## Factorization and Division in the Realm of Linear Ordinary BVPs

$$
\begin{array}{|l|}
\hline u^{\prime \prime}=f \\
u(0)=u(1)=0
\end{array}=\begin{aligned}
& ? \\
& ?
\end{aligned}
$$

$$
\begin{gathered}
(-A X-X B+X A X+X B X)(A-F A)^{-1}=A \\
(A-F A)^{-1}=?
\end{gathered}
$$

F1322-F1302
Markus Rosenkranz and Georg Regensburger

## Part I:

## Factorization

$$
\begin{array}{|l|}
\hline u^{\prime \prime}=f \\
u(0)=u(1)=0
\end{array}=\begin{array}{|l|}
\hline ? \\
?
\end{array} \cdot \begin{aligned}
& ? \\
& ? \\
& \hline
\end{aligned}
$$

## How Do We Factor BVPs?

Relation to Green's Operators?

$$
\begin{aligned}
& \begin{array}{l}
u^{\prime \prime}=f \\
u(0)=u(1)=0
\end{array}=\begin{array}{l}
u^{\prime}=f \\
\int_{0}^{1} u(\xi) d \xi=0
\end{array} \cdot\left[\begin{array}{l}
u^{\prime}=f \\
u(0)=0
\end{array}\right. \\
& {\left[D^{2}, L \oplus R\right]=[D, F] \cdot[D, L]}
\end{aligned}
$$

## What Is a BVP?

$$
\begin{aligned}
& T u=f \\
& B_{1} u=0, \ldots B_{n} u=0
\end{aligned}
$$

$$
\begin{array}{ll}
T \in \mathbb{C}[\partial] & \operatorname{ord}(T)=n \\
B_{i}: \mathfrak{F} \rightarrow \mathbb{C} & \mathfrak{F}=C^{\infty}[0,1]
\end{array}
$$

$$
B=B_{1} \oplus \cdots \oplus B_{n}
$$

$$
B: \mathfrak{F} \rightarrow \mathbb{C}^{n} \quad \tilde{B}: \mathfrak{F} \rightarrow \mathbb{C}^{m}
$$

$$
B \oplus \tilde{B}: \mathfrak{F} \rightarrow \mathbb{C}^{n} \oplus \mathbb{C}^{m}
$$

$$
T u=f
$$

$$
x \mapsto B x+\tilde{B} x
$$

$$
B u=0
$$

A BVP is $(T, B)$

Abstract Setting
$T \in L(V) \quad \operatorname{dim} \operatorname{Ker}(T)=n<\infty$ $B: V \rightarrow K^{n}$ linear

## When Are Two BVPs Equal?

$$
(T, B) \sim(\tilde{T}, \tilde{B}) \quad \text { iff }
$$

$$
T=\widetilde{T} \quad \text { and } \quad \operatorname{Ker}(B)=\operatorname{Ker}(\tilde{B})
$$

$[T, B]$ denotes the equivalence class of $(T, B)$
Example: $\quad D u \equiv u^{\prime} \quad L u \equiv u(0) \quad R u \equiv u(1)$

$$
\left[D^{2}, L \oplus R\right]=\left[D^{2},(R-L) \oplus L\right]
$$

$$
\begin{array}{|l|}
\hline u^{\prime \prime}=f \\
u(0)=0, u(1)=0
\end{array} \sim \begin{aligned}
& u^{\prime \prime}=f \\
& u(0)=u(1), u(0)=0
\end{aligned}
$$

## What Is a Regular BVP?

$[T, B] \quad$ is regular iff
$\underset{f \in \mathfrak{F}}{\forall} \quad \exists!\quad(T u=f, B u=0) \Leftrightarrow$

$$
T u=f
$$

$$
B u=0
$$

$\operatorname{Ker}(B) \cap \operatorname{Ker}(T)=0 \quad$ and $\quad \operatorname{Ker}(B)+\operatorname{Ker}(T)=\mathfrak{F}$ Uniqueness

Existence

$$
\Leftrightarrow \quad \operatorname{Ker}(B)+\operatorname{Ker}(T)=\mathfrak{F} \quad \Leftrightarrow
$$

$\varphi_{1}, \ldots \varphi_{n}$ basis of $\operatorname{Ker}(T)$ (fundamental system)

$$
\left(\begin{array}{ccc}
B_{1} \varphi_{1} & \cdots & B_{1} \varphi_{n} \\
\vdots & \ddots & \vdots \\
B_{n} \varphi_{1} & \cdots & B_{n} \varphi_{n}
\end{array}\right) \quad \text { is regular }
$$

## The Green's Operator

BVP

| $[T, B] \quad$ | $\begin{array}{l}T u=f \\ B u \\ B u\end{array}$ |
| :--- | :--- |

## Green's Operator

$$
\begin{aligned}
G: \mathfrak{F} & \rightarrow \mathfrak{F} \\
f & \mapsto u
\end{aligned}
$$

$G$ solves $[T, B]$ iff $T G=1$ and $B G=0$
Regularity $\Rightarrow G$ is well-defined
Notation

$$
G=[T, B]^{-1}
$$

General Formula:

$$
\begin{aligned}
& {[T, B]^{-1}=(1-P) T^{\star}} \\
& P^{2}=P \\
& \text { projection } \\
& T T^{\diamond}=1 \quad \text { a right inverse } \\
& \operatorname{Im}(P)=\operatorname{Ker}(T) \\
& \operatorname{Ker}(P)=\operatorname{Ker}(B) \\
& T^{\star}=\left[T, L \oplus \cdots \oplus L D^{n-1}\right]^{-1}
\end{aligned}
$$

## How Do We Multiply BVPs?

$$
\begin{array}{cccc}
{[T, B] \cdot[\widetilde{T}, \tilde{B}]} & \equiv[T \widetilde{T}, B \tilde{T} \oplus \tilde{B}] \\
\dagger & \uparrow & \uparrow \\
G & \widetilde{G} & \Rightarrow & \tilde{G} \circ G
\end{array}
$$

Proof: $\quad T G=1 \quad \tilde{T} \tilde{G}=1$

$$
\begin{aligned}
& B G=0 \quad \tilde{B} \tilde{G}=0 \\
& \quad T \tilde{T} \tilde{G} G=T 1 G=T G=1 \\
& B \tilde{T} \tilde{G} G=B G=0 \quad \tilde{B} \widetilde{G} G=0
\end{aligned}
$$

"Notation" $([T, B] \cdot[\widetilde{T}, \widetilde{B}])^{-1}=[\widetilde{T}, \tilde{B}]^{-1} \cdot[T, B]^{-1}$

$$
\underset{\text { regular }}{[T, B],[\widetilde{T}, \tilde{B}]} \Rightarrow \underset{\text { regular }}{[T, B] \cdot[\widetilde{T}, \tilde{B}]}
$$

## The Problem Monoid

## $[T, B] \cdot[\widetilde{T}, \tilde{B}]=[T \tilde{T}, B \tilde{T} \oplus \tilde{B}] \quad$ Multiplication

| $[1,0]$ | $1 u=f$ <br> $0 u=0$ |
| :--- | :--- |

Neutral Element
$[T, B] \cdot[\widetilde{T}, \widetilde{B}] \neq[\widetilde{T}, \widetilde{B}] \cdot[T, B] \quad$ noncommutative $[1,0]^{-1}=1 \quad$ Identity operator

Examples: $[D, L] \cdot[D, R]=\left[D^{2}, L D \oplus R\right]$

$$
\stackrel{\text { [D, }}{[D] \cdot[D, L]=} \stackrel{\neq}{\left[D^{2}, R D \oplus L\right]}
$$

IVP are commutative

$$
[D, L] \cdot[D, L]=\left[D^{2}, L \oplus L D\right]
$$

## Elementary Green's Operators I

$$
\begin{aligned}
& A f(x) \equiv \int_{0}^{x} f(\xi) d \xi \quad[D, L]^{-1}=A \quad \begin{array}{ll}
D A & =1 \\
L A & =0
\end{array} \\
& B f(x) \equiv \int_{x}^{1} f(\xi) d \xi \quad[D, R]^{-1}=-B \quad \begin{array}{l}
D(-B)=1 \\
R(-B)=0
\end{array} \\
& \lceil f\rceil u \equiv f u \\
& {[D-\lambda, L]^{-1}=\left\lceil e^{\lambda x}\right\rceil A\left\lceil e^{-\lambda x}\right\rceil} \\
& {[D-\lambda, R]^{-1}=-\left\lceil e^{\lambda x}\right\rceil B\left\lceil e^{-\lambda x}\right\rceil}
\end{aligned}
$$

## Elementary Green's Operators II

$$
\begin{aligned}
F & \equiv A+B \quad[D, F]^{-1}=A-F A \equiv C \\
F u & =\int_{0}^{1} u(\xi) d \xi
\end{aligned}
$$

$\beta: \mathfrak{F} \rightarrow \mathbb{C}$ linear $\quad[D-\lambda, \beta]$ regular, $\beta\left(e^{\lambda x}\right) \neq 0$

$$
\begin{array}{r}
{[D-\lambda, \beta]^{-1}=\left(1-P_{\lambda, \beta}\right)\left\lceil e^{\lambda x}\right\rceil A\left\lceil e^{-\lambda x}\right\rceil} \\
P_{\lambda, \beta} \equiv \frac{\beta(u)}{\beta\left(e^{\lambda x}\right)} e^{\lambda x}
\end{array}
$$

## Stieltjes Boundary Conditions

$$
\begin{aligned}
\beta(u)= & \sum_{i=0}^{n-1}\left(a_{i} u^{(i)}(0)+b_{i} u^{(i)}(1)\right)+\int_{0}^{1} \varphi(\xi) u(\xi) d \xi \\
& \sum_{i=0}^{n-1}\left(a_{i} L D^{i}+b_{i} R D^{i}\right)+F\lceil\varphi\rceil
\end{aligned}
$$

In $L, R, D, A, B,\lceil\varphi\rceil$ language:
$\beta \in$ right ideal generated by $\{L, R\}$

$$
\left.\begin{array}{rl}
{[D, F] \cdot[D, L]=} & {\left[D^{2}, F D \oplus L\right] \quad F D u=\int_{0}^{1} u^{\prime}(\xi) d \xi} \\
= & {\left[D^{2},(R-L) \oplus L\right]} \\
= & {\left[D^{2}, L \oplus R\right] \quad=[D, F] \cdot[D, R]} \\
A \cdot(A-A F)= & -A\lceil x\rceil-\lceil x\rceil B \\
+\lceil x\rceil A\lceil x\rceil+\lceil x\rceil B\lceil x\rceil
\end{array}=(-B) \cdot(A-A F)\right)
$$

We want to factor

$$
\left[D^{2}, L \oplus R\right]
$$

Choose a (regular) factor
[ $D, L$ ]
$[D, R]$
Remaining factor
$[D, R]$
[ $D, L$ ]
Compute

$$
[D, L]^{-1}=A
$$

$$
[D, R]^{-1}=-B
$$

Factorization

$$
\begin{array}{ll}
{[D, R A] \cdot[D, L]} & {[D,-L B] \cdot[D, R]} \\
=[D, F] \cdot[D, L] & =[D, F] \cdot[D, R]
\end{array}
$$

## The Factorization Lemma

$[T, B] \quad$ regular $\quad T=T_{1} T_{2}$

Then there exist $B_{1}, B_{2}$ with
$\left[T_{1}, B_{1}\right],\left[T_{2}, B_{2}\right]$ regular and $\operatorname{Ker}(B) \leq \operatorname{Ker}\left(B_{2}\right)$
such that

$$
[T, B]=\left[T_{1}, B_{1}\right] \cdot\left[T_{2}, B_{2}\right]
$$

"Every factorization of the differential operator can be lifted to the problem level"

## Splitting into Regular First-order Factors

$[T, B]$ regular $T=\left(D-\lambda_{1}\right) \cdots\left(D-\lambda_{n}\right)$

Then we can compute Stieltjes boundary conditions $\beta_{1}, \ldots, \beta_{n}$ such that

$$
[T, B]=\left[D-\lambda_{1}, \beta_{1}\right] \cdots\left[D-\lambda_{n}, \beta_{n}\right]
$$

"Every regular BVP can be factored into regular first-order BVPs"

Green's operators:

$$
[T, B]^{-1}=\left[D-\lambda_{n}, \beta_{n}\right]^{-1} \cdots\left[D-\lambda_{1}, \beta_{1}\right]^{-1}
$$

## Part II:

Division in the Realm of Linear Ordinary BVPs

$$
\begin{gathered}
(-A X-X B+X A X+X B X)(A-F A)^{-1}=A \\
(A-F A)^{-1}=?
\end{gathered}
$$

## From Green's Operators to Green's Functions

Problem [ $T, B_{1} \oplus \cdots \oplus B_{n}$ ] $\rightarrow$ Green's Operator $G$

$$
\begin{aligned}
& T G=1 \\
& B_{1} G=\ldots=B_{n} G=0
\end{aligned}
$$

$$
\begin{aligned}
G: & \mathfrak{F} \rightarrow \mathfrak{F} \\
& f \mapsto u
\end{aligned}
$$

Representation via Green's function:
$u(x)=G f(x)=\int_{0}^{1} g(x, \xi) f(\xi) d \xi$

$$
\rightarrow \mathfrak{G} \equiv\{g \mid g \text { Green's Function }\}
$$

Example:

$$
\begin{aligned}
& \begin{array}{l}
u^{\prime \prime}=f \\
u(0)=u(1)=0
\end{array} g(x, \xi)=\left\{\begin{array}{lll}
(x-1) \xi & \text { if } & 0 \leq \xi \leq x \leq 1 \\
x(\xi-1) & \text { if } & 0 \leq x \leq \xi \leq 1
\end{array}\right. \\
& G=-A X-X B+X A X+X B X
\end{aligned}
$$

## Volterra's Kernel Composition

Volterra (1913): For $g, \tilde{g} \in \mathfrak{K}$ put:

$$
g * \tilde{g}(x, y)=\int_{0}^{1} g(x, t) \tilde{g}(t, y) d t
$$

Noncommutative Ring $\mathfrak{K} \equiv \mathrm{L}^{2}(I \times I) \supseteq \mathfrak{G}$
Intention: $G \triangleq g, \widetilde{G} \triangleq \tilde{g} \rightarrow G \circ \widetilde{G} \triangleq g * \tilde{g}$
Notation: Often we identify $G \triangleq g$ and drop $*$.

Noncommutativity crucial: $A B \neq B A$

Factorization on Three Levels - An Example

Problem Level:

$$
\left[D^{2}, L \oplus R\right]=[D, F] \cdot[D, L]
$$

Operator Level:

$$
\underbrace{-A X-X B+X A X+X B X}_{G_{2}}=A \cdot \underbrace{(A-F A)}_{C}
$$

Functional Level:

$$
\begin{aligned}
& -h(\xi-x) x-h(x-\xi) x+h(\xi-x) x \xi+h(x-\xi) x \xi \\
& \quad=h(\xi-x) *(-h(x-\xi)+h(\xi-x) \xi+h(x-\xi) \xi)
\end{aligned}
$$

Factorization versus Division

Factorizations yield Divisions:

$$
(-A X-X B+X A X+X B X)(A-F A)^{-1}=A
$$

But what if Divisibility Fails?

$$
(A-F A)^{-1}=?
$$

Recall the Integers:

$$
\begin{aligned}
& 6 \cdot 2^{-1}=3 \in \mathbb{Z} \\
& 2^{-1}=0.5 \in \mathbb{Q}
\end{aligned}
$$

Mikusiński (1959): For $u, \tilde{u} \in \mathfrak{L}$ put:

$$
u \circledast \tilde{u}(x)=\int_{0}^{x} u(x-\xi) \tilde{u}(\xi) d \xi
$$

Commutative Ring $\mathfrak{L} \equiv C(0, \infty)$
Integral Operator $l \equiv 1$, so: $l \circledast u(x)=\int_{0}^{x} u(\xi) d \xi$
We have $A$ but not $B$ : We cannot solve BVPs!

Construct $\mathfrak{M}$ as the field of fractions of $\mathfrak{L}$.
Introduce 《Differential Operator»: $s \equiv l^{-1}$

Solving Inhomogeneous IVPs à la Mikusiński
Fundamental Formula of Mikusiński Calculus:

$$
\begin{aligned}
& s \circledast u=u^{\prime}+u(0) \delta_{0} \\
& s \circledast s \circledast u=u^{\prime \prime}+u^{\prime}(0) \delta_{0}+u(0) \delta_{0}^{\prime}
\end{aligned}
$$

Dirac <Distribution»:

$$
\delta_{0} \equiv s \circledast 1=f f^{-1} \quad \rightarrow \quad \delta_{0} \circledast u=u, \quad l \circledast \delta_{0}=1
$$

Example:

$$
u^{\prime \prime}=f
$$

$$
s \circledast s \circledast u=f+a \delta_{0}+b \delta_{0}^{\prime}
$$

$$
\begin{aligned}
\rightarrow u & =(l \circledast l) \circledast f+a(l \circledast 1)+b \\
& =x \circledast f+a x+b
\end{aligned}
$$

Localization in Noncommutative Rings

For localizing $R$ at $S \subseteq R$ into $R S^{-1}$, we require:
Multiplicativity: $(\forall s, \tilde{s} \in S) s \tilde{s} \in S$
Ore Condition: $(\forall r \in R)(\forall s \in S)(\exists \tilde{r} \in R)(\exists \tilde{s} \in S) r \tilde{s}=s \tilde{r}$
Reversibility: $(\forall r \in R)((\exists s \in S) s r=0 \Rightarrow(\exists \tilde{s} \in S) r \tilde{s}=0)$

Necessary and sufficient for representing all elements of $R S^{-1}$ as $r s^{-1}$ : ring of fractions.

Even if $R$ has no zero divisors, it may fail to have a field of fractions (quotient field)!

Motiviation for Ore Condition:

$$
s^{-1} r=\tilde{r} \tilde{s}^{-1} \rightarrow r \tilde{s}=s \tilde{r}
$$

## The Ore Ring of Green's Functions

Applying the Construction:
First Attempt: $R=\mathfrak{K}, S=$ nonzerodiv of $\mathfrak{K}$
Second Attempt: $R=\mathfrak{K}, \quad S=\langle A, B\rangle$
Third Attempt: $R=\mathfrak{K}, \quad S=\mathfrak{G}$
Ore Condition tough!
Winning Idea:
Let $R$ be any ring and $S$ and multiplicative subset fulfilling the Ore condition. Then the ring $S^{+}$generated by $S$ in $R$ fulfills the Ore condition when localized at $S$.

Final Choice: $R=\mathfrak{G}^{+}, \quad S=\mathfrak{G}$

## The Problem Monoid

## Problem Monoid:

$$
\mathfrak{B}=\{[T, B] \mid[T, B] \text { Regular BVP }\}
$$

Crucial Observation: $(\mathfrak{G}, \circ) \cong\left(\mathfrak{B}^{\circ P}, \cdot\right)$
Regularization Lemma:
For every $T$ with $\operatorname{ord}(T)=m$ and every $B=B_{1} \oplus \cdots \oplus B_{m}$ there is a $[\widetilde{T}, \tilde{B}] \in \mathfrak{B}$ with $T \mid \widetilde{T}$ and $\operatorname{Ker}(B) \geq \operatorname{Ker}(\tilde{B})$.

Division Lemma:
For every $[T, B],\left[T_{1}, B_{1}\right] \in \mathfrak{B}$ with $T_{1} \mid T$ and $\operatorname{Ker}(B) \leq$ $\operatorname{Ker}\left(B_{1}\right)$ there is a unique $\left[T_{2}, B_{2}\right] \in \mathfrak{B}$ with $\left[T_{1}, B_{1}\right]$. $\left[T_{2}, B_{2}\right]=[T, B]$.

## The Ore Condition on Problems

Ore Condition in $\mathfrak{B}$ :
Given $\left[T_{1}, B_{1}\right],\left[T_{2}, B_{2}\right] \in \mathfrak{B}$
Find $\left[\widetilde{T}_{1}, \widetilde{B}_{1}\right],\left[\widetilde{T}_{2}, \widetilde{B}_{2}\right] \in \mathfrak{B}$
such that $\left[T_{1}, B_{1}\right] \cdot\left[\tilde{T}_{1}, \widetilde{B}_{1}\right]=\left[T_{2}, B_{2}\right] \cdot\left[\tilde{T}_{2}, \widetilde{B}_{2}\right]$
Proof:
Regularization Lemma $\rightarrow[T, B] \in \mathfrak{B}$ with $T_{1} T_{2} \mid T$ and $\operatorname{Ker}(B) \leq \operatorname{Ker}\left(B_{1} \oplus B_{2}\right)$
Division Lemma $\rightarrow\left[\tilde{T}_{1}, \tilde{B}_{1}\right],\left[\tilde{T}_{2}, \widetilde{B}_{2}\right] \in \mathfrak{B}$

The Fundamental Formulae à la Mikusiński:

\[

\]

Example of a Different Fundamental Formula:

$$
\begin{array}{lcr}
C D=1-F & C^{-1} u=u^{\prime}+\left(\int_{0}^{1} u(\xi) d \xi\right. \\
C u^{\prime}=u-\int_{0}^{1} u(\xi) d \xi & & \varepsilon \equiv C^{-1} 1 \\
u^{\prime}=C^{-1} u-\left(\int_{0}^{1} u(\xi) d \xi\right) C^{-1} 1 &
\end{array}
$$

Solving Inhomogeneous BVPs à la Mikusiński
Recall:

$$
\begin{aligned}
& {\left[D^{2}, L \oplus R\right]=[D, F] \cdot[D, L]} \\
& G_{2}=A \cdot C
\end{aligned}
$$

A Custom-tailored Fundamental Formula:

$$
\begin{gathered}
G_{2}^{-1} u=u^{\prime \prime}+u(0) \delta_{0}^{\prime}+u(1) \varepsilon \\
\delta_{0}^{\prime} \equiv A^{-2} 1
\end{gathered}
$$

Example:

$$
u^{\prime \prime}=f
$$

$$
G_{2}^{-1} u=f+a \delta_{0}^{\prime}+b \varepsilon
$$

$$
\rightarrow u \stackrel{*}{=} G_{2} f+a A\left(\delta_{0}-1\right)+b A 1
$$

$$
=G_{2} f+a(1-x)+b x
$$

* Uses $C \delta_{0}^{\prime}=\delta_{0}-1$.
- Factorization of any regular BVP into irreducible factors
- Mikusiński calculus extended to cover boundary conditions
- Consider generalizations: variable coefficients, systems, PDEs
- Algorithmic tools from F1301 for noncommutative polynomial computation?
- Possible hybrid approach, e.g. fundamental system numerically

