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This Annual Report gives a summary of SFB results
achieved in 2006.

Also in its ninth year of funding, the overall sci-
entific goal of the SFB is the design, verification, im-
plementation, and analysis of numerical, symbolic,
and geometrical methods for solving

• large-scale direct and inverse problems
with constraints

and their synergetical use in scientific computing for
real life problems of high complexity. This includes
so-called field problems, usually described by partial
differential equations (PDEs), and algebraic prob-
lems, e.g., involving constraints in algebraic formu-
lation.

Concerning the fine structure of the Scientific
Concept and of the Long Term Goals of the SFB,
we permanently have made adaptations in order to
focus more properly on our overall objective. These
adjustments have been driven by the advice and the
suggestions of the referees, by our experience made
during the SFB work, but also by the changing re-
quirements in the international research community.

By supplementary measures, like joint internal
seminars between numerical and symbolic groups or
target-oriented structure of the SFB status seminars,
the coherence between the numerical and symbolic
groups has been further improved.

Also in the ninth year of SFB funding, the sci-
entific results obtained within the SFB by the parti-

cipating institutes gave rise to various activities con-
cerning knowledge and technology transfer to the in-
dustry, especially, in Upper Austria. For more de-
tails see the sections describing the scientific progress
achieved within the subprojects of the SFB.

The following institutes of the Johannes Kepler
University (JKU) of Linz are currently involved in
the subprojects of the SFB:

• Institute of Applied Geometry,

• Institute of Computational Mathematics,

• Institute of Industrial Mathematics,

• Institute of Symbolic Computation (RISC).

Another participating institution is the Johann
Radon Institute for Computational and Applied
Mathematics (RICAM) of the Austrian Academy
of Sciences (ÖAW).

For further information about our SFB please
visit our internet home page

http://www.sfb013.uni-linz.ac.at

or contact our office.

Linz, August 2007 Peter Paule

We express our thanks to the Austrian Research Fund (FWF), the Johannes Kepler University (JKU) of Linz,
the Government of Upper Austria, and the City of Linz for moral and financial support. Sincere thanks to all
SFB members who helped with preparing this booklet.
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F 1301: Scientific Part of the Service Project

Prof. Dr. P. Paule

Prof. Dr. J. Schöberl, Dr. V. Levandovskyy

DI V. Pillwein, MSc. F. Stan

In the third funding period of the SFB the major
objectives of the scientific part of subproject F1301
are: (i) the development of computer algebra tools
(e.g., for symbolic integration and summation of spe-
cial functions) in connection with high order finite
element methods; (ii) the development of (non–com-
mutative) Gröbner bases software that can be ex-
ploited by other subprojects. In all these areas sig-
nificant progress has been achieved which is docu-
mented by 9 publications.

1 High Order Finite Elements

Inner shape functions using integrated Jacobi
polynomials. Two major objectives in the design
of high order basis functions are to obtain a sparse
structure and a small condition number of the re-
sulting system matrix. In [1] and [2] S. Beuchler and
V. Pillwein propose families of interior bubbles for
triangles and tetrahedra that lead to a sparse system
matrix in the case of a polygonally bounded domain
and a constant coefficient function. For the case of a
curved domain or a non constant coefficient function
efficient preconditioners are derived.

Figure 1: Nonzero pattern of the system matrix for
polynomial degree 32, a = b = 0, tetrahedral case

The basis functions are constructed using a ten-
sor product structure of Jacobi polynomials. The
main result is the nonzero pattern of the stiffness
matrix, and thereby also the number of nonzero en-
tries, which can be given explicitely. In the case of
tetrahedral elements the definition of the shape func-
tions depends on two parameters a, b with 0 ≤ a ≤

4, a ≤ b ≤ 6. In dependence of a and b we have,

Ki,j,k;l,m,n = 0 ⇔ |i− l| 6∈ {0, 2},
or |i− l+ j −m| > 3 + a,

or |i− l+ j −m+ k − n| > 2 + b.

The optimal choice of parameters with respect to
sparsity and condition number of the system matrix
is a = b = 0, see Figures 1 and 2, respectively. This
result was proven by explicitely computing the ma-
trix entries in an algorithmic manner with a Math-
ematica implementation. This proof would not have
been feasible without the application of computer al-
gebra software. In the course of building the algo-
rithm, several relations between Jacobi polynomials
with different parameters were needed that can also
be generated and proven using symbolic summation
algorithms [19], [7].

Figure 2: Inverse of minimal eigenvalue, tetrahedral
case, for different choices of a, b

Smoothing operator. When working on a con-
vergence proof for a certain finite element scheme J.
Schöberl defined a smoothing operator as a weighted
sum over Legendre polynomials. He was lead to con-
jecture that the inequality

n
∑

j=0

(4j + 1)(2n− 2j + 1)P2j(0)P2j(x) ≥ 0

holds for x ∈ [−1, 1], n ≥ 0. This inequality is used
to show L1 boundedness of the smoothing operator’s
kernel.
Recently V. Pillwein [15] was able to reformulate
this inequality with the assistance of the symbolic
summation package SumCracker [7]. This rewrit-
ing lead to a computer algebra based proof of the
non-negativity as well as an extension of the conjec-
tured inequality to Gegenbauer polynomials Cλ

n(x)
for λ ∈ [0, 1].
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2 Special Functions and Pois-

son Integrals

Computer algebra tools, developed in SFB work,
played a prominent role in solving special function
problems arising in finite element methods; see the
previous section. Of course, these tools are ready to
be applied also to other areas of mathematical anal-
ysis.

Using classical analytic methods, E. Symeonidis
[17] derived explicit expressions for the Poisson ker-
nels of geodesic balls in higher dimensional spheres
and real hyperbolic spaces. As a consequence, he was
able to solve the Dirichlet problem for the projective
space explicitly. As a by-product of his work, Syme-
onidis obtained indirect proofs of two new and non-
trivial special function identities involving Gegen-
bauer polynomials Cλ

k (x). The first identity holds
for |x| < 1, |t| < 1 and integer n > 2, and reads as
follows,

∑

k≥0

(

k+n−2
k

)

(

k+ n

2
−2

k

)
tk2F1

(

k, 1 − n
2

k + n
2

; t2
)

C
n−2

2

k (x)

=

(

1 − t2

1 − 2tx+ t2

)n−1

;

the second one is of slightly more complicated form.
The question for a direct proof, despite being posed
to a wider audience (e.g. [14]), has been settled only
recently by F. Stan in her SFB work [16]. One of
the essential ingredients of Stan’s proof is the RISC
package MultiSum [19].

3 Applications of Gröbner

Bases

3.1 Implementations of Gröbner
Bases

In the algebraic treatment of systems of equations,
involving linear operators (like partial differentia-
tion, partial difference and so on), the choice of co-
efficients in equations leads us to different algebraic
structures. For the case of constant (scalar) coeffi-
cients, the underlying system algebra is commuta-
tive. If the coefficients are polynomial in the vari-
ables of the system, we obtain a non–commutative
G–algebra. Numerous algorithms, based on Gröbner
bases for these two cases, are implemented in the spe-
cialized Computer Algebra System Singular ([6]).
The system is freely available for the non–commercial
use and, moreover, is widely known for its perfor-
mance. In 2004, the Singular team was awarded
with the Richard D. Jenks Memorial Prize for Ex-
cellence in Software Engineering for Computer Al-
gebra. The non–commutative subsystem Singu-

lar:Plural ([5]) handles the algebras, arising from
systems with polynomial coefficients, including al-
gebras with additional polynomial identities. For

example, the algebra of linear differential opera-
tors with polynomial coefficients in trigonometric
functions is realized as a factor algebra of a non–
commutative algebra as follows. Let A be the al-
gebra, generated by {sin, cos, ∂} over K subject to
relations ∂·sin = sin·∂+cos, ∂·cos = cos·∂−sin and
sin ·cos = cos ·sin. Then, we consider the two–sided
ideal T = 〈sin2 + cos2 − 1〉 ⊂ A, compute its two–
sided Gröbner basis (which is just {sin2 + cos2 − 1}
in this case) and pass to the factor algebra A/T .

Extension of Gröbner Bases to Ore Localiza-
tions. In order to treat the case where the coeffi-
cients of the system are rational functions in the vari-
ables, we employ the notion of an Ore localization.
We extend the Gröbner bases theory to the Ore–
localized G–algebras (not restricting ourselves to the
case of so-called Ore algebras ([3], [4]). We show
that among the criteria for discarding the critical
pairs the most useful one, namely the chain criterion,
generalizes completely to the localized case while the
generalization of the product criterion (which is very
natural for the commutative case) does not bring
sufficient improvements. We started to implement
Gröbner bases algorithms in the framework of Sin-

gular. One of the most important and compli-
cated tasks is to provide really efficient algorithms
and their implementation for the complicated arith-
metics over rings of quotients of non–commutative
domains. At the time being we use a compromise
approach via syzygies. The implementation is avail-
able as a combination of enhancements in the kernel
of Singular and a Singular library ratgb.lib [9].

Intercommunication packages. With the help
of recent intercommunication packages, the fast and
functionally rich implementation of algorithms, re-
lying on Gröbner bases, in Singular is available to
the general purpose systems, like Maple and Math-

ematica.

The user–friendly and easy–to–use package, al-
lowing Mathematica to exchange data and to call
numerous functions of Singular externally, has
been developed by Manuel Kauers (F1305) and Vik-
tor Levandovskyy (F1301). This package [8] is avail-
able for free download.

3.2 Symbolic Generation and Stabil-
ity Analysis of Finite Difference
Schemes

For the linear PDE’s with constant coefficients, the
process of generating finite difference schemes may
be performed symbolically, with the help of Gröbner
bases for submodules of free modules over a commu-
tative polynomial ring. We propose a more efficient
method, than the one proposed in [18]. Moreover,
it turned out, that using the computer–algebraic
approach of elimination of module components, the
same ideas carry over to the case of linear PDE’s
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with polynomial and rational coefficients as well as
to systems of linear PDE’s.

Our method can be applied, in particular, for
higher spatial dimensions without significant loss
of performance. The input data consist of equa-
tions and corresponding approximation rules for the
partial derivatives, written in terms of polynomi-
als in partial difference operators like Tx, where
Tx • u(xj , tn) = u(xj+1, tn) for discrete indices j, n.

For the equation utt−λ2uxx = 0 with some initial
conditions, we apply the 2nd order central approxi-
mations for both x and t in the vector operator form,
e. g. (−△x2 ·Tx, (1−Tx)2)•(uxx, u)

T = 0. With this
symbolic data we form a submodule of a free mod-
ule, involving partial difference operators. By using
Gröbner bases, we eliminate certain module compo-
nents from a given module and obtain a submodule,
corresponding to the operators, which depend only
on u and not on its derivatives.

We denote d := λ△t/△h, and obtain the scheme,
written in terms of operators,

d2T 2
xTt − TxT

2
t + (−2d2 + 2)TxTt − Tx + d2Tt = 0.

Using specially developed visualization tools
(e. g. the Singular library discretize.lib), in
a semi–automatic way we are able to present the
scheme above in the more convenient nodal form,
namely as

(un+2
j+1−2un+1

j+1 +un
j+1) = λ2 △t2

△h2
·(un+1

j+2−2un+1
j+1 +un+1

j ).

In our work we discovered the semi–factorized
form of the difference scheme. It is much more
compact than the nodal form and more informative
than the polynomial operator form above. For ex-
ample, the semi–factorized form of the scheme above
is Tx(Tt − 1)2 − d2 · (Tx − 1)2Ty = 0. The usefulness
of a semi–factorized form increases while working in
higher–dimensional situation. For example, apply-
ing the same approximations as above for the 1+3D
equation utt − λ2(uxx + uyy + uzz) = 0, both oper-
ator form and the nodal form are hardly readable,
while the semi–factorized form is TxTyTz(Tt − 1)2 −
d2

x · (Tx − 1)2TyTzTt − d2
y · Tx(Ty − 1)2TzTt − d2

z ·
TxTy(Tz − 1)2Tt = 0.

With these methods we are able to generate all
the classical linear schemes (as it has been noted in
[18]) as well as more complicated schemes, including
the schemes with parametric switches.

Using the efficient implementation of Gröbner
bases, the schemes for 1–dimensional in time and
1,2,3–dimensional in space equations can be com-
puted in a few seconds.

Von Neumann Stability Analysis. The inves-
tigation of von Neumann stability of a given finite
difference scheme can be done by symbolic methods.
Moreover, for (un-)conditionally stable schemes we
can perform the dispersion analysis. For both appli-
cations, the system Singular is used for polynomial

computations, mappings and the translation of the
output to the nodal form, standardly used in the
literature on finite difference schemes. Mathemat-

ica is used for computing the Cylindrical Algebraic
Decomposition, arising in the final stage of both sta-
bility and dispersion analysis.

Let us continue with the example above. We
use the stability morphism between the rings R =
K(d)[Tx, Tt] and S = K(d)[i, sin, cos, g]/〈sin2 +
cos2 − 1, i2 + 1〉, sending Tx 7→ sin+ i · cos, Tt 7→ g.
Here, sin = sin(α), cos = cos(α) and α = β△x for
some β.

After the purely algebraic simplification in the
ring S, we obtain the stability polynomial in one vari-
able g2 +2bg+1 = 0, where b := −1+2d2 sin2(α/2).
A scheme, given by a polynomial in one variable is
von Neumann stable, if the modulus of every root
is at most 1. In our example, the stability poly-
nomial has roots b ±

√
b2 − 1. If b2 > 1, the ab-

solute value of one of the roots is bigger than one.
If b2 ≤ 1, the modulus of both roots is equal to 1.
Moreover, b2 ≤ 1 ⇔ d ≤ 1. Hence, the investigated
scheme is conditionally stable with the condition for
the Courant number d = λ△t/△h ≤ 1.

We are going to apply the developed methods for
finite difference schemes in cases of higher spatial di-
mensions, for systems of multidimensional equations,
for two–step schemes like Lax–Wendroff etc.

Consider a difference scheme for an initial–
boundary value problem. Assume the problem is
bounded in each spatial variable. It is known,
that the von Neumann condition for the difference
scheme, considered as a difference scheme for an ini-
tial value problem, is a necessary condition for stabil-
ity. However, when a problem is solvable by standard
finite Fourier series, the von Neumann condition is
both a necessary and sufficient condition; otherwise,
one should consider generalized basis functions (e.g.
non–standard Fourier modes). It seems that we can
support the search for non–standard Fourier modes
with symbolic methods.

For systems of PDE’s, the von Neumann condi-
tion, in general, is only a necessary condition for sta-
bility. For equations with non–constant coefficients
there is no established theory of von Neumann anal-
ysis. Applying the method of frozen coefficients and
doing then the von Neumann analysis for the con-
stant coefficients gives only very a rough picture. It
is better to use so called energy methods, which have
to be investigated. These and other results will ap-
pear in [10].

3.3 Control Theory

Given a module M over an algebra A, we can present
M as a sum M = T + F , where T is a torsion sub-
module ofM and F a torsion–free submodule respec-
tively. In Control Theory, there is a correspondence
between this presentation and the decomposition of
a system into a controllable part (torsion–free sub-
module) and an autonomous part (torsion submod-
ule). For systems of equations, involving linear op-

5



erators, the torsion submodule can be described and
computed by using the tools of homological algebra
([4]), which in turn depend heavily (both algorithmi-
cally and in the implementation) on Gröbner bases.

The methods of algebraic analysis, applied to the
problems of Control Theory, have been implemented
([11, 13]) in the library control.lib for the sys-
tem Singular for the case of constant coefficients.
The development of the generalization to the case
of variable coefficients is in progress. It relies on
the implementation of Gröbner bases in the system
Singular:Plural ([5]) and on the library for non–
commutative homological algebra.

Genericity of Parameters In systems contain-
ing parameters, it often happens that some struc-
tural properties, like controllability or autonomy,
hold only for the generic case, that is for almost all
values of parameters. It means, that there might ex-
ist such values of parameters that e.g. a generically
controllable system, specialized at these values, be-
comes non–controllable. We provide an algorithmic
way to detect such and similar phenomena, which
we call the genericity violation. The results for 1–
dimensional systems appeared in [12], while very re-
cently [13] we gave a complete recipe to obtain all
such obstructions to genericity. This includes the
computation of transformation matrices between the
original set of generators and its Gröbner basis as
well as solving systems of equations and inequations.
We successfully apply our methods and obtain, in
particular, a complete solution of a problem posed
many years ago.
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F 1302: THEOREMA: Proving, Solving, and
Computing in the Theory of Hilbert Spaces

Prof. Dr. T. Jebelean, Prof. Dr. B. Buchberger

Dr. W. Windsteiger, Dr. T. Kutsia,
Dr. M. Rosenkranz, Dr. M. Giese,
Dr. F. Piroi,

DI A. Craciun, DI N. Popov,
DI L. Kovacs, DI G. Regensburger,
DI C. Rosenkranz, DI R. Vajda

The main emphasis of the research in this subpro-
ject is on building up case studies of significant size in
the main areas of interest of the SFB project: func-
tional analysis, Groebner Bases, and basic algorith-
mic domains. In the course of development of these
case studies we also aim to improve the functional-
ity of our system: added proving–computing–solving
power, increased usability and interaction with other
projects and systems, capabilities for building-up
and management of mathematical knowledge, anal-
ysis and synthesis of algorithms, etc.

The main directions of research in the report-
ing period have been: theory exploration and proving
in special domains, algorithm analysis, and advanced
proving techniques.

1 Theory Exploration and
Proving in Special Domains

Our group continued to implement the scheme-based
exploration of theories which are typically used in the
development of mathematics and computing. In par-
ticular, in [3], we investigated in detail the aspects
of building-up in a systematic manner the theory of
natural numbers, which is a prerequisite for all alge-
braic theories (like e. g. the theory of polynomials)
as well as for the elementary and advanced theories
used in numerical analysis.

Moreover, we continued to develop special prov-
ing techniques for basic domains which are used in
Mathematical theories: the domain of sets and the
domain of real numbers.

The work described in [13] concentrates on some
fundamental aspects of the design and the implemen-
tation of an automated prover for Zermelo-Fraenkel
set theory within the Theorema system. The method
applies the Prove-Compute-Solve–paradigm as its
major strategy for generating proofs in a natural
style for statements involving constructs from set
theory.

In [1], we approach reasoning in number the-
ory for a quite nontrivial problem (the Mordell-Weil
Theorem), as we design specific inference rules and
strategies for proving in number domains.

The work presented in [12] extends the capa-
bilities of the previously developed S-decomposition

method for proving in elementary analysis, by adding
the usage of algebraic algorithms (in particular the
Cylindrical Algebraic Decomposition) for the auto-
matic discovery of witnesses for existentially quan-
tified variables. This prover was used for part of
the examples developed in the CreaComp project for
computed aided learning.

2 Algorithm Analysis

An essential aspect of program analysis (in particu-
lar of program verification) is the generation of in-
variants for imperative loops – which is a problem
closely related to the generation of preconditions and
postconditions for recursive functions in functional
programming. In [5], [4] we present an algorithm
for finding valid polynomial relations (i. e. invari-
ants) among program variables for imperative loops.
The algorithm is implemented in the verification
environment for imperative programs (using Hoare
logic). We use techniques from (polynomial) alge-
bra and combinatorics, namely Groebner Bases, vari-
able elimination, algebraic dependencies and sym-
bolic summation (the Gosper algorithm, handling ge-
ometric series, C-finite solving). These methods are
demonstrated on several examples which have been
treated completely automatically by our implemen-
tation.

This approach is further developed in [6], where
we also present the relation between the problem of
invariant generation in imperative programming and
the problem of verification of functional programs.

The problem of verification of functional pro-
grams is approached in a specific manner in [10], [11],
where we show the completeness of the method de-
veloped earlier. The specific features of this method,
which are crucial for the automation of verification
and proving, are, on one hand, the presence in the
verification conditions of constants (functions, pred-
icates) which belong exclusively to the theory of the
domain treated by the program, and on the other
hand, the usage of algebraic techniques for the dis-
covery of the preconditions and postconditions of the
auxiliary (recursive) function.
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3 Advanced Proving Tech-

niques

A crucial aspect of using automated reasoning both
for exploring mathematical theories as well as for al-
gorithm analysis and algorithm synthesis is the ef-
ficiency of the automatic proving engines. Our re-
search continued to address the problem of devel-
oping new methods and strategies for automated
reasoning in predicate logic and in equational logic
(in particular in equational logic with sequence vari-
ables, which was pioneered in the Theorema system).

In [2] we present an adaptation of the technique of
saturation up to redundancy, as introduced by Bach-
mair and Ganzinger, to tableau and sequent calculi
for classical first-order logic. This technique can be
used to easily show the completeness of optimized
calculi that contain destructive rules e.g. for sim-
plification, rewriting with equalities, etc., which is
not easily done with a standard Hintikka-style com-
pleteness proof. The notions are first introduced for
Smullyan-style ground tableaux, and then extended
to constrained formula free-variable tableaux.

The work presented in [8] develops an algorithm
for constraint solving over hedges and contexts built
over individual, sequence, function, and context vari-
ables and flexible arity symbols, where the admissi-
ble bindings of sequence variables and context vari-
ables can be constrained to languages represented
by regular hedge or regular context expressions. We
identify sufficient syntactic restrictions that enable
to solve such constraints by matching techniques,
and describe a solving algorithm that is sound and
complete. This approach is further developed in [7],
where we describe a framework for solving equational
and membership constraints for terms built over in-
dividual, sequence, function, and context variables
and flexible arity symbols. Each membership con-
straint couples a variable with a regular expression
on terms or contexts. There can be several member-
ship constraints with the same constrained variable,
and expressions may contain variables themselves. A
membership constraint is satisfied if an instance of
the constrained variable belongs to the language gen-
erated by the corresponding instance of the regular
expression. We identify sufficient syntactic restric-
tions that allow us to use matching techniques for
solving such constraints, describe a complete algo-
rithm, and discuss applications.

Furthermore in [9], we describe the foundations
of a system for rule-based programming which inte-
grates two powerful mechanisms: (1) matching with
context variables, sequence variables, and regular
constraints for their matching values; and (2) strate-
gic programming with labeled rules. The system is
called rhoLog, and is built on top of the pattern
matching and rule-based programming capabilities
of Mathematica.
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F 1303: Proving and Solving over the Reals

Prof. Dr. J. Schicho

Dr T. Beck, DI B. Moore, Dr J. Ṕılniková

In 2007, two quite successfull PhD theses have
been defended. The thesis of Dr J. Ṕılniková [8] con-
tains the development of a new method for solving
certain types of Diophantine equations, based on Lie
algebras. This method was used for solving the last
unresolved cases in the problem of parametrizing ra-
tional surfaces over Q. The thesis of Dr. T. Beck
contains not only sparse versions of algorithms for
curve parametrization, but the rudiments of an algo-
rithm for surface parametrizations which – according
to first experiments – is expected to be much faster
than existing methods.

1 Sparse Methods
for Plane Curves

Another algorithm for rational parametrization of
curves has been adapted to sparse polynomials (see
[2, 3]). Toric techniques can take advantage of the
sparsity of the given polynomial equation of the
curve. This is particularily useful in the parametriza-
tion problem because here the non-toric approach
leads to complicated singularities at infinity in the
case of sparse input equations. In the toric approach,
this is avoided by “taking another infinity”, i.e. by
completing the curve not in the projective plane but
in a certain toric variety, which is determined by the
Newton polygon of the polynomial equation.

2 Formal Resolutions

Every algebraic variety over a field of characteristic
zero has a resolution of singularities. However, the
algorithms for computing such a resolution (due to
Villamayor, Bierstone/Milman, and others) are ex-
tremely complicated and lead to large outputs. This
is unfortunate because there are potential applica-
tions that could well use resolutions, for instance ad-
joint computation, genus computation, parametriza-
tion of algebraic surface.

We developed the concept of formal resolutions,
which basically gives information about the divisors
in some resolution [1]. We also implemented a com-
putation of formal resolutions in Magma. In the
examples we tried, computing formal resolutions is
much cheaper than computing resolutions. For many
potential applications, for instance for those men-
tioned above, formal resolutions actually suffice.

3 The Lie Algebra Method for

Diophantine Problems

For finding rational points on a Del Pezzo surface of
degree 9, we have developed a method based on Lie
algebras [4]. The idea is compute the Lie algebra
of the symmetry group of the surface and then con-
struct an isomorphism of the Lie algebra and some
well-known Lie algebra. We could adapt the method
also to Del Pezzo surfaces of degree 8 [5] and of de-
gree 6 [6].

4 Splitting Central Simple Al-

gebras

Central simple algebras appear in various diophan-
tine problems, for instance in the problem of finding
points on a Severi-Brauer variety. It is often neces-
sary to decide whether a given central simle algebra
is isomorphic to a matrix algebra. This can be done
by local methods. However, these local methods do
not give an explicit isomorphism to a matrix algebra.
For degree 3 algebras, this problem was solved in [4].
In [9], we also gave an algorithm for the degree 4
case.

5 The Casas-Alvero Conjec-

ture

In a field of characteristic zero, it is clear that the
d-th power of a linear polynomial has a non-trivial
common factor with each of its first d−1 derivatives.
The converse has been conjectured by Casas-Alvero.
The conjecture was proved for d ≤ 8 with the help of
computer algebra using Gröbner bases computation.
Together with H.-C. von Bothmer, O. Labs, and C.
van de Woestijne, we proved the conjecture for d
being a prime power and for twice a prime power.
Hence the lowest possible degree for which the con-
jecture is still open is now 12, followed by 15 and
20.

This cooperation grew out of a joint discussion
that started during the special semester on Gröbner
bases held at RICAM in the first half of 2006. The
discovery of the results was aided by experimen-
tal calculations in Singular, Magma, Macaulay2 and
Maple. The final proof does not contain computer
algebra; it is based on reduction techniques modulo
primes.
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6 Topology meets Algebra

In a group G, a function f : G→ G is called polyno-
mial iff it can be written as a product of constants,
the argument, and the inverse of the argument. (In
general signatures, a function from a structure is
called polynomial iff it can be expressed by the avail-
able function symbols and constants.) Together with
pointwise multiplication and functional decomposi-
tion, the set of all polynomial functions forms a near
ring, and it is of interest to study this structure for
various groups.

For the groupG = GL(2,R), algebraic techniques
do not suffice to decide the question whether transpo-
sition is a polynomial. We could answer this question
negatively by topological methods, in a cooperation
with G. Landsmann and P. Mayr from the University
of Linz [7].

7 Balancing Parallel Robots

Together with C. Gosselin from Naval University,
Quebec, Canada, we studied the problem of devis-
ing a robot manipulator that does not exert forces
(static balancing) or torques (dynamic balancing) to
the base during its moves (see Figure 3). This is rela-
vant for robotics applications in optics and in aero-
nautics.

For the easiest parallel manipulator, the planar
four-bar linkage, generic solutions have been known
since 1965, and Gosselin detected a new solution.
Using methods of toric geometry, we could now give
a complete description of all solutions.

Figure 3: balancing parallel robot

8 Quadratic Bezier Clipping

Together with B. Juettler, a new geometric method
based on the Bezier clipping approach has been de-
veloped to compute the intersections of two plane
algebraic curves on a given domain. Part of the
family of interval reduction approaches, it iteratively
computes increasingly accurate domains in which the
roots lie, until a certain accuracy is reached.

The new method has several advantages: it find
all real solutions, it is numerically stable due to the
use of Bernstein-Bezier basis and it could be ex-
tended to an interval computation approach, thus
giving a bound on the numerical error of the solu-
tions.
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[8] Ṕılniková, J. Parametrizing algebraic varieties
using Lie algebras. PhD thesis, RISC, J. Kepler
Univ., Linz, 2006.
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F 1304: Symbolic Differential Computation

Prof. Dr. F. Winkler

Dr. H. Gu, Dr. E. Kartashova

DI E. Shemyakova

This report covers the period from January 2006
until December 2006. During this period we have
investigated factorization of linear partial differen-
tial operators, invariants for linear partial differential
operators, differential characteristic sets, symbolic-
numerical methods for polynomial equation solving,
differential equations in mathematical physics, and
computer algebra in general.

1 Factorization of Linear Par-

tial Differential Operators

In the previous year our group has started to work
on algorithms for factoring LPDOs. In their seminal
paper Grigoriev and Schwarz have shown how this
factorization problem can be reduced to the solution
of algebraic and often linear equations over the field
of coefficients. This algorithm has been investigated
further by Kartashova in [5] and [14]. Shemyakova
and Winkler have considered situations in which the
factorization algorithm fails to produce factors [17],
[18]. These conditions of failure (obstacles) form an
interesting algebraic structure and can be used to
measure how far an operator is from a factorizable
one.

2 Invariants for linear partials
differential operators

The work on factorization leads in a natural way to
invariants for LPDOs under certain (gauge) trans-
formations. Kartashova has presented a hierarchy of
invariants for bivariate LPDOs in [6]. In [16] She-
myakova and Winkler have sketched how a full sys-
tem of invariants can be determined for low order
(order 3) operators. Such a full system has been de-
rived rigorously by Shemyakova in [15].

3 Differential characteristic

sets

Differential characteristic sets have been introduced
by Ritt as a tool in differential elimination theory.
They allow to find elements of lowest order or de-
pending only on certain partial derivations in ideals
of LPDOs. Aistleitner has received a scholarship for
some months in 2004 to work on a diploma thesis
for implementing differential characteristic sets in a

generic way. He has completed his diploma thesis in
December 2005 [1] and finished his diploma studies
early in 2006. Parts of his diploma thesis have been
presented at the Rhine Workshop on Computer Al-
gebra [2].

4 Symbolic-numerical methods

for polynomial equation solv-
ing

Gu has cooperated within the SFB (M. Burger) [3]
and also outside the SFB (H. Herrmann (Institut
f. Theoretische Physik, TU Berlin) [4]. In these
cooperations Gu could demonstrate successfully his
symbolic-numerical solutions method for polynomial
equation solving.

5 Differential equations in

mathematical physics

E. Kartashova has worked on the analysis of differ-
ential equations arising in theoretical physics. Her
work is mainly directed towards laminated wave tur-
bulance and resonances amoung gravity waves [7] [11]
[8] [12] [13] [10] [9].

6 Computer algebra

In a previous phase of the SFB Winkler has worked
on symbolic computation problems of algebraic
curves. A paper concerning this work has finally
been published [19]. Winkler has discussed these
methods also in invited talks at Aristotle University
in Thessaloniki [22] and at the Erwin Schrödinger
Institute in Wien [24].

Winkler has worked on problems of differential
elimination theory, in particular on a Gröbner basis
algorithm for rings of linear partial differential oper-
ators [20] [21].

A general discussion of problems in computer al-
gebra was given in [23].
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F 1305: Proving and Solving in
Special Function Domains

Prof. Dr. P. Paule

Dr. M. Kauers, Dr. C. Schneider

DI C. Koutschan, Mag. B. Zimmermann

The scientific output achieved in 2006 by the SFB
project group F1305 is documented in the form of 33
publications: 22 articles were (or will be soon) pub-
lished in journals and 4 in conference proceedings;
7 technical reports have been produced.

1 Identities

Schneider’s summation algorithms implemented in
the summation package Sigma [32] were the basis for
solving various non-trivial multi-sum problems. E.g.,
it is shown that a quadruple sum expression evaluates
to zeta-functions [28, 33], or identities were proven in
the context of Padé approximation [6, 7] and super-
congruences [26]. In particular, it is demonstrated
that the derivation of the key recurrences in Apery’s
proof (the irrationality of ζ(3)) becomes trivial [29]
by using Schneider’s algorithms. Moreover, a proof
of an identity [32, Section 10.2] in the Handbook of
Mathematical Functions (Abramowitz/Stegun) was
produced whose original proof has been lost; sev-
eral other such identities are proven in joint work of
the F1305-group. In cooperation with C. Schneider,
B. Zimmermann and S. Gerhold (former member of
F1305), the asymptotic behavior of one-dimensional
Schelling population models could be derived [8].
Moreover, P. Paule and C. Schneider generalized
identities arising in the field of statistics [27]. Besides
this, in cooperation with J. Schöberl and V. Pill-
wein (see F1301), recurrences were computed that
can speed up the computations in Finite Element
Methods [5]. As worked out in [30], it is remarkable
that symbolic summation tools, in particular tele-
scoping and creative telescoping, allow to prove al-
gebraic independence of certain classes of sums; for

instance the harmonic numbers {H(i)
n |i ≥ 1} with

H
(i)
n =

∑n

k=1
1
ki are algebraically independent.

Besides refined difference field theory [31] var-
ious generalizations of summation algorithms have
been accomplished. Due to Schneider’s and Kauers’
cooperation it is now possible to treat also generic
(unspecified) sequences [21, 20] and radical se-
quences [22], like

√
n, within given summation prob-

lems.

Using different techniques, M. Kauers’s devel-
oped new algorithms [17] that can discover and prove
sum identities involving, e.g., Stirling numbers. His
work on algorithms and software for the class of “ad-
missible sequences”, which he studied in his thesis,
has lead to a couple of new extensions. His imple-

mentation of these algorithms [13, 14] in form of the
Mathematica package SumCracker is able to prove
and to discover identities which were previously con-
sidered out of scope of symbolic computation. Ex-
amples include properties of Somos sequences, nested
C-finite expressions, orthogonal polynomials, contin-
ued fractions, etc. Some of these computations ex-
ceed the capabilities of Mathematica’s Gröbner basis
engine, which is used by default inside SumCracker.
Therefore, V. Levandovsky (F1301) and Kauers have
implemented an interface linking Mathematica and
Singular [18], a special purpose CAS allowing fast
Gröbner basis computations.

In a cooperation of Kauers and Zimmermann,
an algorithm for determining the algebraic relations
among C-finite sequences was found [23]. This al-
gorithm solves an important subproblem arising in
symbolic summation of special sequences; e.g. con-
cerning identities like in [11]. In another article [12],
Kauers gives an algorithm for solving another im-
portant subproblem arising in symbolic summation,
namely the problem of deciding shift-equivalence of
P-finite sequences.

2 Inequalities

In 2005, Gerhold and Kauers have proposed a pro-
cedure for automatically proving inequalities among
expressions that are defined via recurrence equations.
With this procedure it is possible to verify a large
number of inequalities appearing in the literature by
applying a computer procedure. This was an unex-
pected success in view of the fact that special func-
tion inequalities have generally been viewed as in-
accessible to symbolic computation. A remarkable
example is the computer proof of Turán’s inequality
for Legendre polynomials [9], of which a new refine-
ment [1] has been derived. A conjectured inequal-
ity which arose in the numerical work of J. Schöberl
(F1319) has been explored with these new methods;
see [10]. Moreover, a long-standing log-concavity
conjecture related to the closed form of a certain
quartic integral could be proven with our computer
algebra methods; see [19]. Furthermore, the arti-
cle [15] concerns automated proofs of positivity of
the Taylor coefficients in the expansion of multivari-
ate rational functions. An overview of these activi-
ties is given in [16].
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3 Other aspects

C. Koutschan completed his work on the inverse
Schützenberger methodology which is based on Soit-
tola’s Theorem (concerning the N-rationality of for-
mal power series); see [25]. The N-rationality test
can be performed by his Maple package RLangGFun.
C. Koutschan started to cooperate with H. Hauser,
Innsbruck, in order to illuminate the properties of
the generating function of linear multivariate recur-
rences. Result: The reformulation of such a recur-
rence as a division with remainder leads to a better
understanding of the corresponding generating func-
tion. The results are submitted for publication [24].

The longterm collaboration between the principal
investigator and G. Andrews (Penn State) on parti-
tion analysis was continued and has led to significant
progress [2, 3, 4]. Within F1305, the Mathematica
package Omega was developped; it provides an al-
gorithmic version of MacMahon’s Omega calculus.
More than a century ago MacMahon had invented
this calculus in order to prove a conjecture about the
form of the generating function for plane partition.
However, at that time the conjecture remained open
because of the immense computational complexity
required by his method. Now, with the availability
of both computers and sophisticated computer alge-
bra software, MacMahon’s dream has come true [2]
and [4].
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F 1306: Nonlinear 3D Mechanical Problems

Prof. Dr. U. Langer, Prof. Dr. J. Schöberl
DI. P. G. Gruber, DI. J. Kienesberger
Dr. J. Valdman, Dr. S. Beuchler

The development of adaptive multilevel methods
for nonlinear 3D mechanical problems is the topic of
this project. The main focus in the past year was to
enhance the already existing fast and robust solvers
for 2D and 3D elastoplastic problems.
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Figure 4: A screw wrench when pressed down: The
plot shows elastic (green) and plastic (pink) zones.

Elastoplastic materials are modeled by the de-
composition of the strain into an elastic and a plastic
part; the equilibrium of forces and the linear depen-
dence of the stresses on the strains are then inherited
elastic laws. The term describing the plastic strain is
zero if the forces acting on the body are small enough
such that the material behaves only elastically.

If the stresses in the considered body exceed a
certain threshold, the plastic strains become non-
zero. Figure 4 shows a screw wrench under heavy
load, such that plastic deformations take place. The
time evolution of the plastic strain is described by the
Prandtl-Reuß normality law. After time discretiza-
tion, the modeling process in each time step yields a
minimization problem in two variables, namely the
displacement u and the plastic strain p. One has to
find u and p, such that the identity

f(u, p) = inf
v, q

f(v, q)

is satisfied under some additional incompressibility
constraint. The objective f is smooth in the dis-
placement, but non-smooth in the plastic strain. The
central issue for the development of efficient solvers
is to overcome this non-smoothness.

The first class of algorithms is based on the reg-
ularization of the objective, where the modulus is
smoothed such that the proximate objective fǫ is
twice differentiable. These techniques were studied
by J. Kienesberger and are summarized in her PhD
thesis [6].

A major progress was achieved by finding, that
due to a theorem of J. J. Moreau in the scope of con-
vex analysis, one can avoid to regularize the original

functional f . Notice, that the formula for minimiz-
ing f(u, p) with respect to the plastic strain p for
a given displacement u is already known explicitly,
i. e., we know a function p̃(u), such that there holds

F (u) := f(u, p̃(u)) = inf
q
f(u, q) .

Thus, there remains to solve a minimization prob-
lem with respect to only one variable, F (u) → min.
The theorem of Moreau says, that due to the certain
structure of f(u, p), the functional F (u) is Fréchet
differentiable and strictly convex. Moreover, the ex-
plicit form of the derivative is provided also. Hence,
it suffices to find u such that the first derivative of
F vanishes. This approach was first discussed in the
master thesis [2] of P. G. Gruber.

dof: 3680 14560 57920 231040

dis:

0-1 2.564e-02 1.536e-02 8.133e-03 4.124e-03

1-2 2.559e-03 9.493e-04 2.478e-04 9.472e-05

2-3 5.274e-05 3.859e-05 8.815e-06 2.776e-06

3-4 1.814e-08 1.250e-07 1.147e-09 1.357e-08

4-5 5.741e-15 1.337e-13 3.872e-15 1.388e-14

res:

0 7.471e+02 5.410e+02 3.423e+02 1.977e+02

1 2.619e+01 1.186e+01 3.144e+00 1.237e+00

2 5.991e-01 3.939e-01 1.207e-01 3.793e-02

3 2.209e-04 1.711e-03 1.234e-05 1.862e-04

4 7.575e-11 1.756e-09 1.687e-10 3.653e-10

5 4.131e-11 8.289e-11 1.698e-10 3.437e-10

sec: 15 54 227 1081

Table 1: This table outlines the convergence of the
Newton-like method. In horizontal direction, the
refinement of the starting mesh takes place, where
the degrees of freedom (dof) are growing roughly
by a factor 4. In the last line (sec) the computa-
tional time is displayed in seconds. The two blocks
in between the first and the last line report on the
convergence behavior. The first block (dis) dis-
plays the distance of two consecutive Newton iterates
|uj+1 − uj| measured in the H1 semi norm, the sec-
ond block (res) shows the l2 values of the residual,
i. e., the right hand side of Newton’s method.

The second derivative of F does not exist. As a
remedy, the concept of slanting functions, introduced
by X. Chen, Z. Nashed, and L. Qi, allows for the ap-
plication of a Newton-like method. In [3], P. G. Gru-
ber and J. Valdman prove the local super-linear con-
vergence of the resulting solver in the spatial dis-
cretized case (see Table 1), and formulate sufficient
regularity conditions, which would guarantee super-
linear convergence in the nondiscretized case also.

19



J. Valdman, in cooperation with C. Carstensen
and A. Orlando (both HU Berlin), established an
adaptive finite element algorithm for the solution of
elastoplastic problems. Such algorithm yields an en-
ergy reduction and, up to higher order terms, the
R−linear convergence of the stresses with respect to
the number of loops. Applications include several
plasticity models: linear isotropic-kinematic harden-
ing, linear kinematic hardening, and multi-surface
plasticity as a model for nonlinear hardening laws.
The work led to a journal publication, see [1].

A. Hofinger from Project F1308 and J. Valdman
also concentrated on fast calculation techniques for
the two-yield elastoplastic problem, which is a locally
defined, convex but non-smooth minimization prob-
lem for the unknown plastic-strain increment matri-
ces p1 and p2. Their results were summarized in a
technical report [4] and were also accepted for a jour-
nal publication, see [5].
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Figure 5: Flux function (its x-component) using
nodal (top) and Raviart-Thomas (bottom) elements.

J. Valdman continued the cooperation with S.
Repin (St. Petersburg) on reliable error estimates
for scalar problems. Their research on estimates for
scalar problems with the nonlinearity on the bound-
ary was documented in a joint technical report [7].

Another issue being studied is the computational
efficiency of so called “functional estimates”. Let us
consider the boundary value problem

−△u = f in Ω, u = 0 on ∂Ω.

Then, one can find a norm estimate of the form

||∇(u − v)||0 ≤ ||∇v − y∗||0 + CΩ||divy∗ + f ||0

which is valid for all y∗ ∈ H(Ω, div) and for all
v ∈ H1

0 . The constant CΩ is known from Friedrich’s
inequality and can be computed independently. The
interpretation of this formula is that any “flux” func-
tion y∗ provides us with a guaranteed upper bound
for the energy error of the computed solution v. The
right term in the inequality can be minimized in a
way, the upper bound becomes the smallest possi-
ble. The pictures presented in Figure 5 demonstrate
possible “fluxes” using nodal continuous and normal
component continuous (Raviart-Thomas) elements.

Such minimization leads to a linear system of
equations as a part of the global nonlinear minimiza-
tion process. J. Valdman explored these linear sys-
tems and applied a multigrid based solver in order
to obtain the optimal convergence.

The joint work will be extended to problems of
elasticity with so-called friction boundary conditions
and to elastoplasticity as well.
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1 Bayesian Approach to In-
verse Problems

The research on stochastic inverse problems in the
Project F1308 has been continued in 2006, following
previous studies ([9, 15]). The main idea there was
to extend the deterministic regularization theory for
linear and nonlinear inverse problems to a stochastic
setting using stochastic metrics such as the Ky-Fan
metric and the Prokhorov metric.

This framework has now been used to develop
a convergence theory for linear and nonlinear in-
verse problems using the Bayesian approach. Con-
trary to the deterministic or frequentist viewpoint,
in Bayesian theory the solution to an inverse prob-
lem is not an unknown function but a probability
distribution – the so-called posterior distribution –
on the space of unknowns. The posterior distribu-
tion is constructed from the model, the given noise
distribution and the prior distribution using Bayes’
rule. The prior distribution represents information
on the unknown thought to be available prior to
the measurements. From the posterior distribution,
one constructs estimates of the unknown solution us-
ing point estimators (e.g., the MAP-estimator or the
conditional mean estimator).

As the solution of the inverse problems is then
a probability distribution, the classical convergence
theory in Hilbert spaces cannot be applied, but sto-
chastic metrics have to be used. In [18, 19] a conver-
gence theory for the Bayesian setup was developed
using the Ky-Fan metric and the Prokhorov metric;
so far, this was only possible for finite-dimensional
linear problems with Gaussian assumptions. Nev-
ertheless, it should be noted that these are the first
quantitative convergence results for the Bayesian ap-
proach to inverse problems. As a main condition, the
variance in the prior distribution has to be related
to the noise-level in order to guarantee convergence.
With this convergence theory, it is also possible to
obtain confidence interval estimates for the MAP-
estimator.

Besides the Bayesian approach, the stochastic
convergence theory of regularization ([9, 15]) has
been further extended in [16, 14, 17]. As an appli-

cation of this theory an ongoing project has been
started with the aim of identifying the nucleation
rate in a mesoscale crystal birth-and-growth model.
This model involves stochasticity since the birth of a
crystal is described by a random process. Of particu-
lar interest is the case when the process is influenced
by external random variables (doubly stochasticity).
In this case the inverse problem of identifying the ki-
netic parameters of the crystallization process leads
to an inverse problem which stochasticity. The anal-
ysis and solution of this problem by regularization
heavily relies on the stochastic convergence theory
for Tikhonov regularization mentioned above. This
is a collaboration of V. Capasso (University of Mi-
lan), H. W. Engl and S. Kindermann.

2 Image Processing

A well-known method in image processing is based
on a minimization of the Rudin-Osher-Fatemi (ROF)
functional. This functional has been used for tasks
such as denoising, deblurring or impainting. Re-
cently, several modifications of the classical ROF-
method have been proposed and applied. One of
the ideas was to replace the original minimization
problem by an iterative method much in the spirit of
iterative Tikhonov regularization, which led to the
Bregman iteration algorithm. The original idea of
Bregman iteration was analyzed in more detailed and
generalized to other applications. Research on this
topic has been carried out by M. Burger and L. He,
who joined the SFB in July 2006. The Bregman it-
eration was extended to non-quadratic functionals in
[11], and error estimates were proven in [6]. More-
over, viewing this iteration as a discrete version of
an evolution equation, in the limit, the Bregman it-
eration tends to a so-called inverse scale space flow.
The corresponding equations were investigated from
a theoretical point of view in [3]. For their numerical
computation, a new method was proposed and imple-
mented by M. Burger in collaboration with G. Gilboa
and S. Osher in [4].

Another generalization of the original ROF-mo-
del allows for anisotropy in the functional. This idea
has been used for the classification of aerial images
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in [2].

3 Inverse Scattering

Inverse Scattering deals with the reconstruction of
objects from measurements of the far-field pattern
of (acoustic or electromagnetic) waves scattered by
these objects. Research on such type of problem
attracted attention within this project by the work
of M. Sini, who joined the SFB in September 2006.
The main focus in the project is the reconstruction
of complex obstacles, i.e., simultaneously finding the
shape of the obstacle as well as material properties of
its surface (e.g. sound-hard or sound-soft or mixed)
[24, 25]. If measurements for multiple incident waves
are available, it is known that this information is
enough to reconstruct both shape and surface prop-
erties from far-field measurements. Although sev-
eral well-known numerical algorithms for the recon-
struction of shapes (e.g. probing method, sampling
method) are nowadays widely used, less is known
for the complex obstacle case. In a recently started
cooperation between M. Sini, L. He and S. Kinder-
mann, the aim is to develop new algorithms which
are able to find the properties of complex obstacles.
The idea is to improve probing methods by combin-
ing them with level-set iterations and regularization
in order to obtain a more precise reconstruction.
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Figure 6: Inverse Scattering: Reconstructions of a
shape by the probing method.

4 Level Sets

In the year 2006, the work on level set methods for
geometric inverse problems has been continued. One
of the new aspects was to further investigate the cou-
pling between the level set methods and the topolog-
ical derivative [12]. Such a coupled algorithm has
been successfully applied to image segmentation in
[13]. Furthermore, continuing previous work, theo-
retical questions for the level set method in linear
elasticity have been studied. The problem of finding
inclusions from measurements of boundary displace-
ments was considered, and stability estimates for the
level set method were proven in [1]. In 2006, B. Hackl

finished his PhD-thesis [10], which investigated the
use of second order derivative information to improve
algorithms based on topological derivatives.

Related to the work on anisotropy in image pro-
cessing, a similar level set evolution including aniso-
tropy has been proposed and investigated in [5].

An alternative to the level set method for inter-
face problems has been developed in [23]. The pro-
cedure there is not based on evolution equations, but
on minimizing Tikhonov functionals combined with
thresholding.

5 Regularization

Several contributions were made to the theory of
regularization of ill-posed problems. H. Egger, who
left the SFB in March 2006, continued his work on
preconditioning of iterative regularizations. The im-
provement of preconditioning on the conjugate gra-
dient iteration for ill-posed problems was analyzed in
[8]. Furthermore, Newton-type method were acceler-
ated by using advanced iterative methods for solving
the Newton equations [7].

In [21], a new regularization method was pro-
posed based on the idea of dynamic programming.

6 Cooperations

In a cooperation with SFB project F1306, an im-
provement of the numerical calculations for a two-
yield problem in elastoplasticity was made [20]. This
new algorithm could significantly reduce the number
of total iterations needed to compute a solution to a
certain accuracy.

The cooperation with the RICAM finance group
on the identification of parameters in option price
models was continued. In previous work by Egger
and Engl, Tikhonov regularization was successfully
applied to volatility identification in Black-Scholes
type models. A similar methodology was used to
compute a local speed function in a Levy model
which is a generalization of the Black-Scholes model.
In [22], it was shown that Tikhonov regularization
yields a stable method and convergence rates were
shown. A numerical procedure to find the unknown
parameters in this model from observed data was de-
veloped.

7 Personnel Development

B. Hackl finished his PhD in September 2006 and
left the SFB. A. Hofinger finished his PhD in April
2006 and also left the SFB. H. Egger left the SFB
for a research position at the University of Aachen.
M. Burger accepted a position as Professor for Ap-
plied Mathematics at the Westfälische Wilhelms Uni-
versität Münster in October 2006. M. T. Wolfram
joined the research group of M. Burger at the Uni-
versity of Münster.
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1 PDE-Constrained Optimiza-

tion Problems

During the last year, we focussed our work on ef-
ficient solution techniques of large-scale systems of
optimization problems with constraints described by
a partial differential equation (PDE) or by a system
of PDEs. There are basically two approaches for
such problems. Under proper conditions, the con-
straining PDE, mostly called the state equation, can
be eliminated and formally hidden in the objective
functional. In comparison to this classical nested for-
mulation, there exists the simultaneous formulation,
where the state equation is treated as constraint. Us-
ing this approach, one can solve the optimization
problem by solving the corresponding system of opti-
mality conditions, the Karush-Kuhn-Tucker (KKT)
system. This leads to large scale symmetric, but in-
definite systems of the form

(

A BT

B −C

) (

x
p

)

=

(

f
g

)

, (1)

which are solved by iterative methods.
In particular, we considered elliptic optimal con-

trol problems. In such problems the primal unknown
x consists of two parts: the state y and the control
u. The problem is to find x = (y, u) that minimizes
a given cost functional subject to a constraint, the
so-called state equation, which, for each control u, is
an elliptic boundary value problem in y. It is typical
for such problems that the cost functional contains
an extra regularization parameter.

2 Multigrid Methods for KKT

In principle, there are two different approaches to
take advantage of the multigrid idea. One way
is to use an outer iteration, typically a precondi-
tioned Richardson method (possibly accelerated by a
Krylov subspace method), applied to the discretized
problem. The preconditioners of KKT systems usu-
ally rely on efficient solvers or preconditioners for the
underlying PDEs and on the construction of a good
preconditioner for the corresponding Schur comple-
ment. Multigrid techniques (as an inner iteration)
can be used for (some or all of) these components.
For control problems with elliptic state equations and
distributed control, J. Schöberl and W. Zulehner pro-
posed a special indefinite preconditioner for the KKT
system which leads to convergence rates of the pre-
conditioned conjugate gradient method that are not

only independent of the mesh size but also indepen-
dent of the regularization parameter, see [4].

The other way is to use multigrid methods di-
rectly applied to the KKT system as an outer iter-
ation based on appropriate smoothers (as a sort of
inner iteration). For PDE-constrained optimization
problems this approach is also known as one-shot
multigrid strategy. One of the most important ingre-
dient of such a multigrid method is an appropriate
smoother.

One class of smoothers are point smoothers,
where the variables are grouped pointwise (with re-
spect to the nodes of the underlying mesh) and one
or several sweeps of point-block Jacobi or point-block
Gauß-Seidel iterations are performed, see [1].

A natural extension are patch smoothers: The
computational domain is divided into small patches,
see Figure 7.
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Figure 7: local patch

One iteration step of the smoothing process con-
sists of solving local saddle point problems on each
patch one-by-one either in a Jacobi-type or Gauß-
Seidel-type manner. This results in an additive or
multiplicative Schwarz-type smoother. The general
construction and the analysis of patch smoothers for
mixed problems was discussed in [3], where a par-
ticular patch smoother was proposed for the Stokes
problem. A straight forward application of this con-
struction to KKT systems for elliptic control prob-
lems fails, since an essential feature exploited in the
multigrid convergence analysis of the Stokes problem
was the positivity of (1,1)-block everywhere, whereas
in optimal control problems the (1,1)-block is usually
positive only on the kernel of the (2,1)-block. We suc-
cessfully extended the construction to KKT systems
arising in optimal control problems, see [5], using an
augmentation technique for the approximation of the
(1,1)-block in the smoothing step to ensure the pos-
itivity everywhere. Table 2 contains the (averaged)
convergence rates for different numbers of smoothing
steps. The numerical results show the typical multi-
grid behavior, namely the level-independence of the
convergence rate and the improvement of the rates
with an increasing number of smoothing steps.

25



smoothing steps
level nh +mh 5+5 7+7 10+10

5 3 267 0.668 0.538 0.411
6 12 675 0.679 0.578 0.455
7 49 923 0.685 0.587 0.467
8 198 147 0.685 0.588 0.469
9 789 507 0.685 0.589 0.469

Table 2: Convergence rates for the additive Schwarz
smoother

The multigrid convergence analysis for KKT sys-
tems of PDE-constrained optimization problems is
not as developed as for elliptic PDEs. One line of
argument exploits the fact that the reduced KKT
system (by eliminating the control) is a compact per-
turbation of an elliptic problem. This guarantees the
convergence of the multigrid method if the coarse
grid is fine enough. A second strategy is based on a
Fourier analysis, which covers only the case of uni-
form meshes with special boundary conditions. Both
strategies applied to optimal control problems can be
found in [1].

A classical technique for analyzing the conver-
gence of multigrid methods relies on two properties:
the approximation property and the smoothing prop-
erty. In [5] we were able to prove both properties,
which led to a rigorous convergence analysis of the
corresponding multigrid method.

3 Topology Optimization
Problems

R. Stainko finished his PhD-thesis and graduated in
April 2006. His work deals with mathematical meth-
ods for topology optimization problems. In partic-
ular, he considered two specific design - constraint
combinations, namely the maximation of material
stiffness at given mass and the minimization of mass
while keeping a certain stiffness.

The first problem, also known as the minimal
compliance problem, is solved by an adaptive multi-
level approach. The resulting optimization problems
on each level are solved by the method of moving
asymptotes. For the efficient solution of the linear
systems, raising from the finite element discretiza-
tion of the PDEs, a multigrid method is applied.

In the treatment of the second combination, the
main source of difficulties is a lack of constraint qual-
ifications for the set of feasible designs, defined by
local stress constraints. A reformulation of the con-
straints overcomes this problem. These are finally

relaxed by a phase-field approach, which also regu-
larizes the problem, see [2]. This relaxation scheme
results in large scale optimization problems, which
are finally solved by an interior-point method. Ap-
plying a multigrid method with a similar Schwarz
smooting technique to the KKT system leads to an
optimal solver, see [6]. A picture showing the opti-
mal material distribution of benchmark beam w.r.t.
local von Mises stress constraints can be found in
Figure 8 (red indicates material, blue indicates air).

Figure 8: Optimal material distribution

References

[1] Borzi, A., Kunisch, K., and Kwak, D. Y.

Accuracy and convergence properties of the fi-
nite difference multigrid solution of an optimal
control optimality system. SIAM J. Control Op-
timization 41, 5 (2003), 1477–1497.

[2] Burger, M., and Stainko, R. Phase-field
relaxation of topology optimization with local
stress constraints. SIAM J. Control Optimiza-
tion 45, 4 (2006), 1447–1466.
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F 1315: Numerical and Symbolic Techniques for
Algebraic Spline Surfaces

Prof. Dr. J. Schicho, Prof. Dr. B. Jüttler

Dr. M. Aigner, Dr. M. Bartoň,

Dr. P. Chalmovianský, Dr. M. F. Shalaby

DI M. Kapl

The work in this subproject was devoted to sev-
eral tasks.

1 Polynomial equations

We presented an algorithm which is able to compute
all roots of a given univariate polynomial within a
given interval. In each step, we used degree reduc-
tion to generate a strip bounded by two quadratic
polynomials which encloses the graph of the poly-
nomial within the interval of interest. The new in-
terval(s) containing the root(s) is (are) obtained by
intersecting this strip with the abscissa axis. In the
case of single roots, the sequence of the lengths of the
intervals converging towards the root has the conver-
gence rate 3. For double roots, the convergence rate
is still superlinear (3

2 ). We showed that the new tech-
nique (algorithm quadclip) compares favorably with
the classical technique of Bézier clipping (algorithm
bezclip). An example can be seen in Figure 9. For
future work we will focus on the extension of the
technique to the multivariate case. [2]
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Figure 9: Computing time t in 10−5s vs. accuracy
for a polynomial of degree n in the case of double
roots.

2 Approximate implicitization

We compared several methods for approximate im-
plicitization by polynomials and by piecewise poly-
nomials. We investigated both quantitative criteria
(such as computing time, memory use, and the er-
ror of the approximation) and qualitative criteria.
As demonstrated by the results, piecewise approxi-
mate implicitization was able to handle surfaces aris-
ing in industrial applications. Figure 10 shows that
the two goals of reproducing singularities and avoid-

ing unwanted branches are often in conflict with each
other. Further research will focus on the important
issue of avoiding unwanted branches and additional
singularities. [9]

Figure 10: Reproducing singularities vs. avoiding un-
wanted branches.

3 Robustness of implicitization

We considered the following problem: given a curve
in parametric form, compute the implicit representa-
tion of another one that approximates the paramet-
ric curve on a certain domain of interest. We studied
this problem from the numerical point of view: what
happens with the output curve if the input curve is
slightly changed? It was shown that for any approx-
imate parameterization of the given curve, the curve
obtained by an approximate implicitization with a
given precision is contained within a certain pertur-
bation region. [1]

4 B-H curves

B-H–curves are used for modeling ferromagnetic ma-
terials in connection with electromagnetic field com-
putations. Starting from real–life measurement data,
we have presented an approximation technique which
is based on the use of spline functions and a data–
dependent smoothing functional. It preserves phys-
ical properties, such as monotonicity, and is robust
with respect to noise in the measurements. [7]

5 Weighted spline wavelets

Our work was focused on finding a wavelet represen-
tation of implicitly defined spline curves for which
the region of interest - the curve - is preserved better
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than for existing uniform wavelets. For this purpose
we have constructed the so called weighted spline
wavelets. Weighted spline wavelets are wavelets that
are adapted to the region of interest by means of a
weighted inner product. Figure 11 shows an exam-
ple of a weighted wavelet construction. Furthermore
we constructed lazy wavelets for periodic B-splines
of degree d > 1. Lazy wavelets are wavelets with
poor approximation properties but with simple anal-
ysis and synthesis filters. For future work we will
use the concept of weighted wavelets to construct
semiorthogonal weighted wavelets, i.e. semiorthogo-
nal wavelets with respect to a weighted inner prod-
uct. [5, 6]
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Figure 11: Example of weighted wavelets ψ2
i for 1-

periodic uniform B-splines of degree 2.

6 Other activities

The work in this subproject led to numerous further
activities which can be found in [3, 4, 8, 10].
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ing roots of polynomials by quadratic clipping.
Comput. Aided Geom. Design 24, 3 (2007), 125–
141.

[3] Chau, S., Oberneder, M., Calligo, A.,
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for Pure and Applied Functional Analysis

Prof. Dr. B. Buchberger, Prof. Dr. H.W. Engl

Dr. M. Rosenkranz, Dr. G. Regensburger

Project F1322 deals with the symbolic compu-
tation aspects of operators that typically occur in
analysis (e.g. differential, integral, and boundary
operators). Their algebraic features are captured
by noncommutative polynomial identities describing
interactions between certain basic operators. For
this purpose, the TH∃OREM∀ system [1, 21] pro-
vides a generic language and a flexible framework
(see Project F1302) for dealing with various polyno-
mial notions [12], both in an inferential and computa-
tional setting; in particular, Gröbner bases methods
can be applied.

In 2006, we have extended and generalized the
concept/methodology of boundary problems in two
major directions—one in differential rings and al-
gebras, the other in (infinite-dimensional) vector
spaces. Research on generalized solutions for nonlin-
ear first-order ordinary boundary problems has been
focused on interpolation methods in max-plus alge-
bras. In our work on parametrized wavelets, we have
studied various new applications. In the first half
of the year, we have been engaged in the Special
Semester on Gröbner Bases and Related Methods.

1 Boundary Problems in Dif-
ferential Algebra

The classical setting of two-point boundary prob-
lems [10, 13] has been formulated in a completely
abstract setting that refers to a wide class of dif-
ferential algebras [18]. Besides the usual two-point
boundary conditions, it allows arbitrary Stieltjes
boundary conditions for building up regular bound-
ary problems. Setting up a multiplication that mir-
rors the composition of Greens operators, the re-
sulting monoid structure is analyzed: Any factor-
ization of the underlying linear differential operator
can be lifted (algorithmically!) to a decomposition of
boundary problems. See [11, 15, 14, 17] for details.

2 Abstract Approach to

Boundary Problems

In the more abstract approach of [9], the theory does
not rely on any notion of differentiation, defining a
boundary problem as an arbitrary linear endomor-
phism on a vector space together with an orthogo-
nally closed subspace of its dual. Despite its general-
ity, this approach allows to develop a significant por-

tion of the algebraic theory of boundary problems:
Regularity, multiplication and factorization can be
defined in such a way that it subsumes many im-
portant classes of boundary problems—the classical
two-point setting as well as linear systems of ODEs
and linear PDEs.

3 Parametrized Wavelets

In our work on symbolic computation and
wavelets, we focused on applications of parametrized
wavelets [6]. For example, we constructed more reg-
ular wavelets than the Daubechies wavelets, see the
figure below. Moreover, we discussed the construc-
tion of the least asymmetric orthonormal wavelets
and the existences of rational filter coefficients, see
[7, 8] for further details.
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Figure 12: Lower bound for Hölder exponent αmax

for scaling functions with six filter coefficients de-
pending on one parameter, with αmax ∈ [smax −
1/2, smax] where smax denotes the Sobolev exponent.

4 Max-plus Interpolation

We continued our research on generalized solutions
of nonlinear first-order ordinary boundary problems
and the max-plus algebra, where the addition is re-
placed by the maximum and the multiplication by
the sum; see [3, 4, 5]. This work started from a sug-
gestion by Martin Burger at the SFB-Statusseminar
2005. The implementation of the method for con-
structing generalized solutions via max-plus interpo-
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lation for the computer algebra system Maple was
revised and a publication is in preparation.

5 Gröbner Bases Special

Semester

In the spring and summer of 2006, the Radon In-
stitute for Computational and Applied Mathematics
(RICAM), in close cooperation with the Research
Institute for Symbolic Computation (RISC), orga-
nized the Special Semester on Gröbner Bases and
Related Methods. Directed by Bruno Buchberger
(RISC) and Heinz W. Engl (RICAM) the special
semester offered a program of specialized workshops,
in particular “D2: Gröbner Bases in Symbolic Anal-
ysis” and “D3: Gröbner Bases in Control Theory
and Signal Processing”; see [7, 16, 20]. Markus
Rosenkranz has chaired—with Dongming Wang and
Viktor Levandovskyy—the D2 workshop. A proceed-
ings volume [2] for D3 are edited by Hyungju Park
(Korea Institute for Advanced Study) and Georg Re-
gensburger, a proceedings [19] for D2 by Markus
Rosenkranz and Dongming Wang (School of Science,
Beihang University, Beijing, China).
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SFB F013: Numerical and Symbolic Scientific
Computing

Coherence within the SFB

Cooperation between F1301, F1305 and
F1306

Summation and Finite Elements. The coop-
eration between F1301 and F1306 by using symbolic
summation algorithms from F1305 has been success-
fully continued.

V. Pillwein and M. Kauers worked on applica-
tions of M. Kauers’ symbolic summation package
SumCracker on problems arising in the context of
high order finite element method. SumCracker was
used to generate relations between Jacobi polyno-
mials that entered in the construction of triangular
and tetrahedral interior shape functions. Another
field of application was finding closed form expres-
sions for sums arising in the definition of a smooth-
ing operator that was used in the convergence proof
of a certain finite element scheme.

New shape functions for triangles and

tetrahedra.

S. Beuchler from F1306 and V. Pillwein contin-
ued their investigation on high order basis func-
tions for the second order boundary value problem
−∇(A(x, y)∇u) = f. They extended previous results
to the definition of families of interior shape functions
for both two and three dimensional case on triangu-
lar respectively tetrahedral meshes.

Special Function Inequalities in Conver-

gence Proofs of Numerical Methods. J.
Schöberl from F1301 has conjectured an inequality
for a sum of Legendre polynomials. Gerhold, Kauers
and Schöberl were able to provide a partial proof
of this inequality. Recently V. Pillwein, using tools
from F1305, was able to provide a complete proof.

Cooperation between F1302 and F1301
In the context of our case study on Gröbner do-

mains, we are extending and improving both the
knowledge base implemented in Theorema, as well as
the concepts and tools for mathematical knowledge
management in order to be able to use them in the
context of the applications developed in the frame of
the project F1301, namely the verification and syn-
thesis of generic algorithms for Gröbner Bases.

Cooperation between F1302, F1305, and
F1303

We expanded the use of combinatorial and alge-
braic techniques for the generation of loop invariants
and recursion invariants, as well as for the simplifi-
cation of the verification conditions. By using such
techniques we are able to solve verification problems

which are beyond the power of currently used meth-
ods (e.g. model checking). Moreover, by using ad-
vanced algebraic algorithms (like e. g. Cylindrical
Algebraic Decomposition), we improved the capabil-
ities of the Theorema prover for elementary analysis.

Cooperation between F1302, F1322, and
F1308

As emphasized in the previous reports, project
F1322 was born by a nontrivial cooperation between
projects F1302 and F1308. This cooperation deep-
ened in the reporting period. The initial bridge car-
rying the cooperation between the symbolic world of
F1302 with the numerical-analytic one of F1308 was
the systematic exploitation of the equational proper-
ties of certain operators in Hilbert spaces; the crucial
tool for realizing solution algorithms was the general-
ized Moore-Penrose theory for Hilbert spaces (using
oblique projectors for the nullspace and range of the
operators to be inverted). Currently we extended
this approach into two major directions: one in dif-
ferential rings and algebras, the other in (infinite-
dimensional) vector spaces. Research on generalized
solutions for nonlinear first order ordinary boundary
problems has been focused on interpolation methods
in max-plus algebras. In our work on parametrized
wavelets, we have studied various new applications.
In the first half of the year, we have been engaged in
the Special Semester on Gröbner Bases and Related
Methods. (for more details see the section about
F1322).

Cooperation between F1303 and F1315
Together with B. Jüttler we developed a new geo-

metric method based on the Bezier clipping approach
in order to compute the intersections of two plane al-
gebraic curves on a given domain.

Cooperation between F1304 and F1308
H. Gu has cooperated with M. Burger (F1308)

for symbolic and numeric computation of geometric
problems.

Cooperation between F1306 and F1308
A. Hofinger from Project F1308 and J. Valdman

concentrated on fast calculation techniques for the
two-yield elastoplastic problem, which is a locally de-
fined, convex but non-smooth minimization problem
for the unknown plastic-strain increment matrices p1

and p2. They summarized they results in the tech-
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nical report which has also been accepted for a pub-
lication in Computing.

Cooperation between F1315 and others
We continued the collaboration between the teams

of Project F1315 (Jüttler / Schicho) and F1303 (Schi-
cho), aiming at the combination of numerical and
symbolic techniques for algebraic spline surfaces. In
addition to regular meetings, a weekly joint seminar
entitled “Algebraic Spline Curves and Surfaces” took
place during both semesters. We continued the co-
operation between M. Barton and J. Valdman about
robust methods for solving systems of polynomial
equations.

Cooperation between F1322, F1302, and
F1308

Project F1322 was created from a symbiosis be-
tween Projects F1302 and F1308. It benefits
from bringing together the symbolic expertise from
F1302 with the functional analysis know-how from
F1308. The crucial link is that certain operators
that are relevant in the abstract treatment of func-
tional analysis can be modeled by noncommuta-

tive polynomials, which can be manipulated effi-
ciently by Gröbner bases methods. In particular,
the solving engine for linear two-point boundary
value problems—which is continually extended to
cover more problem types—is implemented in the
TH∃OREM∀ system of F1302. The leading theme
of inverse problems in F1308 provides an ample field
of studying operator problems relevant in practical
applications. In particular, stability issues are cru-
cial for combining the new factorization methods
for boundary problems with numerical and hybrid
solvers: A given well-posed problem should be fac-
tored in a such a way (if possible) that both lower
order problems are still well-posed.

Cooperation between F1322 and F1303
With Josef Schicho (F1303) we discussed how one

can prove identities in Witt rings using Gröbner
bases. Moreover, we showed that the isomorphism
connecting the equivalent quadratic forms corre-
sponding to an identity can be computed by tracing
the Gröbner basis computation. The results where
presented during the Special Semester on Gröbner
Bases.
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SFB F013: Numerical and Symbolic Scientific
Computing

National and International Cooperations

1 Cooperations

RWTH Aachen (Germany)
The cooperation of Dr. V. Levandovskyy with

Prof. E. Zerz on constructive methods of algebraic
analysis has been continued. In the articles [1], [2]
we have studied, developed and implemented the
algorithms for commutative and non–commutative
structures arising in connection with Control The-
ory. The article [3] provides a complete set of algo-
rithms for the algebraic and contol–theoretic analysis
of systems of equations involving constant parame-
ters. Moreover, in this article the implementation
is described and as an important example of perfor-
mance we provide the first complete solution to the
”two pendula, mounted on a cart” problem, stated
e.g. in the book of Poldermann and Willems.

F1309 started a cooperation with Dr. V. Levan-
dovskyy, discussing the possibility to develop a sym-
bolic tool for the local mode analysis, which would
be useful in contructing appropriate smoothers for
a multigrid method. The goal is to determine the
influence of damping parameters on the smoothing
property.

Prof. W. Zulehner together with Prof. J.
Schöberl constructed a symmetric indefinite precon-
ditioner for saddle point problems. This joint work
led to a journal publication in SIAM J. Matrix Anal.
Appl.

TU Cottbus (Germany)
Together with Prof. M. Fröhner and Prof. B. Mar-

tin, the development of theoretical tools and the
implementation of them were continued by Dr.
V. Levandovskyy, concerning the symbolic gen-
eration and symbolic analysis of finite difference
schemes for linear PDEs and systems of linear PDEs.
Among other, we work on the symbolic von Neumann
stability analysis as well as the dispersion analysis
[4].

University of Seville and University of
Zaragoza (Spain)

The Singular library for computations with al-
gebraic D–modules dmod.lib [5] has been released
as the result of a joint work of Dr. V. Levandovskyy
and J. Morales (Zaragoza). The tools, implemented
in the library are of interest for F1304 and F1305.
Together with Prof. F. Castro (Seville) we continue

investigating algorithms for local algebraic and an-
alytic settings in D–module theory. With the help
of the library dmod.lib we are able to answer for
the first time several hard computational problems
in D–module theory.

Center for Applied Mathematics and Theo-
retical Physics, University of Maribor (Slove-
nia)

V. Romanovski from Maribor together with
Dr. V. Levandovskyy developed and applied new
methods, based on algebraic geometry, for studying
the problem of bifurcations of limit cycles from a
center or a focus of polynomial differential system (a
system of ODEs). The problem of cyclicity of a cen-
ter or a focus is also known as the local 16th Hilbert
problem and it is still open. The novel methods, com-
bining theoretical approach from algebraic geometry
with the computational methods of computer alge-
bra, allowed us to give a unified algorithm for solving
the cyclicity problem for several concrete cases [6, 7].

The project CreaComp
This project, ended in December 2006, had a vol-

ume of 72 man-months and resulted in the con-
struction of and contents development for a novel
e-learning platform for mathematics, covering the-
ory exploration, construction of mathematical mod-
els, and automatic reasoning (proving). The project
was funded by the JKU Linz and was pursued by
the Theorema group at RISC (Prof. Bruno Buch-
berger) in cooperation with the Department of Al-
gebra, JKU (Prof. Guenther Pilz), the Fuzzy Logic
Lab. Linz, JKU (Prof. Peter Klement). The new
platform builds-up on the capabilities of the mathe-
matical assistant Theorema from our group, and on
the e-learning system MeetMATH developed in co-
operation by the Department of Algebra and by the
Fuzzy Logic Laboratory, and implements some of the
newest concepts in e-learning, like constructive and
exploratory learning. For implementing such con-
cepts it was crucial to use the natural style and nat-
ural language proving capabilities of Theorema, be-
cause the lessons are modifiable by the user - in con-
trast to fixed-content classical text-books used for
read-only based learning.
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Institute e-Austria Timisoara
The Theorema group is currently involved in a

project consisting of the design and implementation
of methods for program verification using automated
reasoning. This project is developed in cooperation
with the Institute e-Austria in Timisoara. The re-
sults of this research are to be applied in concrete
industrial environments inside software companies in
Romania and Austria.

Blocked Lectures at Timisoara and Cluj (Ro-
mania)

T. Jebelean (F1302) gave blocked lectures (8
hours) on automated reasoning techniques and their
implementation in Theorema at the Universities of
Cluj (May 2006) and Timisoara (Dec 2006).

RICAM
Together with H.-C. von Bothmer, O. Labs, and

C. van de Woestijne, we proved some cases of the
Casas-Alvero conjecture. The cooperation was dur-
ing the special semester on Gröbner bases held at
RICAM in the first half of 2006.

The cooperation with the RICAM finance group
on inverse problems in option pricing models was
continued. A parameter identification problem in
a Levy-model for option pricing was approached by
Tikhonov regularization [21].

Like other parts of the SFB, project F1322 is
conducted over the Radon Institute for Applied and
Computational Mathematics (RICAM). The inter-
disciplinary environment of this institution provides
an additional incentive to cross-group (in particular
symbolic-numerical) cooperations.

University of Linz
Together with G. Landsmann and P. Mayr , we

could answer the question whether transposition of
matrices in G = GL(2,R) is a polynomial function in
the sense of universal algebra. The answer requires
a combination of algebraic and topological methods,
there is no purely algebraic proof known.

Naval University, Quebec, Canada
Together with C. Gosselin from Naval University,

Quebec, Canada we studied the problem of devis-
ing a robot manipulator that does not exert forces
(static balancing) or torques (dynamic balancing)
to the base during its moves. This is relavant for
robotics applications in optics and in aeronautics.

Joint work with Dr. H. Herrmann, Inst. f.
Theor.Physik, TU Berlin

Gu has continued the cooperation with Dr. H.
Herrmann, a theoretic physicist from TU Berlin on
heat conduction problems. Herrmann has visited our
research group for 1 week in March. A joint paper
has been published [8].

Cooperation with Dr. F. Schwarz, Fraunhofer
Gesellschaft, Bonn

We have been in contact with Dr. Fritz Schwarz
concerning the factorization of differential operators.
Schwarz has visited our research group in May, and
we have agreed on future close cooperation.

Cooperation with Prof. Lv́ov, Weizmann In-
stitute, Israel

Kartaschova has visited the Weizmann Institute
and Prof. Victor Lv́ov has visited our research group
in October. The publication [9] is a result of this co-
operation.

INRIA Paris
The long term cooperation with Prof. Paule’s

group is continued. For 2008, a long term visit
(6 months) of M. Kauers (F1305) to the INRIA group
is currently being planned.

DESY, Zeuthen
As it turns out, Schneider’s new summation algo-

rithms (F1305) can be applied successfully to eval-
uate Feynman integrals that arise in the field of
perturbative quantum field theory. A follow up
project in cooperation with Deutsches Elektronen
Synchrotron (DESY) in Zeuthen, Germany, is in
preparation where we plan to extend our algorithms
in order to evaluate Feynman integrals that could
not be handled so far.

International university cooperations of
F1305

Several joint articles have been pub-
lished/accepted in cooperation with Helmut
Prodinger (University of Stellenbosch, South
Africa) [10, 11], with George E. Andrews (The Penn-
sylvania State University) [12, 13, 14, 15], and with
R. Pemantle (University of Pennsylvania) [16].

Petersburg Department of Steklov Institute
of Mathematics

Prof. S. Repin and Dr. Jan Valdman finished their
work on reliable error estimates for the scalar non-
linear problem. The cooperation was described in a
RICAM report and is also submitted for a journal
publication.

University of California, Los Angeles
Several cooperations in the field of image process-

ing and level set methods have been continued with
the research group of S. Osher at the University of
California, Los Angeles. This concerns, for instance,
work on inverse scale space [17, 18], Bregman iter-
ation [19], and level set and topological derivative
methods [20]. Also L. He, who did her PhD at the
UCLA joined the project in July 20006.
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VSB-Technical University Ostrava (Czech Re-
public)

The cooperation of R. Simon with Prof. Z. Dostál
and Dr. D. Lukáš (former SFB member, F1309) con-
cerning the construction of optimal solution tech-
niques for optimality systems using multigrid meth-
ods has been continued. Additonally Dr. J. Kraus
and Dr. D. Lukáš worked together on algebraic multi-
grid methods for shape optimization problems.

International Conferences
Prof. U. Langer organized together with Prof.

E.W. Sachs (University of Trier (Germany), Virginia
Tech (USA)) a minisymposium on the ”GAMM-
SIAM Conference on Applied Linear Algebra” in
Düsseldorf. The aim was to bring together scien-
tists working on preconditioning techniques in PDE-
constrained optimization.

On the ”6th International Congress on Industrial
and Applied Mathematics”, Zurich, a minisympo-
sium was organized by Prof. W. Zulehner and Prof.
A. Wathen (Oxford, UK). The subject was the iter-
ative solution of saddle point problems, which arise
in PDE-constrained optimization.

Austrian Research network on Industrial Ge-
ometry

In the frame of the Austrian research network on
Industrial Geometry (FSP S92), B. Jüttler cooper-
ated with the group of O. Scherzer (University Inns-
bruck) and F. Aurenhammer / O. Aichholzer (Graz
University of Technology).

Presentation of F1315 at Universities
B. Jüttler visited the University of Hongkong

(Prof. Wenping Wang), the Seoul National Univer-
sity (Prof. Myung-Soo Kim) and the Munich Univer-
sity of Technology (Prof. Bernd Simeon) and gave
presentations related to on–going research. in the
SFB.

Gröbner Bases Special Semester
As explained in the project description of F1322,

Markus Rosenkranz has co-chaired the D2 work-
shop and edits a proceedings volume with Dongming
Wang (School of Science, Beihang University, Bei-
jing, China); Georg Regensburger edits a proceed-
ings volume for D3 with Hyungju Park (Korea Insti-
tute for Advanced Study).
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2 Guests

Dr. Ibolya Szilagyi: University of Eger Hungary,
Feb. 1–3, 2006, Joint scientific research and talk

Prof. Herwig Hauser: University of Innsbruck
Austria, Feb. 7–9, 2006, Talk: ”Blowing up of flat
varieties”, Participation on the workshop

Prof. Petr Lisonek: Simon Fraser University
Canada, Feb. 12–13, 2006, Scientific Cooperation
about ”Quasi-Polynomials and Partition Analysis”
and Talk: ”Combinatorial families enumerated by
quasi-polynomials”

Prof. Gert Almkvist: Lund University Sweden,
March 20, 2006, Talk: ”Linear and Quadratic Re-
cursions, Harmonic Sum Identities”

Prof. Martin P. Bendsøe: Technical University
of Denmark, March 22–23, 2006, Rigorosum Stainko,
Talk: ”Topology optimization – Status and Trends”

Dr. Christiaan Van De Woestijne: Mathemati-
cal Institute The Netherlands, April 24, 2006, Talk:
”Deterministic equation solving over finite fields”

Prof. Volker Strehl: Erlangen-Nürnberg Univer-
sity Germany, April 28–30, 2006, Joint scientific re-
search and talk

Prof. Doron Zeilberger: Rutergs University USA,
May 4–5, 2006, Joint scientific research and talk

Dr. Klaus Gärtner: WIAS Berlin Germany, May
23–24, 2006, Talk: ”Parallel LU-decomposition tech-
niques for sparse matrices, present status of PAR-
DISO”

Prof. Helmut Prodinger: Stellenbosch University
South Africa, July 13–16, 2006, Talk: ”Old and new
results about approximate counting, digital search
trees, and skip lists”

Prof. Ulrich Kohlenbach: TU Darmstadt Ger-
many, October 18–20, 2006, Talk: ” Effective Uni-
form Bounds from Ineffective Proofs in Nonlinear
Analysis and Geodesic Geometry”

Dr. Willem A. De Graaf: Dep. of Mathematics
Trento Italy, October 12–15, 2006, Cooperation with
J. Schicho and J. Pilnikova, Topic: Lie Algebra and
diophantic equations

Prof. Bill Chen: Nankai University China, Octo-
ber 22–25, 2006, Joint scientific Cooperation and talk

Prof. Dr. Christian Wieners: University of Karl-
sruhe Germany, December 4–7, 2006, Talk: ”SQP
methods for incremental plasticity”

Dr. Hans-Christian Graf Von Bothmer: Uni-
versity of Hannover Germany, March 6–10, 2006,
Cooperation (with O. Labs and J. Schicho): The

method of solving large algebraic systems of equa-
tions through prime experiments should be tested
on interesting case studies.

Dr. Heiko Hermann: Technical University Berlin
Germany, March 4–11, 2006, Cooperation on the
topic of mathematical physics.

Dr. Bjorn Fredrik Nielsen: SIMULA Research
Labs Oslo Norway, April 24–28, 2006, Cooperation
about Level Set Methods; Talk: ”Computational is-
sues in heart modelling”

Mr. Simon Huffeteau: Ecole Polytechnique
France, April 24–July 23, 2006, Cooperation about
image processing; Level Set Methods

DI Adrian Craciun: Institute E-Austria
Timisoara Romania, April 26–May 2, 2006, Cooper-
ation in Theorema-Project

Prof. Olaf Steinbach: Technical University Graz
Germany, July 3–7, 2006, Invited Speaker at the
Conference ”DD17 - 17th International Conference
on Domain Decomposition Methods”

Prof. Mark Ainsworth: Strathclyde University
United Kingdom, July 3–7, 2006, Invited Speaker
at the Conference ”DD17 - 17th International Con-
ference on Domain Decomposition Methods”

Prof. Günter Leugering: University of Erlangen
Germany, July 3–7, 2006, Invited Speaker at the
Conference ”DD17 - 17th International Conference
on Domain Decomposition Methods”

Prof. Mark Adams: Columbia University USA,
July 3–7, 2006, Invited Speaker at the Conference
”DD17 - 17th International Conference on Domain
Decomposition Methods”

Prof. Zoran Andjelic: University of Baden Ger-
many, July 3–7, 2006, Invited Speaker at the Con-
ference ”DD17 - 17th International Conference on
Domain Decomposition Methods”

Prof. Yuri Kuznetsov: University of Houston
USA, July 3–7, 2006, Invited Speaker at the Con-
ference ”DD17 - 17th International Conference on
Domain Decomposition Methods”

Prof. Dr. Rene Pinnau: TU Kaiserslautern Ger-
many, August 21–25, 2006, Talk: ”Mathematis-
che Herausforderungen bei der Optimalsteuerung
von strahlungsdominanten Prozessen” Cooperation
at the topic Optimization of semiconductor compo-
nents.

Prof. Victor L’Vov: Weizmann Institut of Science
Israel, Oct. 27–Nov. 5, 2006, Finishing of a joint pa-
per: ”Climate variability” and talk about achieved
results.
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1 Monographs, PhD Theses, Diploma Theses

[1] Gruber, P. G. Solution of elastoplastic
problems based on the moreau-yosida theorem.
Master’s thesis, Institut für numerische Mathe-
matik, Johannes Kepler Universität Linz, 2006.

[2] Hackl, B. Shape Variations, Level Set and
Phase-field Methods for Perimeter Regularized
Geometric Inverse Problems. PhD thesis, JK
University Linz, September 2006.

[3] Hofinger, A. Ill-posed problems: Extending
the deterministic theory to a stochastic setup.

PhD thesis, Universitaet Linz, 2006. ISBN:
3854990197.

[4] Kienesberger, J. Efficient Solution Algo-
rithms for Elastoplastic Problems. PhD thesis,
Johannes Kepler University Linz, 2006.

[5] Stainko, R. Advanced Multilevel Techniques
to Topology Optimization. PhD thesis, J. Ke-
pler University Linz, SFB F013, February
2006.
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thermoelasticity. Mathematical Methods in the
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[2] Andrews, G. E., Knopfmacher, A., and

Zimmermann, B. On the number of distinct
multinomial coefficients. Journal of Number
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[3] Apel, T., and Schöberl, J. Multi-
grid methods for anisotropic edge refinement.
SIAM J. Numer. Anal 40, 5 (2002), 1993–2006.

[4] Becirovic, A., Paule, P., Pillwein, V.,

Riese, A., Schneider, C., and Schöberl,

J. Hypergeometric summation algorithms for
high order finite elements. Computing 78, 3
(2006), 235–249. Preliminary version available.

[5] Buchberger, B., and Rosenkranz, M.

Theorema: Towards computer-aided mathe-
matical theory exploration. Journal of Applied
Logic 4, 4 (December 2006), 359–652. ISSN
1570-8683.

[6] Burger, M. Surface diffusion including free
adatoms. Comm. Math. Sci. 4 (2006), 1–51.

[7] Burger, M., and Kaltenbacher, B. Regu-
larizing Newton-Kaczmarz methods for nonlin-
ear ill-posed problems. SIAM J. Numer. Anal.
44 (2006), 153–182.

[8] Driver, K., Prodinger, H., Schneider,

C., and Weideman, A. Padé Approxima-
tions to the Logarithm II: Identities, Recur-
rences, and Symbolic Computation. Ramanu-
jan Journal 11, 2 (April 2006), 139–158. Pre-
liminary version online.

[9] Driver, K., Prodinger, H., Schneider,

C., and Weideman, A. Padé Approxima-
tions to the Logarithm III: Alternative Meth-
ods and Additional Results. Ramanujan Jour-
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online.

[10] Egger, H. Semiiterative regularization in
hilbert scales. SIAM J. Numer. Anal. 44
(2006), 66–81.

[11] Egger, H., Hein, T., and Hofmann, B. On
decoupling of volatility smile and term struc-
ture in inverse option pricing. Inverse Problems
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proof of turan’s inequality. Journal of Inequal-
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A. Voronkov, Eds., vol. 4246 of LNCS, pp. 182–
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summation with unspecified summands. Dis-
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liminary version online.

[22] Kienesberger, J., and Valdman, J. An
efficient solution algorithm for elastoplasticity
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Mathematics and Advanced Applications: Enu-
math 2005 (2006), A. B. de Castro, D. Gomez,
P. Quintela, and P. Salgado, Eds.

[23] Langer, U., and Pechstein, C. Coupled
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lems. Journal of Applied Mathematics and Me-
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[24] Levandovskyy, V. and Zerz, E. Algebraic
systems theory and computer algebraic meth-
ods for some classes of linear control systems.
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der and S. Schöberl. Hypergeometric Sum-
mation Techniques for High Order Finite Ele-
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Jüttler, B. Rational surfaces with linear
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surfaces. Computer Aided Geometric Design
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[29] Shemyakova, E., and Winkler, F. Obsta-
cle to factorization of LPDOs. In Proc. Trans-
gressive Computing 2006, Granada, Spain
(April 2006), J.-G. Dumas, Ed., pp. 435–441.

[30] Stainko, R. An adaptive multilevel approach
to the minimal compliance problem in topology
optimization. Communications in Numerical
Methods in Engineering 22 (2006), 109–118.

[31] Stainko, R., and Burger, M. A one shot
approach to topology optimization with local
stress constraints. In IUATM Symposium on
Topology Design Optimization of Structures,
Machines and Materials (2006), M. P. Bend-
soe, N. Olhoff, and O. Sigmund, Eds., vol. 137
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2006, pp. 96–107.

ii



3 Talks at Conferences, Universities and other Institutions

[1] Barton, M. Bézier clipping via degree re-
duction. Workshop on Algebraic Spline Curves
and Surfaces, Eger, Hungary, May 17-18 2006.

[2] Barton, M. Bézier clipping via degree reduc-
tion. Sixth International Conference on Curves
and Surfaces, Avignon, France, June 29-July 5
2006.

[3] Beck, T. Computational Formal Desingular-
ization of Surfaces in P 3

C . Magma 2006, Berlin,
Germany, 30.07.06–02.08.06, 2006.

[4] Beck, T. An economic model for hypersur-
faces. Workshop on Resolution of Algebraic
Varieties, Kaiserhaus, 2006.

[5] Beck, T., and Schicho, J. Analytic Res-
olution of Surfaces. WSCA 06 (Poster),
Barcelona, Spain, February 2006.

[6] Beck, T., and Schicho, J. Parametrization
of Algebraic Curves Defined by Sparse Equa-
tions. 10th RWCA, Basel, Switzerland, March
2006.

[7] Buchberger, B. Automated mathematical
theory exploration: How far can we go? In-
vited colloquium talk at DERI, Innsbruck, De-
cember 2006.

[8] Buchberger, B. Automated synthesis of a
gröbner bases algorithm. Talk at Workshop
”Formal Gröbnerr Bases Theory”, March 6
2006.

[9] Buchberger, B. Die zukunft der algorith-
mischen mathematik: Kann mathematische
forschung automatisiert werden? Invited col-
loquium talk at OCG, OVE, Graz, November
2006.

[10] Buchberger, B. Formal mathematics: A key
to the future. Invited talk at ”Engineering and
Life Sciences”, Avignon, France, June 2006.

[11] Buchberger, B. Mathematical theory explo-
ration. Invited talk at IJCAR, Seattle, USA,
August 2006.

[12] Buchberger, B. Mathematical theory explo-
ration: Case study groebner bases. Invited talk
at SYNASC 2006, Timisoara, September 2006.

[13] Buchberger, B. Symbolic computation:
Current trends. Talk at Max Planck Institute
for Physics, München, January 31 2006.

[14] Buchberger, B. Symbolic computation:
Self-application of algorithmic mathematics.
Invited talk at MAP 06 (Mathematics, Algo-
rithms, Proofs), Mathematical Research Cen-
ter, Castro-Urdiales, Spain, Jan 9-13, 2006,
January 10 2006.

[15] Buchberger, B. Symbolic computation:
Some thoughts about the future. Invited
talk at LL2006 (Loops and Legs in Quantum
Physics), Eisenach, Germany, April 2006.

[16] Egger, H. Acceleration of iterative methods
for inverse problems. Intern. Conf. on ”Inverse
Problems and Simulation”, Fethiye, May 2006.

[17] Egger, H. Preconditioning iterative regular-
ization methods. Intern. GAMM/SIAM Conf.
on ”Applied Linear Algebra”, Düsseldorf, July
2006.

[18] Engl, H. Hot stuff: From iron and steel mak-
ing via inverse problems to finance. ICIAM
Board Meeting, Shanghai, China, May 2006.

[19] Engl, H. Hot stuff: From ironmaking fur-
naces via inverse problems to mathematical fi-
nance. Universitaet Goettingen, April 2006.

[20] Engl, H. Iterative methods for the regular-
ization of nonlinear inverse problems. Collo-
quium There is nothing more practical than
a good theory, Fraunhofer-Institut Kaiser-
slautern, September 2006.

[21] Engl, H. Iterative regularization methods for
nonlinear inverse problems for partial differen-
tial equations. TX Joint Mathematics Meet-
ings, Texas, USA, January 2006.

[22] Engl, H. Mathematical Modelling and Nu-
merical Simulation: From Iron and Steel Mak-
ing via Inverse Problems to Finance. invited
talk at the University of Tokyo, October 2006.

[23] Engl, H. Mathematics and industry a rela-
tion for mutual benefit: The austrian experi-
ence. Workshop in Applied Mathematics, Ex-
periences and Visions for Industrial Mathemat-
ics in Europe, Bedlewo, Polen, April 2006.

[24] Engl, H. Mathematics and industry a rela-
tionship for mutual benefit. 10. Internationale
Tagung ueber Schulmathematik, Wien: Math-
ematik die Schluesseltechnologie in Industrie
und Wirtschaft, February 2006.

[25] Engl, H. Regularization of nonlinear inverse
problems: Convergence analysis, new chal-
lenges. 3rd International Conference on Inverse
Problems, Sapporo, Japan, July 2006.

[26] Engl, H. Regularization of nonlinear inverse
problems: Convergence analysis, new chal-
lenges. Wichita State University, August 2006.
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[106] Winkler, F. Gröbner bases in difference-
differential modules. talk at the Internat. Sym-
posium for Symbolic and Algebraic Computa-
tion (ISSAC 2006), Genova, Italy, July 2006.

[107] Winkler, F. Parametrization of algebraic
curves. talk at the Dept. of Mathematics, Aris-
totle Univ. Thessaloniki, Greece, March 2006.

[108] Winkler, F. Selected topics in computer al-
gebra. talk at the Dept. of Mathematics, Aris-
totle Univ. Thessaloniki, Greece, March 2006.

[109] Winkler, F. Symbolic parametrization of
algebraic curves. invited talk at the Er-
win Schrödinger Institute for Mathematical
Physics (ESI), Univ. Wien, November 2006.

[110] Zimmermann, B. Parametrizing bronstein’s
”poor man’s” integrator. Contributed talk at
SFB Status-Seminar, April 21 2006.

vii



4 SFB Technical Reports

2006–1 Langer, U., Pechstein, C.: Coupled Fi-

nite and Boundary Element Tearing and

Interconnecting Methods Applied to Non-

linear Potential Problems January, 2006.
Eds.: E. Lindner, B. Jüttler
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a Conjectured Inequality for a Sum of

Legendre Polynomials April, 2006. Eds.:
P. Paule, U. Langer

2006–12 Langer, U., Yang, H.: A Parallel Solver

for the 3D Incompressible Naiver-Stokes

Equations on the Austrian Grid April,
2006. Eds.: E. Lindner, B. Jüttler
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Plain Sailing Indeed December, 2006.
Eds.: P. Paule, J. Schicho

2006–42 Paule, P., Schneider, C.: Truncating Bi-

nomial Series with Symbolic Summation

December, 2006. Eds.: B. Buchberger, J.
Schöberl
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