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w(0) =u(l) =0

Part I:
Factorization




How Do We Factor BVPs?

u'' = f u = f u = f

w(0) =u(1) =0 Jgu(€)dé =0 | | u(0)=0

[D?, L& R] = [D,F]-[D, L]

Relation to Green’s Operators?



What Is a BVP?

Tu—f T €C[d] ord(T) =n
B=B1{®---® Bn B:g—->C" B:g—-C™

BeB:F—->CtgpC™
Tu = f r — Bx + Bx
Bu =20

ABVPis (T, B)

Abstract Setting: T L(V) dimKer(T) =n < oo
B:V — K™ linear



When Are Two BVPs Equal?

(T,B) ~ (T,B) iff
T = T and Ker(B) — Ker(B)

[T, B] denotes the equivalence class of (1, B)

Example: Du=v Lu=u(0) Ru=u(l)
(D°. L® Rl = [D? (R—L) @ L]

u//:]c u”:f

uw(0) =0,u(1) =0 w(0) = u(1),u(0) =0
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What Is a Regular BVP?

[T, B]  isregular iff Tu=f
Bu =20
v 4l (Tu = f,Bu=0) <
fes ueg
Ker(B)NKer(T) =0 and Ker(B) 4+ Ker(T) =F
Uniqueness Existence

& Ker(B) + Ker(T) = § &

©1,-..-%n basisof Ker(1) (fundamental system)

Bip1 .-+ Bipn
: . : 1s regular
Bne1 -+ Bnen



The Green’s Operator

BVP Green’s Operator
Bu =20 f—u

G solves [T, B] iff TG =1 and BG =0

Regularity => ( is well-defined
Notation G = [T, B]_1

General Formula:

T,B]" 1= (1 - P)T*

pP2=rp projection TT’ — 1 arightinverse
Im(P) = Ker(T)

T =[T,Lao-.--@LD" 171
Ker(P) = Ker(B)



How Do We Multiply BVPs?

T,B]-[T,B]=[TT, BT @ B]
f ! f
Q G = GoG
Proof TG =1 1G=1
TTGG =T1G =TG =1
BTGG =BG =0 BGG =0

“Notation” ([T, B] - [T,B]) ' =[T,B]~' - [T,B]~!

[T,B],[T,B] = [T,B]-[T,B]

regular regular



The Pro

blem Monoid

TT,BT @ B] Multiplication

190] lu=f
Ou=20

Neutral Element

T.B]-[T',B] #[T,B]-[T,B] noncommutative
1, O]_1 — 1 Identity operator

Examples: [D, L] - [D, R] = [D2, LD & R]

=

[D.R]-[D,L] = [D? RD & L]

IVP are commutative

(D.L]-[D,L] = [D? L& LD]



Elementary Green’s Operators |

ol 1 D(-B) =1
Bf(m):fx fd¢ |[D,R]”" =-B R(-B) =0

[flu = fu [D — X\, L7 = [er) Ale™]

[D — X\, R = —[eM]B[e™ ]



Elementary Green’s Operators 11

F=A+B
+ [D.,F] '!=A—-FA=C

Fu = /Olu(g) de
B:F — C linear [D — A\, 3] regular, B(e)\x) %~ 0

[D— X, B]71 = (1 - Py g)[eM]Ale]

B(u) g
P)\,/@ — ﬁ(ez’m)e)\




Stieltjes Boundary Conditions

n—1

5 = 3 (au®(0) +bu® () + [ p(€)ue) de

1=0

n—1

3" (a;LD" + b;RD") + F[¢]
1=0

In L,R,D,A,B,|[p] language:

3 € right ideal generated by {L, R}



Multiplying BVPs and Identities for Green’s Operators

(D, F]-[D.L] =[D2 FD® L] FDu:/01 o () de
= [D?,(R— L) & L]
=[D? L®R] =[D,F][D,R]
—Alx| — [z]B

A-(A— AF) = — (—=B) - (A — AF)

+[z|Alz] + [z]B[z]



How Do We Get Factorizations?

We want to factor [DQ, L & R]

Choose a (regular) factor  [D, L] D, R
Remaining factor D, R D, L]
Compute [D,L]_1 — A [D’R]_l — —B

Factorization [D, RA] - [D, L] |[D,—-LB]-[D, R]
= |[D,F]-[D,L] =I[D,F]-|[D,R]



The Factorization Lemma

[T, B] regular T = T1T5
Then there exist Bq, Bo with

[Tl,Bl], [TQ,BQ] regular and Ker(B) g Ker(BQ)

such that
[Ta B] — [Tla Bl] ) [T27B2]

“Every factorization of the differential operator can be lifted
to the problem level”



Splitting into Regular First-order Factors

[T, B] regular T'= (D — A1) ---(D — A\p)

Then we can compute Stieltjes boundary conditions B1,-..,0n

such that
[Ta B] — [D _ )\1)/81] U [D _ )\’nalﬁn]
“Every regular BVP can be factored into regular first-order BVPs”

Green’s operators:

[T,B]™ Y = [D — An, 8]t [D— A1, 81] 71



Part 11:
Division 1n the Realm of Linear Ordinary BV Ps

(—AX — XB+ XAX +XBX)(A—FA)1=4
(A—FA)1 =7




From Green’s Operators to Green’s Functions

Problem [T, B1®---®Bn] — Green's Operator G

TG =1 G: §—F

Representation vialGreen’s function:
u(@) = Gf (@) = | g(@,©)F(€) dg
— & ={g| g Green's Function}

Example:
u' = f C((w—1) if 0<¢<z<1
uw(0) =u(1l) =0 9(z,8) = r(€—1) if 0<z<¢<1

G=-AX -XB+ XAX 4+ XBX



Volterra’s Kernel Composition

Volterra (1913): For g,g € K put:

1

g+ (z,y) = /0 gz, )F(t, y) dt

Noncommutative Ring R=L2(I xI) D &
Intention: G£2¢,G2§ — GoG2gx§

Notation: Often we identify G = g and drop x.

Noncommutativity crucial: AB #*= BA




Factorization on Three Levels — An Example

Problem Level:

[D?, L& R] = [D,F]-[D,L]

Operator Level:

—AX — XB+ XAX + XBX = A- (A — FA)

Go C

Functional Level:

~h(€—z) r—h(z—€) a+h(E—x) 2€+h(z—E€) x€
= h(—z)x(—h(z—€)+h(E—z)+h(z—E)E)



Factorization versus Division

Factorizations vield Divisions:

(—AX —XB+XAX+XBX)(A—FA)1=4

But what if Divisibility Fails?
(A—FA)~1 =7

Recall the Integers:

6.-271=3¢7Z
21 =05€cQ



Mikusinski’s Convolution Field

Mikusinski (1959): For u,u € £ put:
w® i (z) = /O u(z — €)a(e) de

Commutative Ring £ = C(0, c0)

I
Integral Operatorl =1, so: (®u(z) = /o u(€) d€

We have A but not B: We cannot solve BVPs!

Construct 9t as the field of fractions of £.

Introduce «Differential Operatory: s=1"1



Solving Inhomogeneous IVPs a la Mikusinski

Fundamental Formula of Mikusinski Calculus:

s®u=1u 4+ u(0)dp

s®s®u=u"+u'(0)d 4+ u(0) d;

Dirac «Distribution»:

Sfo=s®l=Fff1 - fg@Pu=u, |®5g=1

Example:

’U,”:f

u(0) = a,u/(0) = b

s®s®u=f4ady+ bd,
—u=U®)®f+a(l®1)+D
=z®f+ar+0b



Localization in Noncommutative Rings

For localizing R at S C R into RS~ 1, we require:
Multiplicativity: (Vs,5€ S)sse€ S

Ore Condition: (Vr € R)(Vs e S)(Ir e R)(ds € S) rs = sr
Reversibility: (Vr € R)((3s € S)sr =0 = (35 € S)rs = 0)

Necessary and sufficient for representing all el-

ements of RS~ as rs—1: ring of fractions.

Even if R has no zero divisors, it may fail to
have a field of fractions (quotient field)!

Motiviation for Ore Condition:

slr=75"1 = rg=sF



The Ore Ring of Green’s Functions

Applying the Construction:

First Attempt: R = K, S = nonzerodiv of K
Second Attempt: R=RK, S =(A,B)
Third Attempt: R=1K, S=6&

Ore Condition tough!

Winning Idea:

Let R be any ring and S and multiplicative subset ful-
filling the Ore condition. Then the ring St generated
by S in R fulfills the Ore condition when localized at S.

Final Choice: R=®1T, S=&



The Problem Monoid

Problem Monoid:
B = {[T, B] | [T, B] Regular BVP}
Crucial Observation: (&,0) = (B°P.)

Regularization Lemma:

For every T with ord(T) = m and every B = B1®---®Bn,
there is a [T, B] € B with T|T and Ker(B) > Ker(B).

Division Lemma:

For every [T, B],[T1, B1] € B with T1|T and Ker(B) <
Ker(B1) there is a unique [1»,B>] € B with [Ty, B1] -
(12, B2] = [T, B].



The Ore Condition on Problems

Ore Condition in *B:
Given [Tl, Bl], [TQ, BQ] c B

Find [T1, B1],[T2, Bo] € B
such that [Ty, B1]-[T4, B1] = [1», B2 [1», Bs]

Proof:

Regularization Lemma — [T, B] € B
with T1T5|T and Ker(B) < Ker(B1 ¢ By)

Division Lemma — [Ty, B1], [T, Bo] € B



Lots of Fundamental Formulae

The Fundamental Formulae a |la Mikusinski:
Au' = u — u(0) —Bu' = u —u(1)
W =A1u—uw0)A 11 =-Blut+u@)B 11

Ay = o/ + w(0) &g B lu = —u 4+ u(1) 84
505/1_11/ 5lEB_11/I

Example of a Different Fundamental Formula:

CD=1-F C—lu =+ (JFu(€) de) e

Cu' = u — [3 u(€)dé L
' = C~tu— (Jgu(§)de) C~11 e=0



Solving Inhomogeneous BVPs a la Mikusinski

Recall:
[D?,L® R) = [D, F]-[D, L]
Go=A-C

A Custom-tailored Fundamental Formula:

Gglu = u" 4+ u(0) 5y + u(l)e

5= A1/
Example: Ggluzf—l—a%—l—bs
u" = f —su=Gof+aA(6g—1)+bAl
u(0) =a,u(1) =b =Gof+a(l—x)+bx

* Uses Cdy = dp — 1.



Conclusion

e Factorization of any regular BVP into irre-
ducible factors

e Mikusinski calculus extended to cover bound-
ary conditions

e Consider generalizations: variable coeffi-
cients, systems, PDEs

e Algorithmic tools from F1301 for noncom-
mutative polynomial computation?

e Possible hybrid approach, e.g. fundamen-
tal system numerically



