin, cos, g]/ /〈sin2 + cos2 − 1, i2 + 1〉.
Here, sin = sin(α), cos = cos(α) and α = β△x
for some β. After the purely algebraic simplifica-
tion in the ring S, we obtain the stability poly-
nomial in one variable g2 + 2bg + 1 = 0, where
b := −1 + 2d2 sin2(α/2). A scheme given by a poly-
nomial in one variable is von Neumann stable, if the
modulus of every root is at most 1. In our example,
the stability polynomial has roots b ±

√
b2 − 1. If

b2 > 1, the absolute value of one of the roots is big-
ger than one. If b2 ≤ 1, the modulus of both roots
is equal to 1. Moreover, b2 ≤ 1 ⇔ d ≤ 1. Hence, the
investigated scheme is conditionally stable with the
condition for the Courant number d = λ△t/△h ≤ 1.
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We are going to apply the developed methods for
finite difference schemes in cases of higher spatial di-
mensions, for systems of multidimensional equations,
for two–step schemes like Lax–Wendroff etc.

A very important direction of further research
(discussed with Prof. W. Zulehner, F1306) is to elab-
orate the conditions for boundary value problems, for
which von Neumann stability (which can be checked
by symbolic methods as we have sketched above) im-
plies the numerical stability.

3.3 Control Theory

Algebraic Analysis. Given a module M over an
algebra A, we can present it as a sum T + F , where
T is a torsion submodule of M and F a torsion–free
submodule. In Control Theory, there is a correspon-
dence between this presentation and the decomposi-
tion of a system into a controllable part (torsion–free
submodule) and an autonomous part (torsion sub-
module). For systems of equations, involving linear
operators, the torsion submodule can be described
and computed with the help of homological algebra
[5], which in turn depend heavily (both algorithmi-
cally and in the implementation) on Gröbner bases.

The methods of algebraic analysis, applied to the
problems of Control Theory, have been implemented
for the case of constant coefficients [9] in the library
control.lib for the system Singular [7]. The de-
velopment of the generalization to the case of vari-
able coefficients is in progress. It relies on the im-
plementation of Gröbner bases in the system Singu-

lar:Plural [6] and on the library for non–commu-
tative homological algebra.

Genericity of Parameters. In systems, contain-
ing parameters, it often happens that some struc-
tural properties, like controllability or autonomy,
hold only for the generic case, that is, for almost
all values of parameters. It means, there might ex-
ist such values of parameters that, e.g. a generically
controllable system, specialized at these values, be-
comes non–controllable. We provide an algorithmic
way to detect such and similar phenomena, which
we call the genericity violation. The results for 1–
dimensional systems appear in [10], while in the fu-
ture we concentrate on the general situation.
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Computing in the Theory of Hilbert Spaces
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DI R. Vajda

1 Proving, Solving, and Com-

puting in the Theory of
Hilbert Spaces

The main emphasis of the research in this subproject
is on building up case studies of significant size in
the main areas of interest of the SFB project: func-
tional analysis, Groebner Bases, and basic algorith-
mic domains. In the course of development of these
case studies we also aim to improve the functional-
ity of our system: added proving–computing–solving
power, increased usability and interaction with other
projects and systems, capabilities for building-up
and management of mathematical knowledge, anal-
ysis and synthesis of algorithms, etc.

As detailed in the project proposal, the two main
directions of research are: management of mathemat-
ical knowledge and equational reasoning.

Mathematical Knowledge Management. We
continued our activity for building up case studies
in the areas of: functional analysis, Groebner bases,
and basic algorithmic domains. In parallel, we are
developing the concepts and the tools necessary for
defining and supporting theory exploration and use
in the frame of specific applications (algorithm syn-
thesis, proving, program verification).

An overview of the capabilities of our system
which have been recently developed and of the de-
sign goals for the next future are given in [8] and
in [4, 1]. The fact that our research group is in the
very center of the international activity in the area of
mathematical theory exploration is revealed by the
great success of the ”Special Semester on Groebner
Bases and Related Methods”, which was organized
by Prof. Buchberger and Prof. Engel at RICAM and
RISC and was attended by some of the most impor-
tant researchers in the field of symbolic computation.

Several case studies have been implemented
which deal with basic algorithmic domains: poly-
nomial domains (for Groebner Bases) [6, 5], prov-
ing irrationality of the square root [32], verification
of programs over number domains [26]. In the con-
text of this latter and particularly important applica-
tion, we continued to develop specific techniques for
combining automated reasoning and program veri-

fication with advanced algebraic methods: combi-
natorics, Groebner Based, Cylindrical Algebraic De-
composition, and others [14, 15, 10, 13, 29]. This re-
search activity constitutes an important link between
the project 1302 and other projects of the SFB.

A major and novel application of mathematical
theory exploration is algorithm synthesis. This topic
has been actively promoted by our research group
and lead to important advacements in the area: [7,
2, 3, 11].

As a preparation for building up case studies in
functional analysis, we implemented special provers
as well as sample theories for elementary analysis,
which are also used in the context of e-learning (the
CreaComp project) [16, 28, 31, 30, 12].

The case studies in the area of functional analysis
are developed in close cooperation with the subpro-
ject F 1322, and are based a novel approach to solv-
ing differential equations using symbolic techniques.
The activity in presented in more detail in the re-
spective section of this report.

The usage of our system for the purpose of the-
ory exploration was enhanced by studying and imple-
menting novel features for the orgnization and pre-
sentation of mathematical knowledge [24, 27].

The proving power of Theorema was increased by
studying and implementing new methods for predi-
cate logic proving in typed theories [9] as well as
propositional proving [17].

The improvement of our system from the point
of view of its usability was furher pursued by imple-
menting advanced interactive features [25].

Equational Reasoning. An unique and novel fea-
ture of the Theorema system is the use of sequence
variables. The syntax, semantics, and the concrete
implementation of this feature have been further de-
veloped [19].

Our researchers developed and implemented very
powerful techniques for matching and rewriting [22,
23].

As a particular and important application of
these techniques we studied the possibility of us-
ing them in the context of internet technologies
[18, 21, 20].
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tomated Theorem Proving and Back, July 9-
22 2005. 3 lectures. Invited talk at Summer
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F 1303: Proving and Solving over the Reals

Prof. Dr. J. Schicho

DI T. Beck, DI J. Ṕılniková, DI I. Szilágyi

1 Sparse parametrization of

plane curves

The known algorithms for parametrizing plane
curves are robust but they neglect the “nice” proper-
ties the implicitly given curve has. If the plane curve
is of high degree but its implicit equation contains
only few monomials with nonzero coefficient, we say
that this polynomial is sparse and we developed spe-
cial algorithms for parametrizing such curve.

We used methods of toric geometry to construct
a particularly nice birational model of such a curve.
Namely the curve is embedded in a toric surface
whose construction is guided by the shape of the
Newton polygon of the defining equation and thus
takes its sparsity into account. In [3] we showed how
a parametrization algorithm can benefit from this
special representation in terms of lower complexity.

2 Adjoint spaces

We developed and implemented an algorithm for
computing the adjoint space of an algebraic surface,
which was presented at [9]. The machinery of multi-
variate Puiseux series developed before (see [2]) was
used to produce an “analytic resolution” of a given
surface. We derived conditions for computing adjoint
spaces from this data. Adjoint spaces are the central
ingredient of Schicho’s Parametrization algorithm for
surfaces.

3 Parametric Degree

The degree of a parametric curve is also the degree of
any of its parametrizations. For parametric surfaces,
the situation is more complicated: for the same sur-
face, there are parametrizations of different degree,
even arbitrary large degree. The parametric degree
is the degree of the smallest possible parametriza-
tion. This concept has its subtleties, for instance it
depends on the choice of the field: for a fixed real al-
gebraic surface, we may have a complex parametric
degree and a real parametric degree. We discovered
some relations to known numerical invariants (nef-
ness value) that explain the relation between implicit
and parametric degree, see [10].

4 Local parametrization

Several techniques for parametrizing a rational sur-
face as a whole exist. In many applications, it is
sufficient to parametrize only a small portion of the
surface. We investigated such local parametrization
in the case of nonsingular cubic surfaces. Together
with B. Jüttler from subproject 1315 we gave several
algorithms for constructing such local parametriza-
tions that cover the surface exhaustively, see [13].

5 Stability of implicitization

Despite the fact that the implicitization problem for
rational curves and surfaces makes sense when the in-
put is only known up to a certain error level, and the
fact that there are already several algorithms known
for numerically solving this problem (see [4, 5, 8]),
there was previously no investigation of the numeri-
cal stability of this problem and these algorithms.

In [12] we introduced a condition number mea-
suring the stability of the implicitization algorithms,
which depends on the numerical input and on some
discrete information corresponding to the estimated
degree of the unknown implicit equation, see [11].

Together with M. Aigner and B. Jüttler from
subproject 1315 we also investigated the geometrical
consequences of numerical instability in the implici-
tization process, see [1].

6 Exact solution over the ratio-

nals

The problem if finding rational solutions for systems
of algebraic equations is, in general, tremendously
difficult; it is not even known whether existence of
a solution is decidable or not. Therefore in order to
obtain any results one has to restrict to a specific
class of varieties. In the previous year we developed
a method for finding all rational points on Del Pezzo
surfaces of degree 9, which are anticanonically em-
bedded Severi-Brauer surfaces, see [7]. The idea is
to compute the Lie algebra of the group of automor-
phisms of the surface and then construct an isomor-
phism of the Lie algebra and some well-known Lie
algebra. Using the representation theory of Lie alge-
bras we can then lift this isomorphism to an isomor-
phism of the given variety and some very well-known
variety. Knowing the latter one leads to finding all
rational point on the given one.
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It turns out that the method is often successful
also for other types of varieties provided the group
of its automorphisms is “large enough”. For example
in [6] we generalized the method for both types of Del
Pezzo surfaces of degree 8.
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F 1304: Symbolic Differential Computation

Prof. Dr. F. Winkler

Dr. H. Gu, Dr. E. Kartashova

DI E. Shemyakova

1 Results of the Project

This report covers the period from January 2005 un-
til December 2005. During this period we have inves-
tigated factorization of linear partial differential op-
erators, theoretical foundations for differential alge-
braic problems, numerical-symbolic methods for dis-
crete geometric problems and analysis of differential
equations

1.1 Factorization of Linear Partial
Differential Operators

F. Winkler has worked jointly with E. Shemyakova
on factorization of Linear Partial Differential Oper-
ators. This work is based on the work of Grigoriev,
Tsarev and Schwarz. F. Winkler and E. Shemyakova
introduce the new notion of obstacle to factorization,
prove that is stable, and describe them for operators
of low orders. For the second order operators they
were noticed as famous Laplace invariants, and could
be generalized to higher order operators. They also
have developed an implementation and have started
to consider ”approximate” factorizations or obstacles
to factorizations of LPDOs.

Winkler, Shemyakova and Kartashova have pub-
lished their paper in [4, 5]. Shemyakova has pre-
sented the results in [23, 26, 24, 25] Winkler has pre-
sented the results in [27].

1.2 Theoretical foundations for differ-
ential algebraic problems

G. Landsmann has worked on theoretical founda-
tions for differential algebraic problems. He has re-
ported on this work in the joint publication [6]

1.3 Numerical-symbolic methods for
discrete geometric problems

H. Gu and Dr. M. Burger (F1308) have worked to-
gether on numerical-symbolic approximation meth-
ods for a special class of partial differential equa-
tions derived from geometric problems. They use
finite element method to approximate the solutions
of parameter-dependent geometric problems, and in-
vestigate the possibility of using symbolic methods as
a preprocessing step. Two different discretizations,
namely a polynomial reformulation before discretiza-
tion and a direct discretization of the divergence form
are considered to perform the initial symbolic com-
putation. The prolongation of the preprocessed sym-

bolic solution can serve as a starting value for a nu-
merical iterative method on a finer grid.

Gu and Burger have described their results in [21,
8]. Gu has presented the results in [7].

1.4 Analysis of differential equations

E. Kartashova has worked on the analysis of differen-
tial equations in year 2005. This work can be divided
into three parts:

For linear PDEs (publications [22, 9, 16] and talks
[19, 18, 10, 15]): Method of constructive factorization
of arbitrary order LPDOs has been developed, invari-
ants for this class of operators are found, these results
will be further used for construction of approximate
factorization to simplify numerical simulations with
corresponding equations.

For nonlinear PDEs describing wave turbulence
(publications [11, 17] and talks [13, 20, 12]): A new
model of wave turbulence - laminated turbulence has
been developed which is a generalization of the clas-
sical Kolmogorov-Arnold-Moser model; this model
will be further applied for description of some known
physical phenomena in laboratory plasma and in the
Earth atmosphere.

For general theory of integrable differential equa-
tions (publications [1, 2, 3] and talk [14]): Work
on the text book on computable aspects of inte-
grability theory is in progress (collaboration with
Prof. A. Shabat), conference ALISA-2005 has been
organized, work on on-line encyclopedia of inte-
grable systems ALISA will be carried out further in
the frame of cooperation treaty with Steklov Math.
Institute (Moscow, Russia) and Austrian-Russian
project with Landau Institute for Theoretical physics
(Chernogolovka, Russia).
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F 1305: Proving and Solving in
Special Function Domains

Prof. Dr. P. Paule

Dr. S. Gerhold, Dr. M. Kauers, Dr. C. Schneider

DI C. Koutschan

1 Proving and Solving in Spe-

cial Function Domains

The scientific output achieved in 2005 by the SFB
project group F1305 is documented in the form of
21 publications: 8 articles were published in jour-
nals and 4 in conference proceedings; 9 technical re-
ports have been produced, 4 of which are already
accepted for journal publication. Additionally, two
PhD-theses [9, 14] have been completed.

1.1 Identities

Various refined summation algorithms [20, 21, 22,
23, 24, 26] have been developed by Schneider that
enable one to simplify and/or evaluate complicated
multi-sum expressions. Examples of successful ap-
plications of these tools are: A computer proof of
the “Totally symmetric plane partition” theorem [1],
a quadruple sum expression that evaluates to zeta-
functions [19, 25], proofs of identities that are needed
for Padé approximation [5, 6], and the derivation
of reciprocity laws of harmonic numbers that arise
in the analysis of algorithms [18]. In addition, re-
currences were computed that could speed up the
computations in Finite Element Methods [2]; see
project F1301.

Kauers and Schneider extended the summation
algorithms of Schneider by allowing generic (unspec-
ified) sequences within sums [17]. In [16] they illus-
trate how these algorithms can be used to discover
new general identities.

In a joint effort, Paule, Gerhold, Kauers, Schnei-
der, and Zimmermann could provide proofs of var-
ious identities in the Handbook of Mathemati-
cal Functions (Abramowitz/Stegun) whose original
proofs have been lost [12]. One of of these identities
is shown in the box below.
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where jn(z) are the spherical Bessel functions
of the first kind.

In his Ph.D. thesis [14], Kauers presents a col-
lection of algorithms for sequences which can be de-
fined by nonlinear higher order difference equations.
An implementation of these algorithms in form of
a Mathematica package [15] is able to prove and to
discover identities which were previously considered

out of scope of symbolic computation. Examples in-
clude properties of Somos sequences, nested C-finite
expressions, orthogonal polynomials, continued frac-
tions, etc. A large collection of example applications
is included in the thesis.

1.2 Inequalities and Asymptotics

Gerhold and Kauers have proposed a procedure
for automatically proving inequalities among expres-
sions that are defined via recurrence equations [10].
With this procedure, it was possible to verify a large
number of inequalities appearing in the literature by
a computer procedure for the first time. A remark-
able example is the computer proof of Turán’s in-
equality for Legendre polynomials [11].

Inequalities are in general harder than identities,
and the procedure of Gerhold and Kauers is not able
to provide a proof for every true inequality to which
it is applicable. A conjectured inequality which arose
in the numerical work of J. Schöberl (F1319), for ex-
ample, is in the right shape for the method of Ger-
hold/Kauers to apply, but the method fails to supply
a proof. Attempts to prove this inequality by hand
using asymptotic arguments have also failed so far.
See [13] for some work that has been done by Ger-
hold, Kauers, and Schöberl on this inequality.

In joint work with J.P. Bell [3], Gerhold has ob-
tained a fairly satisfactory result about the sign of
oscillating linear recurrence sequences: If a C-finite
sequence has no real positive dominating root, then
its positivity set and its negativity set both have pos-
itive density. Moreover, the density can assume each
value from ]0, 1[.

1.3 Non-Holonomicity

Non-holonomicity results give some evidence on the
algorithmic complexity of a sequence, since values of
holonomic sequences can be readily computed by the
linear recurrence with polynomial coefficients that
defines them. Flajolet, Gerhold, and Salvy [8] have
shown by an asymptotic method [7] that the se-
quence e1/n is not holonomic. Along the way, amus-
ing asymptotic results like

n
∑

k=1

(

n

k

)

(−1)ke1/k ∼ − e2
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log n

2
√

π(log n)1/4

have been obtained. A completely different approach
has been pursued by Bell, Gerhold, Klazar, and
Luca [4]. They show how the additional structure
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of sequences like e1/n and n1/2, which are defined by
the analytic functions e1/z and z1/2, can be exploited
more directly to establish their non-holonomicity.
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F 1306: Nonlinear 3D Mechanical Problems

Prof. Dr. U. Langer, Dr. J. Schöberl
DI. J. Kienesberger, Dr. J. Valdman
Dr. S. Beuchler

The development of adaptive multilevel methods
for nonlinear 3D mechanical problems is the topic of
this project. The main focus in the past year was to
enhance the already existing fast and robust solvers
for 2D and 3D elastoplastic problems.

Figure 3: The yield function of an elastoplastic ob-
ject under traction, fixed on the lower face.

Elastoplastic materials are modeled by the de-
composition of the strain into an elastic and a plastic
part; the equilibrium of forces and the linear depen-
dence of the stresses on the strains are then inherited
elastic laws. The term describing the plastic strain is
zero if the forces acting on the body are small enough
such that the material behaves only elastically. If
the stresses in the considered body exceed a certain
threshold, the plastic strains become non-zero. Fig-
ure 3 shows the yield function of an elastoplastic ob-
ject, the plastic areas with permanent deformations
are colored red. The evolution of the plastic strains
in time is described by the Prandtl-Reuß normality
law. After time discretization the modeling process
in each time step yields a minimization problem in
two variables, the displacements u and the plastic
strains p, i.e.

f(u, p) = min
v,q

f(v, q), (2)

with incompressibility constraints to satisfy. The
objective is smooth in the displacements, but
non-smooth in the plastic strains, thus strategies for
overcoming the non-smoothness are necessary.

The first class of algorithms is based on a reg-
ularization of the objective, where a modulus is
smoothed for making the objective fǫ twice differen-
tiable. Figure 4 shows the modulus |p| and possible
regularizations |p|ǫ depending on the regularization

parameter ǫ, ǫ is here chosen as 10−6. The green
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Figure 4: |p| and its regularizations.

quadratic regularization within the interval (−ǫ, ǫ)
has a smooth first derivative, but the second deriva-
tive is piecewise constant and discontinuous, thus
the local convergence of Newton type methods can-
not be guaranteed. The blue piecewise cubic spline
has a piecewise linear continuous second derivative,
thus Newton type methods can be applied. The final
choice is the pink regularization, where the blue cu-
bic spline function is shifted into the origin, so that
|p|ǫ = 0 holds for p = 0.

The algorithm is based on alternating minimiza-
tion with respect to the two variables, and on the
reduction of the objective to a quadratic functional
with respect to the plastic strains. This can be inter-
preted as a linearization of the nonlinear elastoplastic
problem.

The minimization problem with respect to the
plastic part of the strain is separable and the analyt-
ical solution pǫ(u) can be calculated in explicit form.
The minimization problem (2) formally reduces to

fǫ(u) = min
v

fǫ(v, pǫ(v)). (3)

The displacement field is the solution of a lin-
ear Schur complement system after the elimination
of plastic strains. The solution of this linear system
can be efficiently computed by a multi-grid precon-
ditioned conjugate gradient solver.

The second approach is provided by the Moreau-
Yosida theory. It follows that the elastoplastic mini-
mization problem can be considered a regularization
itself. As the dependence of the strains on the dis-
placements is given by a formula for p(u), the Frechet
derivative with respect to the displacements exists,
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and can be also computed explicitly. The second
derivative exists everywhere apart from the elasto-
plastic interface, thus there it is replaced by a slant
derivative and a quasi-Newton method is applied.

All regularization approaches are treated in
the ongoing PhD thesis [3] of J. Kienesberger, the
Moreau-Yosida approach was first discussed in the
master’s thesis [2] of our diploma student P. Gruber.

The algorithm was extended towards uniform
p-adaptivity, where p denotes the polynomial
degree of the ansatz functions for the finite element
spaces of u and p. These high order polynomi-
als were investigated and implemented by the
Start project group ”Y-192” of J. Schöberl. First re-
sults for elastoplastic problems were published in [4].

J. Valdman in cooperation with C. Carstensen
and A. Orlando (both HU Berlin) established an
adaptive finite element algorithm for the solution of
elastoplastic problems [1]. Such an algorithm yields
an energy reduction and, up to higher order terms,
the R−linear convergence of the stresses with respect
to the number of loops. Applications include several
plasticity models: linear isotropic-kinematic harden-
ing, linear kinematic hardening, and multi-surface
plasticity as a model for nonlinear hardening laws.
Numerical examples confirm an improved linear con-
vergence rate, the performance of the algorithm in
comparison with the more frequently applied maxi-
mum refinement rule is studied in Figure 5.
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AFEM based on max refinement rule (Alg7.2)

Figure 5: Comparison of the new adaptive algorithm
(blue line) and the original algorithm based on the
maximum refinement rule (red line). Note that using
the new algorithm, the energy of the elastoplastic so-
lution is linearly reduced with each refinement step.

A. Hofinger from Project F1308 and J. Valdman
also concentrated on fast calculation techniques
for the two-yield elastoplastic problem, which is
a locally defined, convex but non-smooth mini-
mization problem for the unknown plastic-strain
increment matrices p1 and p2. So far, the only
applied technique was an alternating minimization,
whose convergence is known to be geometrical

and global. They showed that symmetries can be
utilized to obtain a more efficient implementation of
the alternating minimization. For the first plastic
time-step problem, which describes the initial
elastoplastic transition, the exact solution for p1

and p2 could even be obtained analytically. In
the later time-steps used for the computation of
the further development of elastoplastic zones in a
continuum, an extrapolation technique as well as a
Newton-algorithm were proposed.

At last, J. Valdman cooperated with S. Repin (St.
Petersburg) on reliable error estimates for the scalar
nonlinear problem, where the nonlinearity is defined
on a part of the boundary. Such system can be easily
described as a variational inequality. They derived
a-posteriori estimates of the difference between the
exact solution of such type variational inequalities
and any function lying in the admissible functional
class of the problem considered. It is shown that
the structure of the error majorant reflects proper-
ties of the exact solution. The majorants provide
guaranteed upper bounds of the error for any con-
forming approximation and possess necessary con-
tinuity properties. In the series of numerical tests
performed, it was shown that the estimates are ex-
plicitly computable, they provide sharp bounds of
approximation errors, and they give high quality in-
dication of the distribution of local (element-wise)
errors. The joint work will be extended to problems
of elasticity with so-called friction boundary condi-
tions and to elastoplasticity as well.
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F 1308: Computational Inverse Problems and

Applications

Prof. Dr. H.W. Engl, PD Dr. M. Burger
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DI M.T. Wolfram

Dr P. Kügler (Basic Staff)

1 Stochastic Inverse Problems

A collaboration between H.W.Engl and A.Hofinger
with S.Kindermann resulted in a publication on reg-
ularization methods for stochastic inverse problems
that appeared in 2005 (cf. [11]). In this work it
was demonstrated how the Prokhorov metric can be
applied to linear inverse problems in order to derive
results on convergence rates. Extensions to other
stochastic error measures such as the Ky-Fan met-
ric have been considered recently by A.Hofinger (cf.
[13]).

H.Pikkarainen, who joined project F 1308 in fall
2005, wrote an article in which the results presented
in her doctoral dissertation concerning electrical im-
pedance process tomography were extended to a cer-
tain class of linear nonstationary inverse problems
(cf. [18]). The novel contribution of the article is the
analysis of the space discretization of the correspond-
ing infinite-dimensional state estimation system.

Numerical implementation of the method intro-
duced in this work was considered, in a possible one-
dimensional model case in collaboration J.Huttunen
(University of Kuopio, Finland). The effectiveness of
the method introduced will be presented in a forth-
coming article.

2 Iterative Regularization

Preconditioning: Especially for nonlinear and
even large scale linear inverse problems, iterative reg-
ularization methods are an attractive, widely used
alternative to classical regularization methods, like
Tikhonov regularization. One of the drawbacks of
iterative regularization algorithms, especially of sim-
ple methods like Landweber iteration, is that usu-
ally many iterations are needed in order to obtain
optimal results. While for well-posed problems, pre-
conditioning is very well understood and success-
fully used to accelerate iterative methods, the ques-
tion of (optimal) preconditioning of iterative meth-
ods for ill-posed equations has not been analysed in
detail so far. In joint publication with Prof. A.
Neubauer (University Linz), H. Egger proposed a
preconditioning strategy for Landweber iteration for
inverse problems (cf. [10]). In his PhD. thesis (cf.
[5]) on ”Preconditioning Iterative regularization in

Hilbert Scales”, the construction of efficient precon-
ditioners for large classes of linear and nonlinear ill-
posed problems and for several iterative regulariza-
tion methods under relatively mild assumptions was
investigated. In a subsequent publication (cf. [6]),
the acceleration of semiiterative regularization meth-
ods has been investigated. In recent research, so
called Y-scale regularization methods are considered:
while in standard regularization in Hilbert scales,
scales of spaces over the the domain of the oper-
ator under consideration are used to either extend
the range of optimal convergence of regularization
methods or to accelerate iterative methods, scales
of spaces over the range space of the operator are
considered in Y-scale regularization. This allows to
apply the idea of Hilbert scale regularization to new
classes of problems (cf. [7]).

Convergence Analysis of Iterative Regulariza-
tion: One of the drawbacks of iterative regulariza-
tion methods is a saturation effect when the itera-
tion is stopped by a discrepancy principle. Satura-
tion can be partially overcome, i.e., better conver-
gence rates can be achieved, if a more sophisticated
a-posteriori stopping rule is considered. The possible
improvement of convergence results by applying new
a-posteriori stopping rules has been considered in [4].
Moreover, the use of semiiterative methods in each
Newton step has been shown to yield a significant
acceleration of the overall scheme.

For the convergence analysis of Newton-type reg-
ularization methods suitable decompositions of (dif-
ferences of) certain polynomials (acting on noncom-
mutative operators) are of importance. Such decom-
positions are investigated in an ongoing research of
H. Egger and G. Regensburger (F1322).

3 Parameter Identification in
Parabolic PDEs

Volatility Identification from Option Prices:
Volatility is one of the key parameters in many
stochastic models in mathematical finance. Ear-
lier research on volatility identification in extended
Black-Scholes models has been pursued [8]. In co-
operation with Prof. B. Hofmann (TU Chemnitz),
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a new approach to volatility identification has been
considered: if a special (non-parametric) structure
of the local volatility surface is assumed, the param-
eter identification problem can be shown to decom-
pose into two separate subproblems, whose solution
is computationally much faster and more stable. A
joint publication has been submitted (cf. [9]). Previ-
ous work on identification of volatilities by H.Egger
and H.Engl has been completed and accepted for
publication in 2005 (cf. [8]).

A collaboration of H.Egger with J.Sass (RICAM
Mathematical Finance Group) has been started re-
cently, which is is devoted to parameter identifica-
tion in Levy-processes from observations of a state
trajectory.

Semiconductor Inverse Dopant Profiling:
The identification of doping profiles in semiconduc-
tor devices, previously investigated in this subpro-
ject in a stationary setting, has been reconsidered for
an instationary model and transient measurements
by M.T.Wolfram in her Diploma thesis (cf. [20])
and subsequent publications (cf. [21, 19]). The use
of transient current and capacitance measurements
yields additional information and thus allows bet-
ter reconstruction of doping profiles, but also makes
the inverse problem computationally more demand-
ing. Tikhonov regularization and its computational
implementation has been considered in this appli-
cation starting from the case of diodes that can be
reduced to one-dimensional flow models. The imple-
mentation of the approach for devices two- and three-
dimensional flow behaviour is currently in progress.
An analysis of the inverse problem showed that
uniqueness in the case of a bipolar device cannot
be expected without additional a-priori knowledge,
which has to be incorporated in the regularization
scheme (e.g. the prior in Tikhonov regularization).
Moreover, an asymptotic analysis and problem re-
duction have been used to obtain a more efficient
reconstruction scheme in the case of highly doped de-
vices (which leads to a scaling limit in the underlying
PDE-model). So far the latter has been applied only
for unipolar devices, an extension to bipolar ones is
in progress.

4 Level Set Methods

Level set methods for geometric inverse problems
and imaging tasks have been subject of research
of several project members (M.Burger, B.Hackl,
S.Kindermann). Besides the ill-posedness of geomet-
ric inverse problems, a crucial problem is their nu-
merical solution. To deal with the ill-posed charac-
ter, penalization perimeter is used frequently, while
level set methods are widely used for the numeri-
cal solution. Although level set methods are sup-
posed to allow topological changes, theory and prac-
tice show that this possibility is somehow limited. To
force nonetheless topological changes, the concept of
topological gradients was incorporated into level set

Figure 6: Reconstruction of a doping profile in a
n+nn+ diode from current and capacitance measure-
ments. .

methods. Topological gradients indicate where to
force a topological change but do not provide infor-
mation about the global influence of this change to
the objective functional. Moreover, the widely used
perimeter regularization is not topologically differ-
entiable. For a suitable class of geometric inverse
problems, first and a second order methods were de-
veloped by B.Hackl in order to estimate the change
of the objective function with respect to the topol-
ogy change (cf. [12]). These methods can deal also
with perimeter regularization and provide global in-
formation about the influence of the topology change
to the objective functional. The first order estimate
is in principle very similar to the topological gra-
dient, while the second order estimate is based on
a quadratic minimization problem governed by an-
other partial differential equation. While the first or-
der method is very cheap and simple to implement,
the second order method provides better estimates
close to the solution. Both methods were incorpo-
rated into the level set methods and tested numer-
ically, the resulting schemes turned out to provide
a reliable change of topology during the reconstruc-
tion.

Figure 7: Evolution of a surface via curvature regu-
larized anisotropic surface diffusion flow, computed
via level set methods. .
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Several applications of level set and related tech-
niques in imaging problems have been considered in
2005. A first approach concerned a global relaxation
technique for segmentation problems based on total
variation minimization, which led to a simple level
set technique (cf. [3]). Another investigation was
related to the decomposition of images into cartoon,
texture, and noise, where again a level set technique
could be applied together with a suitable saddle-
point formulation (cf. [15]). Finally, improved total
variation techniques, which operate on the level sets
of images, have been derived for the classical inverse
problems of image denoising and deconvolution (cf.
[1, 16, 17]).

Finally, the regularization and construction of
level set methods for anisotropic flows as appear-
ing in thermal faceting has been considered. Such
problems pose various challenges due to the strong
nonlinearities and the high order of the involved dif-
ferential operators (cf. [2]).

5 Learning Theory

In the past years regularization methods for neu-
ral networks have been studied. In the chosen ap-
proaches it was always assumed that full measure-
ments are given, nonetheless in practice only dis-
crete, noisy observations at certain points are avail-
able. Using Koksma-Hlawka-type inequalities it
could now be shown that the previously derived ap-
proaches also work in the discrete setup (cf. [14]).
This work has been carried out in a collaboration
between A.Hofinger and F.Pillichshammer (Finan-
cial Mathematics Institute, JKU Linz).

6 Further Activities

Within this subproject, the organization of two in-
ternational workshops have been organized in 2005.
The international workshop ”Symmetries, Inverse
Problems and Imaging” took place in Linz in Jan-
uary 2005, and the international workshop ”Level
Set Methods for Direct and Inverse Problems” took
place in September 2005.

The results achieved in this subproject lead to in-
vitations of project members to talks at various uni-
versities and at various conferences and workshops.

H.Egger finished his PhD-Thesis and graduated
in August 2005.
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1 Optimal Design Problems

The main idea of optimal design is to modify the
shape and/or the topology of an object in such a way
that the resulting shape is optimal with respect to a
certain criterion. During recent years, the impor-
tance of optimal design has been growing, especially
in the commercial market. In most cases, the indus-
trial design process shall be automatized in order to
accelerate the whole design phase. Still nowadays,
changes in the design are most often based on long
lasting experience, rather than optimization meth-
ods. Engineers designing a product make parame-
ter studies changing a few input quantities by hand
and re-evaluate the resulting design. Unfortunately,
due to lack of time this process is usually stopped
after a few iterations – in most cases only two or
three. Then, the best design obtained so far is taken
because no more time is left for drafts that would
possibly meet the requirements to a larger extent.

During the last year, we not only continued our
investigations on optimal design problems. Espe-
cially we focused our work on efficient solution tech-
niques for large-scale indefinite linear systems of
equations, that result from the optimality systems
of optimal design and optimal control problems.

Topology optimization is by far the most general
class of optimal design problems, as it does not a-
priori assume the connection of the structural parts
nor the position of the used material (and the posi-
tion, shape and number of holes). Optimal control
deals with the problem of finding a control function
for a given system such that a certain optimality cri-
terion is achieved. Here the control function does not
describe a design, but other quantities in a system of
partial differential equations. Although the way of
posing the problems for optimal design and optimal
control is very similar, the coefficient matrices of the
resulting optimality systems have different patterns.

2 Topology Optimization

We continued our cooperation with Project F1308
with respect to the phase–field based approach to
stress constrained topology optimization. Standard
topology optimization methods fail when it comes to
problems with local stress constraints due to lack of
constraint qualifications. As a result the related set
of feasible design has non-regular properties. A refor-
mulation of the constraints, based on [5], overcomes

this problem. We adapted this idea to our continuous
problem formulation and added a parameter depen-
dent Cahn–Hillard relaxation term to the objective
for regularizing reasons. The problem is then solved
for a decreasing sequence of this parameter. For solv-
ing the resulting optimization problems we used a
primal-dual interior-point method, which is a very
suitable method to attack very large scale problems.
A picture showing the optimal material distribution
of benchmark beam w.r.t. local von Mises stress con-
straints can be found in Figure 9 (red indicates ma-
terial, blue indicates air), where Figure 8 shows the
sketch of the problem. More information about this
approach can be found in [1]. Moreover, a previ-
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Figure 8: Sketch of a beam example

Figure 9: Optimal material distribution

ously developed adaptive multilevel approach for the
minimal compliance problem is now published, see
[3].

3 Preconditioning

Optimal design problems and optimal control prob-
lems are optimization problems that are governed by
a partial differential equation (PDE) or by a system
of PDEs. There are basically two approaches for
such problems. Under proper conditions, the con-
straining PDE, mostly called the state equation (e.g.
describing the equilibrium of forces), can be elim-
inated and formally hidden in the objective func-
tional. In comparison to this classical nested for-
mulation, there exists the simultaneous formulation,

23



where the state equation is treated as constraint. Us-
ing this approach, one can solve the optimization
problem by solving the corresponding system of opti-
mality conditions (KKT-system). This leads to large
scale symmetric, but indefinite, saddle-point prob-
lems, like (4), which are solved by iterative methods.





A11 A12 BT
1

A21 A22 BT
2

B1 B2 0









q
u
λ



 =





f1

f2

g



 (4)

But in order to exploit the potential speed-up, which
is expected by these approaches, efficient solution
techniques to solve the large scale linear systems are
needed.

Multigrid methods certainly belong to the most
efficient methods for solving large scale system. Dur-
ing the last year we used multigrid methods to solve
systems of the form (4), resulting from one topology
optimization problem and one optimal control prob-
lem. One of the most important ingredients of an ef-
ficient multigrid method is an appropriate smoother.
In our work we considered a multiplicative Schwarz-
type iteration method as a smoother in the multigrid
method. Each iteration step of such a multiplicative
Schwarz- type smoother consists of the solution of
several small local saddle point problems over a patch
of the finite element mesh, i.e. small local versions of
the global saddle point problem (4). For detailed de-
scription of this smoothing method, we refer to [2].
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Figure 10: Patch of a local saddle point problem

3.1 An optimal control problem

In order to adapt this smoothing idea to an op-
timal control problem, we solved the KKT-system
arising from the first order optimality conditions for
a quadratic, elliptic optimal control problem by a
multigrid method. Table 1 contains the (averaged)
convergence rates for different numbers of smoothing
steps. The numerical results show the typical multi-
grid behavior, namely the independence of the con-
vergence rate of the grid level and the improvement
of the rates with an increasing number of smoothing
steps.

3.2 An optimal design problem

We applied a multigrid method with the above men-
tioned smoothing technique to the KKT-system of

Smoothing steps
Level Unknowns 1+1 3+3 5+5

4 2114 0.1837 0.0231 0.0071
5 8322 0.1897 0.0251 0.0068
6 33026 0.1913 0.0255 0.0080
7 131586 0.1930 0.0265 0.0079

Table 1: Convergence rates, V-cycle

the stress constrained topology optimization prob-
lem, treated in [1]. Table 2 lists the convergence
rates of a numerical example and it shows the typical
multigrid convergence behaviour, i.e., convergence
rates that are asymptotic independent of the grid
level and an asymptotic constant number of itera-
tions. For more details we refer to [4].

Smoothing steps
Level Unknowns 1+1

Iterations Conv. Factor

4 725 39 0.621
5 2853 25 0.478
6 11333 24 0.460
7 45189 22 0.427
8 180485 22 0.425

Table 2: Convergence rates for a W-cycle and an error

reduction by a factor of 10−8.
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Dr. P. Chalmovianský, Dr. E. Wurm

The on–going work in this subproject was de-
voted to several tasks.

Algebraic subdivision [2] We continued to an-
alyze a novel geometrically motivated subdivision
scheme for curve design. Starting from an initial se-
quence of points with associated normals, we refine
by generating new elements until we reach a suffi-
ciently smooth limit curve. Our method is among
the first which has been defined solely by using ge-
ometric information. It has been shown to generate
tangent continuous limit curves. In addition, it pre-
serves circles, i.e., if the data are taken from a circu-
lar segment, then the method truly reproduces that
curve. An example is shown in Figure 11.

Figure 11: Circle-preserving subdivision

Approximate parameterization of space
curves [1] A space curve can be obtained by
intersecting two implicitly defined surfaces. We
propose a new technique for generating a piecewise
rational approximation. Our approach uses a
combination of predictor and corrector steps in the
space of rational parametric representations. It
is able to fully exploit the power of the rational
representations, using both the control points and
their ”weights” for optimization. See Figure 12 for
an example.

Figure 12: Approximate parameterization of an im-
plicitly defined space curve

Approximate algebraic techniques for curves
and surfaces [4] A survey paper covering several
aspects of approximate algebraic techniques for de-
signing, analyzing and visualizing curves and sur-
faces has been presented as a keynote talk at the 21st
Spring Conference on Computer Graphics. Among
other topics, it covers visualization via ray-tracing
and a procedure for orthogonalizing the implicit def-
inition of a space curve.

Approximate parameterization of surfaces [6]
A region-growing type technique for the generating
rational surface patches on implicitly defined surfaces
has been proposed. It combines minimizing a func-
tion measuring the deviation from the implicit sur-
face with terms controlling the inner geometry of the
surface. In the case of truly rational algebraic sur-
faces, it gives results which are virtually exact. See
Figure 13 for an example.

Comarison of techniques for approximate im-
plicitization [5] Based on industrial benchmark
data, several techniques for approximate impliciti-
zation of freeform surfaces by spline functions have
been compared. The comparison was based on cri-
teria such as computational efficiency, reproduction
of low-degree implicit representations, and the pos-
sibility of avoiding unwanted ”phantom branches”.

Other activities The co–investigator of this sub-
project (B. Jüttler) served as the program chair of
the 21st Spring Conferenc on Computer Graphics [3].

25



Figure 13: Approximate rational parameterization of
an implicitly defined surface

He has greatly been supported by Dr. P. Chalmo-
vianský during the reviewing and selection process.
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F1322: Computer Algebra
for Pure and Applied Functional Analysis

Prof. Dr. B. Buchberger, Prof. Dr. H.W. Engl

Dr. M. Rosenkranz, Dr. G. Regensburger

In the year 2005, we have extended various ideas
and techniques crucial to the project (described be-
low in some more detail): The structure of integro-
differential rings provides a natural framework for
expressing the operators pertinent to boundary value
problems, which lie at the heart of this project. In
the course of giving a lecture, we have investigated
the possibilities of the so-called Mikusiński calculus,
a classical method for treating initial value problems,
dating back to the sixties; we believe there is quite
some potential in this forerunner (so to say) of sym-
bolic functional analysis.

As one example of a nonlinear “boundary value
problem”, we constructed an analytic solution of the
Riccati equation (somehow the simplest such prob-
lem possible). Another attack onto the area of non-
linear problems was established through so-called
max-plus semirings, which provide a natural struc-
ture for studying the (generalized) solutions of cer-
tain nonlinear ODEs with multi-point boundary con-
ditions. We have also made some advances in con-
structing optimized wavelets (e.g. for compression of
image data), started already in 2004.

Integro-Differential Rings. This class is a natu-
ral generalization of the well-known differential rings
[8, 9]. The essential difference is that they contain
the indefinite integral as an additional operation, to-
gether with some axioms to the effect of making
the integral “almost inverse” to the given deriva-
tion. This is necessary because we want to solve
boundary value problems with parametrized right-
hand side, so the operation of integration must be
available explicitly (not only implicitly as in the case
of Ritt-Kolchin’s differential algebra). It turns out
that the corresponding integro-differential polynomi-
als (analogous to the differential polynomials of dif-
ferential algebra) are exactly the Green’s polynomi-
als of [11, 10].

The Mikusiński calculus. Giving a precise alge-
braic basis to Heaviside’s ideas of an “operator cal-
culus” for solving initial value problems for certain
linear ODEs, the crucial point is to create the quo-
tient field for the convolution ring of continuous func-
tions. The result is a practical calculus where solving
a differential equation means dividing by the corre-
sponding differential operator. We have embarked on
transferring these ideas to the situation of boundary
value problems (the classical Mikusiński calculus is
intrisically restricted to initial value problems due to
the commutativity of convolution). A first draft on

some new ideas in this vein are to be found in the
lecture notes [13].

The Riccati problem. It is given by the differen-
tial equation u′ + u2 = f with the initial condition
u(0) = 0. In contrast to the standard situation where
f is some fixed right-hand side, we regard f as a sym-
bolic parameter, keeping in the spirit of boundary
value problems. (It is for this reason that we still re-
fer to the Riccati problem as a “boundary value prob-
lem” even though it has only one “boundary point”
since it is of first order!) It is well known that the
above problem has no Liouvillian solution for generic
f , therefore we have constructed an analytic solu-
tion [12]. The formula for the Taylor coefficients of u
turned out to be quite complicated, involving sums
over certain integer partitions and compositions as
well as trees that “specialize” them.

Max-plus Semiring. Another focus of our work
was on nonlinear differential equations and semir-
ings starting from a suggestion of Martin Burger at
the SFB-Statusseminar 2005. We surveyed the rele-
vant literature on idempotent and pseudo analysis in
connection with differential equations [6]. The max-
plus semiring, where the addition is replaced by the
maximum and the multiplication by the sum, showed
to be particularly useful for symbolic computation.
We developed a symbolic method to compute gen-
eralized solutions for nonlinear first-order ordinary
boundary value problems of the form f(x, y′(x)) = 0
where we assume that we have a (symbolic) repre-
sentation of the solutions of the initial value prob-
lem. We can add arbitrary constants to a solution
of such a differential equation, and the maximum
(or minimum) of two solution is again a generalized
solution, possibly nondifferentiable at some points.
Thus max-plus (or min-plus) linear combinations of
solutions are again (generalized) solutions. Using
this observation, we showed that the existence and
uniqueness of a max-plus linear combination solving
a given boundary value problem can be translated
to the analogous questions for a corresponding max-
plus linear system. An implementation for max-plus
linear systems and the method for the computer al-
gebra system Maple is already available.

Wavelets. We also continued our work on sym-
bolic computation and wavelets and extended results
on parametrized wavelets based on joint work with
Otmar Scherzer [7] in several directions [2, 3, 4].
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boundary conditions y(−1) = y(0) = y(1) = 0

See in particular the SFB-report [5] where new
parametrizations of filter coefficients of scaling func-
tions and wavelets are obtained using Gröbner bases
which were introduced by Bruno Buchberger.
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Figure 15: Parametrized wavelets (6 filter coeffi-
cients)
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SFB F013: Numerical and Symbolic Scientific
Computing

Coherence within the SFB

• Cooperation between F1301, F1305 and
F1306

Summation and Finite Elements. In
F1301, Prof. P. Paule and Prof. J. Schöberl
have continued to apply summation techniques
from F1305 to the construction of high or-
der finite elements [2], which are also relevant
to F1306. Besides hypergeometric summation,
C. Schneider’s Sigma approach can be used to
compute recurrence relations for sums involv-
ing orthogonal polynomials. This allows fast
assemblance of the stiffness matrix ([1]).

V. Pillwein and B. Zimmermann applied meth-
ods from symbolic computation to find recur-
rences for high order finite element basis func-
tions, which are initially given by hypergeomet-
ric sums. These results allow an efficient im-
plementation of the iterative equation solvers.
They applied Fasenmyer’s method for definite
hypergeometric summation (implemented in
Wegschaider’s package MultiSum) and effective
closure properties for P-finite functions (imple-
mented in GeneratingFunctions).

New shape functions for tetrahedra.

S. Beuchler from F1306 and V. Pillwein con-
structed high order basis functions for the
second order boundary value problem
−∇(A(x, y)∇u) = f on a tetrahedral mesh
and proved the sparse structure of the result-
ing system matrix. Currently they are con-
ducting numerical experiments to investigate
further properties of these basis functions and
applying symbolic summation methods to de-
rive recurrences for these shape functions.

Special Function Inequalities in Conver-

gence Proofs of Numerical Methods. J.
Schöberl from F1301 has conjectured an in-
equality for a sum of Legendre polynomials.
Gerhold, Kauers and Schöberl were able to pro-
vide a partial proof of this inequality.

• Cooperation between F1302, F1322, and
F1308
As pointed out in the previous reports, project
F1322 was born by a nontrivial cooperation be-
tween projects F1302 and F1308. Naturally,
this interaction has been maintained and has
gained new impetus. The initial bridge car-
rying the cooperation between the symbolic
world of F1302 with the numerical-analytic
one of F1308 was the systematic exploitation

of the equational properties of certain opera-
tors in Hilbert spaces; the crucial tool for re-
alizing solution algorithms was the generalized
Moore-Penrose theory for Hilbert spaces (us-
ing oblique projectors for the nullspace and
range of the operators to be inverted). This
line of research is now strengthened by consid-
ering wider classes of practically relevant op-
erators (for more details see the section about
F1322): ill-posed problems (first results have
been obtained), operators with symbolic pa-
rameters (full solution of the the generic Sturm
problem!), nonlinear problems (following some
recent ideas by Martin Burger from F1308).

• Cooperation between F1302, F1305, and
F1303
In the context of analysis and verification of
programs (expressed both in functional and im-
perative style), we are using combinatorial and
algebraic techniques for the generation of loop
invariants and recursion invariants, as well as
for the simplification of the verification condi-
tions. By using such techniques we are able
to solve verification problems which are be-
yond the power of currently used methods (e.g.
model checking).

• Cooperation between F1302 and F1301
In the context of our case study on Groebner
domains, we are extending and improving both
the knowledge base implemented in Theorema,
as well as the concepts and tools for mathe-
matical knowledge management in order to be
able to use them in the context of the appli-
cations developed in the frame of the project
F1301, namely the verification and synthesis of
generic algorithms for Groebner Bases.

• Cooperation between F1303 and F1304
We continued in cooperation – with G. Lands-
mann, subproject 1304, and P. Mayr from the
department of algebra – which started promis-
ingly last year. In a study of polynomial func-
tions over linear groups we applied topological
methods for real and complex manifolds. We
could answer the question whether a transpo-
sition is a polynomial function in the matrix
group, for cases of infinite fields of real and
complex numbers.

• Cooperation between F1303 and F1315
Another cooperation was to combine the sta-
bility analysis for the implicitization problem
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obtained in our group by the stability analy-
sis of implicit equations obtained in subproject
1315. Together with B. Jüttler and M. Aigner
we extended the result to finding a geometric
error in terms of the Hausdorff distance.

• Cooperation between F1304 and F1308
H. Gu has cooperated with M. Burger (F1308)
for symbolic and numeric computation of geo-
metric problems.

• Cooperation between F1304 and others
On the topic of factorization of differential
operators we have discussed symbolic-numeric
methods with other groups in the SFB.

• Cooperation between F1305, F1301 and
F1306
In F1301, Prof. P. Paule and Prof. J. Schöberl
have continued to apply summation techniques
from F1305 to the construction of high or-
der finite elements [2], which are also relevant
to F1306. Besides hypergeometric summation,
C. Schneider’s Sigma approach can be used to
compute recurrence relations for sums involv-
ing orthogonal polynomials. This allows fast
assemblance of the stiffness matrix ([1]).

• Cooperation between F1306 and F1308
A. Hofinger from Project F1308 and J. Vald-
man concentrated on fast calculation tech-
niques for the two-yield elastoplastic problem,
which is a locally defined, convex but non-
smooth minimization problem for the unknown
plastic-strain increment matrices p1 and p2. So
far, the only applied technique was an alternat-
ing minimization, whose convergence is known
to be geometrical and global. They showed
that symmetries can be utilized to obtain a
more efficient implementation of the alternat-
ing minimization. For the first plastic time-
step problem, which describes the initial elasto-
plastic transition, the exact solution for p1 and
p2 could even be obtained analytically. In the
later time-steps used for the computation of
the further development of elastoplastic zones
in a continuum, an extrapolation technique as
well as a Newton-algorithm were proposed. A
joint paper is in preparation.

• Cooperation between F1308 and F1306
A collaboration between A. Hofinger with
J. Valdman was concerned with the accel-
eration of algorithms in multiyield-plasticity.
In multi-surface elastoplasticity a system of
nonlinear equations must be solved in each
timestep, for every grid-point of the finite el-
ement grid, the solution of this problem is
therefore a time-critical step. An extrapolation
technique was successfully applied to this prob-
lem and could reduce the computation time by
approximately a factor of ten. A joint paper
will be finished in 2006.

• Cooperation between F1308 and F1309
A collaboration of M. Burger and R. Stainko
(F1309) on the use of level set techniques
for topology optimization (cf. [3]) has been
continued. An important recent development
was the construction of a one-shot multigrid
method for linear problems arising in each step
of the previously derived iterative scheme for
topology optimization with stress constraints.
This novel approach, based on local patch
smoothers, yields an efficient method that
turns out to be robust with respect to the dis-
cretization size and other parameters appear-
ing in the problem (cf. [4]).

• Cooperation between F1308 and F1322
A cooperation of H. Egger with G. Regens-
burger (F1322) on the use of noncommutative
polynomial decomposition for the analysis of
iterative regularization methods has been con-
tinued.
Recently, a collaboration between these
projects on the use of novel algebraic tech-
niques for Hamilton-Jacobi equations has been
started, based on a tutorial on level set meth-
ods given at the annual SFB Seminar in Strobl.
The idea of the approach is to consider so-
called pseudo-linearity of certain nonlinear par-
tial differential equations (linearity after suit-
able change of the addition and multiplication
operators) for the symbolic construction of so-
lutions. In the case of Hamilton-Jacobi equa-
tions, the so-called max-plus algebra (a semir-
ing instead of a field), is of particular impor-
tance, which led to the development of sym-
bolic computation techniques for the min-plus
linear algebra. Joint work on the application of
symbolic computation techniques for min-plus
linear equations.

• Cooperation between F1309 and F1308
In a close cooperation between R. Stainko
(F1309) and Dr. M. Burger (F1308) we de-
veloped a new approach to topology optimiza-
tion problems with local stress constraints.
The approach leads to large-scale optimization
problems that are solved with a primal-dual
interior-point method. Most of the computa-
tional time of such methods is spent by solv-
ing large-scale optimality systems. A resulting
spin-off project deals with the construction of
an optimal solver to these large-scale optimal-
ity systems using multigrid methods.

• Cooperation between F1315 and others
We continued the collaboration between the
teams of Project F1315 (Jüttler / Schicho) and
F1303 (Schicho), aiming at the combination
of numerical and symbolic techniques for al-
gebraic spline surfaces. In addition to regular
meetings, a weekly joint seminar entitled “Al-
gebraic Spline Curves and Surfaces” took place
during both semesters. We started to establish
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a new cooperation with between M. Barton and
J. Valdman about robust methods for solving
systems of polynomial equations.

• Cooperation between F1322, F1302, and
F1308
Project F1322 was created from a symbiosis
between projects F1302 and F1308. The sub-
ject matter of Symbolic Functional Analysis is
situated at the interface between computer al-
gebra and functional analysis. It benefits from
bringing together the symbolic expertise from
F1302 with the functional analysis know-how
from F1308. The crucial link is that certain op-
erators that are relevant in the abstract treat-
ment of functional analysis can be modeled
by noncommutative polynomials, which can
be manipulated efficiently by Gröbner bases
methods. In particular, the solving engine for
linear two-point boundary value problems—
which is continually extended to cover more
problem types—is implemented in the sys-
tem of F1302. The leading theme of inverse
problems in F1308 provides an ample field of
studying operator problems relevant in prac-
tical applications (e.g. parameter-to-solution
maps and their inverses); the discussion and
research along these lines is ongoing.

• Cooperation between F1322 and F1301
As anticipated in the project proposal, the
role of noncommutative polynomials is seen
to be more and more relevant in formulat-
ing and solving various operator problems (e.g.
boundary value problems) based on integro-
differential rings. Hence project F1322 can
profit crucially from the noncommutative poly-
nomial tools prepared in project F1301. The
expertise in solving parametric polynomial sys-
tems has also already shown to be useful for the
construction of parametrized wavelets and this
line of research will be continued in 2005.

• Cooperation between F1322 and F1303
Motivated by a talk of Josef Schicho (F1303),
a new line of research was established in a co-
operation on quadratic forms over fields where
the main issue is to find and prove identities by
the aid of Gröbner bases. For constructing the
Witt ring, one defines a new addition and mul-
tiplication on equivalence classes of quadratic
forms. Every element of the Witt ring can
then be represented by a polynomial over the
integers modulo suitable relations. Using this
structure, a statement of the form “some iden-
tity holds provided certain assumed identities
hold” can be decided by computing a Gröbner
basis for the polynomials corresponding to the
assumptions and checking if polynomial cor-
responding to the claimed identity reduces to
zero modulo the Gröbner basis. Often one also
wants to find a concrete coordinate representa-
tion of the isomorphism connecting the equiv-

alent quadratic forms; this can be achieved by
tracing the Gröbner basis computation.

• Cooperation between F1322 and F1304
As explained in the main text, we think of the
class of integro-differential rings as a natural
extension of the classical notion of differential
rings, prominently used in the area of differen-
tial algebra, which is one of the main research
topics in project F1304. These connections
and the interplay between these two viewpoints
have been discussed extensively in the series of
seminars on differential equations (see below).

• Cooperation between F1322 and F1305
The theory of D-modules, one of the focal
points in project F1305, provides an alterna-
tive approach to differential equations, in some
sense dual to the one we employ in symbolic
functional analysis: Instead of describing the
solution of a given differential equation as a
function built from certain primitives, the dif-
ferential equations themselves (actually only
some canonical ones) are used as a specifica-
tion of functions.

• Seminar on Differential Equations
The seminar series “Symbolic Computation for
Differential Equations: Quantitative and Qual-
itative Methods”, initiated by Buchberger in
2004, has extended over the year 2005 in alto-
gether 10 seminar sessions (first seminar on 20
January, last seminar on 7 October). Approx-
imately 20 people were attending these semi-
nars on a regular basis, and this has brought to-
gether people from virtually all subprojects of
the SFB (of course preferentially those with a
symbolic background). Furthermore, the semi-
nar has also involved researchers from RICAM.
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SFB F013: Numerical and Symbolic Scientific
Computing

National and International Cooperations

1 Cooperations

• Number of multinomial coefficients
In an external cooperation with G. E. Andrews
and A. Knopfmacher, B. Zimmermann studied
the asymptotics of the number M(n) of dis-
tinct values taken by multinomial coefficients
with upper entry n [1]. They show that both
pP (n)/M(n) and M(n)/p(n) tend to zero as n
goes to infinity, where pP (n) is the number of
partitions of n into primes and p(n) is the total
number of partitions of n. To use methods from
commutative algebra – in particular Gröbner
bases – they encode partitions and multinomial
coefficients as monomials.

• RWTH Aachen (Germany)
The cooperation of Dr. V. Levandovskyy with
Prof. E. Zerz on constructive methods of al-
gebraic analysis has been continued. In re-
cent articles [3], [4] we have studied algorithms
for commutative and non–commutative struc-
tures, arising in connection with Control The-
ory.

• TU Cottbus (Germany)
Together with Prof. M. Fröhner and Prof.
B. Martin, the development of theoretical tools
and the implementation of them were con-
tinued by Dr. V. Levandovskyy, concern-
ing the symbolic generation of finite difference
schemes for linear PDEs with constant coeffi-
cients. Among other, we work on the symbolic
von Neumann stability analysis as well as the
dispersion analysis.

• University of Sevilla (Spain)
The Singular library for computations with
algebraic D–modules dmod.lib [2] has been
released as the result of a joint work of Dr.
V. Levandovskyy and J. Morales. The tools,
implemented in the library are of interest for
F1304 and F1305. Together with Prof. F. Cas-
tro we continue investigating algorithms for lo-
cal algebraic and analytic settings in D–module
theory.

• The project CreaComp
This project, started in summer 2004, has a
volume of 72 man-months and aims at the
construction of and contents developement for
a novel e-learning platform for mathematics,
covering theory exploration, construction of

mathematical models, and automatic reason-
ing (proving). The project is funded by the
JKU Linz and is pursued by the Theorema
group at RISC (Prof. Bruno Buchberger) in
cooperation with the Department of Algebra,
JKU (Prof. Guenther Pilz), the Fuzzy Logic
Lab. Linz, JKU (Prof. Peter Klement). The
new platform will buil-up on the capabilities
of the mathematical assistant Theorema from
our group, and on the e-learning system Meet-
MATH developed in cooperation by the De-
partment of Algebra and by the Fuzzy Logic
Laboratory, and will implement some of the
newest concepts in e-learning, like constructive
and exploratory learning. For implementing
such concepts it is crucial to use the natural
style and natural language proving capabilities
of Theorema, because the lessons have to be
modifiable by the user - in contrast to fixed-
content classical text-books used for read-only
based learning.

• Institute e-Austria Timisoara
The Theorema group is currently involved in
a project consisting of the design and imple-
mentation of methods for program verification
using automated reasoning. This project is
developed in cooperation with the Institute e-
Austria in Timisoara, on the period Oct.2002
- Dec.2005. The results of this research are
to be applied in concrete industrial environ-
ments inside software companies in Romania
and Austria. During 2005 we have participated
in applied projects with Alcatel Timisoara, and
we are currently starting another project with
Siemens VDO Timisoara.

• University of Innsbruck
Within the FWF project Explicit Resolution
and Related Methods in Algebraic Geometry
and Number Theory we continued in a success-
ful series of joint seminars, this year held in
Tirol. We applied Groebner basis techniques
for recursive expansion of algebraic power se-
ries, a result which is latex used for analyzing
singularities of algebraic varieties.

• University of Sydney,
University of Trento
We developed and implemented algorithms for
parametrizing various types of surfaces by ex-
ploring the use of the Lie algebra of the vari-
ety. Some of the related algorithms are planned
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to be included into packages distributed with
MAGMA.

• RICAM
J. Schicho together with J. Kraus, RICAM,
developed a coarse grid correction and inter-
polation method based on the splitting of el-
ement matrices into so-called edge matrices.
The problem was finding such a splitting in the
most efficient way.

• Cooperation with Prof. Scott McCallum
Prof. Scott McCallum of Macquarie University
in Sydney, Australia, has visited RISC for a
month in May 2005. E.Kartaschova has started
a cooperation with Prof. McCallum on using
cylindrical algebraic decomposition for decid-
ing approximate factorizability of differential
operators.

• Workshop on Integrability of PDEs
In June 2005 the workshop ALISA was held at
the university of Linz. ALISA was organized
by E. Kartaschova, with the goal of forming a
project group on research in the theory of in-
tegrability. Colleagues from several European
countries participated in the workshop. Unfor-
tunately, this activity did not yet lead to an
application for a EU project, but it might in
the future.

• Joint work with Dr. H. Herrmann, TU
Berlin
Dr. H. Herrmann, a theoretic physicist from
TU Berlin will visit our research group. He is
currently doing some research on the heat con-
duction problems. H. Gu will cooperate with
him by using symbolic-numerical computing
method and investing the convergence proper-
ties of some specific heat conduction equations.

They also plan to write a joint paper which
should be submitted to [5].

• INRIA Paris
The long term cooperation with Prof. Paule’s
group was continued in a joint paper [9] on
holonomic sequences by P. Flajolet, B. Salvy
(both INRIA Paris) and S. Gerhold. Prof. Fla-
jolet has been member of the PhD thesis com-
mittee of S. Gerhold (Nov. 2005). Further joint
papers are in preparation.

• International universities
Several joint articles have been pub-
lished/accepted in cooperation with Helmut
Prodinger (University of Stellenbosch, South
Africa) [10, 8, 7], with George E. Andrews (The
Pennsylvania State University) [6], and with
R. Pemantle (University of Pennsylvania) [11].

• Humboldt-University of Berlin:
Dr. J. Valdman together with
Prof. C. Carstensen and Dr. A. Orlando
(both Berlin) established an adaptive finite

elements algorithm for the solution of elasto-
plastic problems. This cooperation led to a
technical report and was also accepted as a
journal publications in Math. Methods Appl.
Sci.

• Petersburg Department of Steklov Insti-
tute of Mathematics: Prof. S. Repin and
Dr. Jan Valdman and started to work on re-
liable error estimates for the scalar nonlinear
problem, where the nonlinearity is defined on
a part of the boundary. A joint paper is in
preparation.

• Inverse Problem of Endocardiology
In this context a model problem is studied,
which is related to a new method for diag-
nosing heart diseases. The resulting equations
describe an inverse, time-dependent Cauchy-
problem, which is well-known to be severely
ill-posed. The construction and implementa-
tion of a real-time algorithm for this prob-
lem has been considered in a collaboration be-
tween A. Hofinger and R. Celorrio (University
of Zaragoza, Spain), resulting in a joint paper
[16].

• Parameter Identification in Mathemati-
cal Finance
In a cooperation with T.Hein and B. Hofmann
(TU Chemnitz), a decomposition of the volatil-
ity surface into term-structure and smile has
been investigated (cf. [17]). For a suitable mul-
tiplicative decomposition of the volatility sur-
face, the identification problem in the Black-
Scholes equation splits up into two subprob-
lems, which can be tackled separately and more
efficiently.

• Total Variation Regularization
In collaboration of M.Burger with S. Osher, G.
Gilboa and J. Xu (University of California, Los
Angeles), the construction, analysis, and im-
plementation of nonlinear inverse scale space
methods based on total variation regulariza-
tion has been considered (cf. [13]). Nonlinear
inverse scale space methods arise as a limit (for
decreasing step size) of an iterative regulariza-
tion method constructed previously by the au-
thors and generalize the important concept of
inverse scale space methods to the degenerate
case of total variation techniques.

In another collaboration of S.Kindermann with
S.Osher and J.Xu, the so-called G-norm was
used for the denoising (cf. [19]). The G-norm
can be roughly seen as dual of the bounded
variation norm and was introduced by Y.Meyer
as a suitable norm for highly oscillatory signals.
It turned out, that it is natural to use it for
bounded variation regularization problems. It
has been shown in [] that it can be computed
by the level-set method and that it is leads to
new noise filters for highly degraded images.
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A further collaboration with S.Osher was con-
cerned with the decomposition of images into
cartoon, texture, and noise. For this sake a
saddle-point formulation was introduced and
analyzed (cf. [18]).

• Level Set Methods
A collaboration with H. Ben Ameur (ENIT Tu-
nis) concerned with the mathematical analysis
of inclusion detection problems in thermoelas-
ticity has been continued, and a joint paper has
been finished in 2005 (cf. [12]).

In cooperation with M. Hintermüller (Univer-
sity Graz) a relaxation technique linking total
variation and level set methods has been con-
sidered, and their numerical solution by pro-
jected gradient flows has been investigated (cf.
[15]).

A collaboration with F. Hausser, C.Stöcker,
and A.Voigt (all CAESAR Crystal Growth
Group, Bonn) has been concerned with the use
of curvature regularization for anisotropic sur-
face evolution laws exhibiting backward diffu-
sion phenomena. Level set methods for the
resulting high-order regularized problem have
been developed and implemented, and applica-
tions to the thermal faceting of material sur-
faces have been investigated (cf. [14]).

In collaboration of S.Kindermann with
M.Alves and A.Leitao (University of Floria-
nopolis), the application of level set methods
for elliptic Cauchy-Problems has been investi-
gated.

• Stochastic Inverse Problems
In collaboration with J.Huttunen (University
of Kuopio), the development of a numerical
method for electrical impedance process to-
mography including stochastic modeling has
been investigated.

• Technical University of Copenhagen
(DTU):
R. Stainko continued his cooperation with the
TOPOPT–group around Prof. Dr. M. Bendsoe
and Prof. Dr. O. Sigmund, especially with Dr.
M. Stolpe, about various aspects of modelling,
formulating and solving various topology opti-
mization problems.

• SINTEF Applied Mathematics (Norway)
Dr. T. Dokken (SINTEF, coordinator) and
Prof. B. Jüttler and four other European
partners (University of Cantabria, Spain;
University of Nice and INRIA, France;
think3, Italy, University of Oslo, Nor-
way) are involved in a IST–FET research
project within the Fifth Framework Pro-
gramme of the European Commission. The
project has been successfully completed in
September 2005.

• University of Science and Technology of
China, Hefei
An ongoing cooperation with Prof. Falai Chen
on approximate µ–bases led to a joint publica-
tion, which has been accepted for publication
in Geometric Modeling and Processing 2006.

• RICAM
Like other parts of the SFB, project F1322 is
conducted over the Radon Institute for Applied
and Computational Mathematics (RICAM). In
particular, the two postdocs M. Rosenkranz
(part of the SFB throughout 2004) and G. Re-
gensburger (joined the SFB in November 2004)
are employed b RICAM. The interdisciplinary
environment of this instutition provides an ad-
ditional incentive to cross-group (in particular
symbolic-numerical) cooperations.

• Seminar on Differential Equations
The series of seminars “Symbolic Computation
for Differential Equations: Quantitative and
Qualitative Methods” was also addressed to
the research groups of RICAM, and there was
some crucial input from their side as well, in
particular one talk by Stefan Müller on mod-
elling biochemical systems.
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2 Guests

• Prof. Lajos Ronyai: MTA SZ-
TAKI,Budapest, Hungary, February 20–23,
2005, Cooperation with Dr. W. de Graaf, DI
J. Pilnikova und Prof. J. Schicho

• DI Vera Nübel: TU München, Germany,
March 1–2, 2005, Talk: “Eine rp-Adaptive
finite-elemente-Diskretizierung fr physikalisch
nichtlineare Probleme”

• Prof. Manuel Bronstein: INRIA Sophia
Antipolis, April 10–14, 2005, Talk: “Discussion
of ongoing research in symbolic integration”

• a.Univ-Prof. Dr. Alfio Borzi: Karls-
Franzens-University Graz, Austria, April 21–
22, 2005, Talk: “Space-time multigrid methods
for solving unsteady optimal control prolbems”

• DI Niels Lubbes: Netherlands,April 24–25,
2005, Talk

• DI Brian Moore: TU München, Germany,
April 25, 2005,

• DI Zsolt Minier: Cluz-Napoca, Rumania,
May 1–2, 2005,

• Dr. Tor Dokken: SINTEF ICT, Appl.
Mathem., Norway, May 9–12, 2005, Talk, re-
search cooperation

• Prof. Dr. Myung-Soo Kim: Seoul National
University, May 9–12, 2005, Talk, research co-
operation

• Prof. Dr. A. Karger: Karlsuniversität Prag,
MFF, Czech Republic, May 17–19, 2005, Talk,
research cooperation

• Dr. Ray Sarrasa: General Motors Research,
USA, June 26–28, 2005, Talk

• Prof. Dr. Rolf Rannacher: Ruprecht-Karls-
University Heidelberg, Germany, June 9–12,
2005, Invited Speaker at COSCOMP 2005, Vi-
enna

• Prof. Dr. Peter Hilton: State University of
New York, USA, June 29, 2005, Talk at the J.
Kepler Syposium: “Paradoxes in Traditional
Thinking”

• Dr. Shojiro Sakata: University of Electro-
Communications, Tokyo, Japan, June 2005,
Talk: “Some remarks on 1D/mD linear recur-
rences and their applications”

• a.Univ-Prof. Dr. Alfio Borzi: Karls-
Franzens-University Graz, Austria,July 13 -,
2005, Research Cooperation with R. Stainko
u. R. Simon.

• DI Erik Lindgren: KTH Stockholm, Swe-
den,July 24–25, 2005, Talk, research coopera-
tion on Level Set Methods

• Prof. Dr. Dominique Foata: University of
Strassburg, France,Oct. 2–3, 2005,

• Dr. Hend Benameur: Ecole National
d’Ingenieurs de Tunis, February 8–20, 2005,
Cooperation with Dr. Martin Burger and DI
Benjamin Hackl on geometric Inverse Problems
and Level Set Methods

• Prof. Dr. Alexey B. Shabat: L.D. Landau,
Inst. f. Theoretical Physics, Russia, April 22–
May 3, 2005, Talk: “Classification of systems
of ODEs describing integrable interactions of
particles on the line.”

• Prof. Robert Corless: University of West-
ern Ontario, Canada, June 8–12, 2005, Invited
Speaker at COSCOMP 2005, Vienna

• Prof. Dr. Alexander Mikhailov: Univer-
sity of Leeds, United Kingdom, June 12–18,
2005, Participated at ALISA, Talk at the RISC

• Prof. Sergvey Tsarev: Krasnoyask State
Reda gog. University, Russia, June 8–17, 2005,
Participated at ALISA

• Prof. Keith O. Geddes: University of
Waterloo, Canada, June 8–16, 2005, Invited
Speaker at COSCOMP 2005, Vienna

• Prof. Dr. John Christopher Eilbeck:
Heriot-Watt University MACS, United King-
dom,July 13–17, 2005,

• Prof. Dr. Alexey B. Shabat: L.D. Landau,
Inst. f. Theoretical Physics, Russia, July 3–
31, 2005, Collaboration on the subject “Com-
putable Integrability”, preparing of a paper on
general invariants of LPDES of arbitrary order

• Prof. Dr. Alexey B. Shabat: L.D. Lan-
dau, Inst. f. Theoretical Physics, Russia, Au-
gust 1–29, 2005, Collaboration on the subject
“Integrable Systems”, plainlevel-like equations
and special funktions; preparation of Austrian-
Russian project (beginning in 2006)

• Dr. Dalibor Lukas: VSB-Technical Univer-
sity Ostrava, Czech Republic, Aug. 29–Sep.
25, 2005, Cooperation concerning the construc-
tion of optimal solution techniques for optimal-
ity systems using multigrd methods

• DI Hossein Teimoori Faal: Institute f. Ad-
vanced Studies in Basic Sciences, Iran, Sep.
11–18, 2005, Cooperation: “Symbolic Summa-
tion”

• Prof. Masahiko Sato: Kyoto University,
Japan, Sep. 10–22, 2005,
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3 Lectures at other Universi-

ties

• V. Levandovskyy: ”Non-commutative
Groebner basics: from the theory to the imple-
mentation in the Computer Algebra System
Singular:Plural”, Invited colloquium talk
at University of Granada, Spain, November
2005.

• V. Levandovskyy: ”Computer Algebra Sys-
tem Singular:Plural and non-commutative
Groebner bases in theory and applications”, In-
vited colloquium talk at University of Sevilla,
Spain, November 2005.

• B. Buchberger: Theorema: A System for
Formal Mathematics. Invited colloquium talk
at North Carolina State University, Dept of
Computer Science, March 2005.

• B. Buchberger: A Historic Introduction to
Gröbner Bases. Invited talk at Summer School
on Gröbner Bases and Applications, Zanjan,
Iran. July 2005.

• W. Windsteiger: Wie erfinde ich mathema-
tische Algorithmen? Wie beweise ich mathe-
matische Algorithmen? Presentation given at
Schwerpunktfach Mathematik, Europagymna-
sium Auhof, December 15, 2005.

• W. Windsteiger: An Automated Theorem
Prover for Set Theory within the Theorema
System. Invited colloquium talk at Institute
for Algebra, Charles University Prague. April
2005.

• T. Kutsia and M. Marin: Matching with
Regular Constraints. Invited talk at Austria-
Japan Summer Workshop on Term Rewriting,
Obergurgl, Austria. August, 2005.

• B. Buchberger: Algorithmische Beweisver-
fahren: Das Ende der Mathematik? Invited
colloquium talk at Kepler Symposium, Univer-
sität Linz. April 2005

• B. Buchberger: Mathematik: Die Kunst des
effektiven Handelns. Invited colloquium talk
at MathSpace, Wien. May 2005.

• B. Buchberger: Algorithm Synthesis in The-
orema: Case Study Gröbner Bases. Invited
colloquium talk at University of Edinburgh,
School of Informatics. June 2005.

• Tudor Jebelean: Combining Logic and Com-
puter Algebra in Theorema. Invited collo-
quium talk at the University of Tsukuba,
Japan. December 2005.

• B. Buchberger: Algorithm Synthesis by Lazy
Thinking: Case Study Gröbner Bases. Invited
colloquium talk at DFKI, Saarbrücken.

• Tudor Jebelean: University of Timisoara,
Romania. November 2005. Blocked lecture (8
hours) on automated reasoning techniques and
their implementation in Theorema.

• Tudor Jebelean: University of Cluj, Roma-
nia. July 2005. Blocked lecture (8 hours) on
automated reasoning techniques and their im-
plementation in Theorema.

• J. Ṕılniková gave a talk on parametrizing Se-
veri-Brauer surfaces at the Comenius Univer-
sity in Bratislava.

• J. Ṕılniková gave a talk on splitting central
simple algebras over the rational numbers at
the University of Trento.

• J. Schicho gave an invited talk on computa-
tion of adjoints and the parametrization prob-
lem at the Magma workshop “Algebraic Geom-
etry and Group Theory” in Warwick.

• J. Schicho gave an invited talk on sparse pa-
rametrization of algebraic curves and surfaces
at COMPASS 2005, Oslo.

• J. Schicho and G. Bodnár gave talks at
Algorithmic Algebra and logic 2005, Passau.
J. Schicho talked on a topological criterion for
polynomiality, and G. Bodnár talked on com-
puting centers of blowups for birational projec-
tive morphisms of varieties.

• J. Schicho and J. Ṕılniková gave talks at
MEGA 2005, Sardinia. J. Schicho talked on
the parametric degree of rational surfaces, and
J. Ṕılniková talked on a Lie Method for rational
parametrization of Severi-Brauer surfaces.

• J. Ṕılniková gave a talk on rational
parametrization via Lie algebras II at the
Magma workshop “Algebraic Geometry and
Group Theory” in Warwick.

• J. Ṕılniková gave a talk on using Lie algebras
to parametrize certain types of algebraic vari-
eties II at the Workshop on Lie Algebras, their
Classification and Applications in Trento.

• J. Ṕılniková gave a talk on Splitting Central
Simple Algebras of degree 4 at Darstellungsthe-
orietage and Nikolaus Conference in Aachen.

• I. Szilágyi gave a talk on a condition number
for the implicitization problem at COMPASS
2005, Oslo.

• E.Kartaschova has visited the Max-Planck-
Institut für Mathematik in Leipzig and given a
lecture on factorization of LPDOs.

• E.Shemyakova has participated in a work-
shop on computer algebra and its applications
to physics in Dubna, Russia, a given a talk
on her implementation of a factorization algo-
rithm for low order differential operators.
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• F.Winkler has visited the Universidad de Al-
calá in Madrid, and given a lecture on com-
puter algebra and factorization of differential
operators.

• C. Schneider: “Analysis of Algorithms and
Symbolic Summation” in the frame of the
European Erasum/Socrates programme. In-
vited colloquium talk at West University of
Timisoara, Faculty of Mathematics and Com-
puter Science, Romania, May 2005.

• P. Paule: ”Partition Analysis: MacMahon’s
Dream Came True”, Invited talk at Festkollo-
quium for Prof. J. Cigler, University of Vienna,
Austria, 30. September 2005.

• P. Paule: ”Partitionsanalysis: MacMahon’s
Traum wurde Wirklichkeit”, Invited talk at TU
Graz, Austria, 2. December 2005.

• B. Jüttler visited the IT University of Den-
mark, the Institute of Geometry of the TU
Graz, the Dept. of Mathematics of the Uni-
versity of Science and Technology of China
(Hefei), the Dept. of Mathematics of Zhejiang
University (Hangzhou, China), General Motors
Research (USA), and the Dept. of Mathemat-
ics of the University of Siena (Italy) and gave
presentations related to on–going research in
the SFB.
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[9] Dokken, T., and Jüttler, B., Eds. Com-
putational methods for algebraic spline sur-
faces. Springer-Verlag, 2005. Papers from
the ESF Exploratory International Workshop
(COMPASS) held in Kefermarkt, September
29–October 3, 2003.

[10] Egger, H., and Engl, H. Tikhonov regular-
ization applied to the inverse problem of option
pricing: Convergence analysis and rates. In-
verse Problems 21 (2005), 1027–1045.

[11] Egger, H., Engl, H., and Klibanov, M.

Global uniqueness and Hölder stability for re-
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[11] Buchberger, B. Mathematik: Die kunst des
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[16] Burger, M. The choice of regularization func-
tionals in inverse problems and imaging. Work-
shop on Symmetries, Inverse Problems, and
Imaging, Linz, 2005.
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partial differential operators. SFB Cooperation
Meeting, 12 2005.

[41] Kartashova, E. On factorization of linear
partial differential operators. Invited talk at
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and image processing”, January 2005.

[42] Kartashova, E. On factorization of lin-
ear partial differential operators. generic case.
”Workshop on symmetries, inverse problems
and image processing”, RICAM, 01 2005.

[43] Kartashova, E. Order-reduction procedure
for factorization of lpdo of arbitrary order.
Conference ”Solitons, boomerons and isochro-
nious solutions to nonlinear systems”, 02 2005.

[44] Kartashova, E. Wave turbulence theory for
discrete systems. Landau Institute of Theo-
retical Physics, Russian Academy of Sciences,
Chernogolovka, Russia., 09 2005.

[45] Kovacs, L. Imperative program verification
in theorema. Contributed talk at Theorema-
Ultra-Omega’05 Workshop, Department of
Computer Science, University of Saarbruecken,
Germany, November 14-15 2005.

[46] Kovacs, L., and Jebelean, T. An al-
gorithm for automated generation of invari-
ants for loops with conditionals. Contributed
talk at Computer-Aided Verification on In-
formation Systems Workshop (CAVIS05), 7th
International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC05), September 25-29 2005.

[47] Kovacs, L., and Jebelean, T. Generating
invariance properties by recurrence solving and
groebner basis computation in the theorema
system. Contributed talk at Dagstuhl Semi-
nar 05311: Verifying Optimizing Compilers, 31
July- 5 August 2005.

[48] Kovacs, L., and Jebelean, T. Polynomial
invariant generation by algebraic and combina-
torial methods. Contributed talk at SFB Coop-
eration Meeting, Johannes Kepler University
Linz, December 19 2005.

[49] Kovacs, L., and Jebelean, T. Using combi-
natorial and algebraic techniques for automatic
generation of loop invariants. Contributed talk
at SFB Statusseminar, Strobl, Austria, April 1
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[50] Kovacs, L., Popov, N., and Jebelean, T.

A verification environment for imperative and
functional programs in the theorema system.
Satellite of 2nd Balkan Conference in Infor-
matics, 17-19 November, Ohrid. Contributed
talk at 2nd South-East European Workshop
on Formal Methods (SEEFM05), ”Practical di-
mensions: Challenges in the business world”,
Ohrid, FYR of Macedonia, 18-19 November
2005.

[51] Kutsia, T. Context sequence matching for
xml. Contributed talk at the 1th Interna-
tional Workshop on Automated Specification
and Verification of Web Sites (WWV’05), Va-
lencia, Spain, March 15 2005.

[52] Kutsia, T., and Marin, M. Can con-
text sequence matching be used for xml query-
ing? Contributed talk at the 19th Inter-
national Workshop on Unification (UNIF’05),
Nara, Japan, April 22 2005.

[53] Kutsia, T., and Marin, M. Matching with
regular constraints. Invited talk at Austria-
Japan Summer Workshop on Term Rewriting,
Obergurgl, Austria, August 10 2005.
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[54] Kutsia, T., and Marin, M. Matching with
regular constraints. Contributed talk at 12th
International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reason-
ing, LPAR’05, December 2 2005.

[55] Kutsia, T., and Marin, M. Matching
with regular constraints. Contributed talk at
Theorema-Omega’05 Workshop, November 14
2005.

[56] Levandovskyy, V. Computer Alge-
bra System SINGULAR:PLURAL and non-
commutative Groebner bases in theory and ap-
plications. Invited colloquium talk at Univer-
sity of Sevilla, 25.11 2005.

[57] Levandovskyy, V. Non-commutative Groeb-
ner basics: from the theory to the implemen-
tation in the Computer Algebra System SIN-
GULAR:PLURAL. Invited colloquium talk at
University of Granada, 18.11. 2005.

[58] Paule, P. Computer Algebra Proofs of Frank
Olver’s Problems. Invited talk at the Editorial
Meeting of the Digital Library of Mathemat-
ical Functions (DLMF), National Institute of
Standards and Technology (NIST), Gaithers-
burg, USA, 6. May 2005.

[59] Paule, P. Computer Algebra Tools for Spe-
cial Functions in Physics. Invited talk at the
Theoretical Physics Lab, NIST, Gaithersburg,
USA, 9. May 2005.

[60] Paule, P. Contiguous Relations and Cre-
ative Telescoping. Invited talk at the Inter-
national Conference on Difference Equations,
Special Functions and Applications, Munich,
Germany, 29. June 2005.

[61] Paule, P. Partition Analysis: MacMahon’s
Dream Came True. Invited talk at Festkollo-
quium for Prof. J. Cigler, University of Vienna,
Austria, 30. September 2005.

[62] Paule, P. Partitionsanalysis: MacMahon’s
Traum wurde Wirklichkeit. Invited talk at TU
Graz, 2. December 2005.

[63] Paule, P. Plane Partitions Revisited. In-
vited talk at Special Session Algebraic Com-
binatorics, Joint Meeting of AMS, DMV, and
ÖMG, Mainz, Germany, 15. June 2005.

[64] Paule, P. Special Functions and Computer
Algebra. Invited talk at Dagstuhl Seminar:
Mathematics, Algorithms, Proofs, 10. January
2005.

[65] Pikkarainen, H. State estimation approach
to nonstationary inverse problems: discretiza-
tion error and filtering problem. The Eleventh
Inverse Days, Helsinki, Finland, December
2005.

[66] Piroi, F., and Kutsia, T. The theorema
environment for interactive proof development.
Contributed talk at 12th International Confer-
ence on Logic for Programming, Artificial In-
telligence, and Reasoning, LPAR’05, Decem-
ber 3 2005.

[67] Popov, N. Functional program verification
in theorema. Contributed talk at Theorema-
Ultra-Omega’05 Workshop, November 14 2005.

[68] Popov, N., and Jebelean, T. The role of
algebraic simplification in the verification of
functional programs. Contributed talk at SFB
Statusseminar, Strobl, Austria, April 01 2005.

[69] Regensburger, G. Construction and appli-
cations of parametrized wavelets. Workshop on
Inverse Problems, Obergurgl, April 2005.

[70] Regensburger, G. Construction of param-
eterized wavelets using gröbner bases. ACA
2005, Conference on Applications of Computer
Algebra, Nara, Japan, August 2005.

[71] Regensburger, G. Parametrized wavelets
and algebraic curves. Workshop on Resolution
of Algebraic Varieties, Kaiserhaus, September
2005.

[72] Regensburger, G. Semirings, idempotent
analysis and differential equations. Workshop
on ”Level Set Methods for Direct and Inverse
Problems”, Special Session on Symbolic Com-
putation and PDEs, RICAM Linz, Workshop
on ”Level Set Methods for Direct and Inverse
Problems”, Special Session on Symbolic Com-
putation and PDEs, RICAM Linz 2005.

[73] Repin, S., and Valdman, J. Functional a
posteriori error estimates for problems with
nonlinear boundary conditions. University
Zuerich: Prof. Sauter, Prof. Chipot, April
2005.

[74] Repin, S., and Valdman, J. Functional a
posteriori error estimates for problems with
nonlinear boundary conditions. Tikhonov and
Contemporary Mathematics, Moscow, June
2006.

[75] Rosenkranz, C., Hemmecke, R., Jebe-

lean, T., and Buchberger, B. Mathemati-
cal knowledge management in the frame of ver-
ification and synthesis of generic algorithms for
groebner bases. Contributed talk at SFB Sta-
tusseminar, Strobl, Austria, April 1 2005.

[76] Rosenkranz, C., and Piroi, F. Organiza-
tional tools in theorema. Contributed talk at
Theorema-Ultra-Omega Workshop, November
14-15 2005.

[77] Rosenkranz, M. Integro-differential rings
and operators. SFB Statusseminar, Strobl,
April 2005.
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[78] Rosenkranz, M. Linear two-point bound-
ary value problems in symbolic computation:
A new approach. Foundations of Compu-
tational Mathematics (FoCM’05), Santander,
Spain, July 2005.

[79] Rosenkranz, M. New symbolic computation
methods for the exact solution of two-point
boundary value problems. Algorithmic Infor-
mation Theory (AIT’05), Vaasa, Finland, May
2005.

[80] Rosenkranz, M. Symbolic solution of non-
linear bvps? - first steps and considerations.
Workshop on Inverse Problems, Obergurgl,
April 2005.

[81] Schneider, C. Finding telescopers with min-
imal depth for indefinite nested sum and prod-
uct expressions. Contributed talk at ISSAC’05,
Beijing, China, 27. July 2005.

[82] Schneider, C. When is 0.999... equal to 1?
Invited talk at Special Session Algebraic Com-
binatorics, Joint Meeting of AMS, DMV, and
ÖMG, Mainz, Germany, 16. June 2005.

[83] Shemyakova, E. Applications of bk method
of linear partial differential operators factoriza-
tion. talk at Conference ”Computer algebra”,
Dubna, Russia, May 2005.

[84] Shemyakova, E. Families of factorizations
of linear partial differential operators. talk at
Conference ”ACA’05”, Nara, Japan, August
2005.

[85] Shemyakova, E. Families of factorizations
of linear partial differential operators. talk at
Conference ”ASCM’05”, Seoul, South Korea,
December 2005.

[86] Shemyakova, E. A maple program for factor-
ization of linear partial differential operators in
two variables. talk at Conference ”SNMP’05”,
Kyiv, Ukraine, June 2005.

[87] Stainko, R. Phase–field relaxation of topol-
ogy optimization with local stress constraints.
Workshop on Level Set Methods for Direct and
Inverse Problems, Linz, September 2005.

[88] Stainko, R. Phase–field relaxation of topol-
ogy optimization with local stress constraints.
IUTAM Symposium on Topology Design Op-
timization of Structures, Machines and Mate-
rials, Rungsted, Denmark, November 2005.

[89] Stainko, R. Phase-field relaxation of topol-
ogy optimization with local stress constraints.
Technical University of Denmark, February
2005.

[90] Stainko, R., and Burger, M. Phase–field
relaxation of topology optimization with local
stress constraints. IPAM Inverse Problems Re-
union Conference, Lake Arrowhead, June 2005.

[91] Stainko, R., and Burger, M. Phase–field
relaxation of topology optimization with local
stress constraints and an optimal KKT-solver.
Workshop on Dircet and Inverse Field Compu-
tations in Mechanics, Linz, November 2005.

[92] Stütz, R. Estimation of discontinuous solu-
tions of ill-posed problems using adaptive grid
techniques. SFB Status Seminar Strobl, Aus-
tria, March 2005.

[93] Stütz, R. Estimation of discontinuous solu-
tions of ill-posed problems via the moving grid
approach. Workshop Inverse Problems, Ober-
gurgl, Austria, April 2005.

[94] Valdman, J. Fast solve for elastoplasticity.
Talk at the conference Enumath 2005, Santiago
de Compostela, Spain, 2005., July 2005 2005.

[95] W., W. Symbolic solution techniques for the
elastoplasticity problem. Contributed talk at
SFB Statusseminar 2005, 31.3.2005 2005.

[96] Windsteiger, W. An automated theorem
prover for set theory within the theorema sys-
tem. Invited colloquium talk at Institute for
Algebra, Charles University Prague, April 25
2005.

[97] Windsteiger, W. Creacomp: Neue
mglichkeiten im e-learning fr mathematik. In-
vited colloquium talk at Research Net Up-
per Austria: Brennpunkt Forschung, 22. April
2005.

[98] Windsteiger, W. The creacomp project:
Theorema for computer-supported teaching
and learning of mathematics. Contributed
talk at Theorema-Ultra-Omega’05 Workshop,
November 14 2005.

[99] Windsteiger, W. Theorema: A system for
mathematical theory exploration. Invited col-
loquium talk at Institute for Algebra, Charles
University Prague, April 26 2005.

[100] Winkler, F. On the factorization of lin-
ear differential operators. Talk at the work-
shop “Computer Algebra and Informatics” in
Lomonosov Moscow State Univ., Faculty of
Mechanics and Mathematics, November 2005.

[101] Wolfram, M.-T. Semiconductor inverse
dopant profiling from transient measurements.
Inverse Problems Reunion Conference, Lake
Arrowhead, June 2005.
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