Nonlinear first-order ordinary BVPs via Max-plus Interpolation

$$
\begin{aligned}
& \left(y^{\prime}(x)\right)^{2}=1 \\
& y(-1)=y(1)=0
\end{aligned}
$$

$$
\begin{aligned}
& a \oplus b=\max \{a, b\} \\
& a \odot b=a+b
\end{aligned}
$$

F1322-F1308-F1302
Georg Regensburger

SFB-Seminar Strobl 2006
21st April, 2006

```
Max-plus Linear Combinations max ( }\mp@subsup{a}{1}{}+\mp@subsup{y}{1}{}(x),\mp@subsup{a}{2}{}+\mp@subsup{y}{2}{}(x)
```

First-order differential equation:

$$
\begin{align*}
& f\left(x, y^{\prime}(x)\right)=0 \tag{1}\\
& y_{1}(x), y_{2}(x) \text { solutions of }(1), a_{1}, a_{2} \in \mathbb{R}
\end{align*}
$$

Then

$$
y(x)=\max \left(a_{1}+y_{1}(x), a_{2}+y_{2}(x)\right)
$$

is a (generalized) solution of (1)
(nondifferentiable at some points)

Max-plus linear combination (Min-plus)

$$
y\left(x_{1}\right)=b_{1}, y\left(x_{2}\right)=b_{2}
$$

Given: $y_{1}(x), y_{2}(x), \quad x_{1}, x_{2} \in \mathbb{R}$ and $b_{1}, b_{2} \in \mathbb{R}$
Find: $\quad a_{1}, a_{2} \in \mathbb{R}$
such that $\quad y(x)=\max \left(a_{1}+y_{1}(x), a_{2}+y_{2}(x)\right)$
satisfies $\quad y\left(x_{1}\right)=b_{1} \quad$ and $\quad y\left(x_{2}\right)=b_{2}$
Solve:

$$
\begin{aligned}
& \max \left(a_{1}+y_{1}\left(x_{1}\right), a_{2}+y_{2}\left(x_{1}\right)\right)=b_{1} \\
& \max \left(a_{1}+y_{1}\left(x_{2}\right), a_{2}+y_{2}\left(x_{2}\right)\right)=b_{2}
\end{aligned}
$$

Max-plus linear system

$$
\left(\begin{array}{ll}
y_{1}\left(x_{1}\right) & y_{2}\left(x_{1}\right) \\
y_{1}\left(x_{2}\right) & y_{2}\left(x_{2}\right)
\end{array}\right) \text { Interpolation matrix }
$$

Generalize: m points and values, and n functions

$$
\begin{array}{ll}
a \oplus b=\max \{a, b\} & a \odot b=a+b \\
2 \oplus 3=3 & 2 \odot 3=5 \\
a \oplus-\infty=a \quad 0=-\infty & a \odot 0=a \quad 1=0
\end{array}
$$

Semiring = "ring without subtraction"

Max-plus $\mathbb{R}_{\max } \quad$ Semifield $\quad a^{(-1)}=-a$
$a \oplus a=\max \{a, a\}=a \quad$ Idempotent Semiring

Matrices: $(A \oplus B)_{i j}=A_{i j} \oplus B_{i j} \quad$ Max-plus Linear Algebra

$$
(A \odot B)_{i j}=\bigoplus_{k} A_{i k} \odot B_{k j}=\max _{k}\left(A_{i k}+B_{k j}\right)
$$

I identity matrix
P permutation matrix

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & -\infty \\
-\infty & 0
\end{array}\right)
$$ permuting rows and/or columns of I

D diagonal matrix A generalized

$$
D=\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)=\left(\begin{array}{cc}
a & -\infty \\
-\infty & b
\end{array}\right)
$$

permutation matrix

$$
A=D \odot P
$$

Invertible matrices $=$ generalized permutation matrices
Cuninghame-Green [CG79], Butkovič [But03], Gaubert, Plus [GP97]

$$
\begin{aligned}
& \text { Linear System } \\
& \left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right) \odot\binom{x_{1}}{x_{2}}=\binom{0}{0} \\
& \max \left(-1+x_{1}, 1+x_{2}\right)=0 \quad x_{1} \leq 1 \quad x_{1} \leq \min (-1,1) \\
& \max \left(1+x_{1},-1+x_{2}\right)=0 \quad x_{1} \leq-1 \quad=-\max \binom{-1}{1} \\
& x_{1} \leq \bar{x}_{1}=-1=-\max \binom{-1}{1} \quad x \text { solution of } A \odot x=0 \text { iff } \\
& x_{2} \leq \bar{x}_{2}=-1=-\max \binom{1}{-1} \quad \begin{array}{l}
x \leq \bar{x} \text { and } \\
\text { for every row } i \text { there is a }
\end{array} \\
& \bar{x} \text { principal solution } \\
& \text { column max } a_{i j} \text { with } x_{j}=\bar{x}_{j}
\end{aligned}
$$

Solvability: test if the principal solution solves the system ($\mathrm{O}(\mathrm{mn}$))
Unique solvability: equivalent to Minimal Set Covering (NP-complete)
Cuninghame-Green [CG79], Butkovič [But03]

Linear system $\quad A \odot x=b \quad A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$
$D=\operatorname{diag}\left(b_{1}^{-1}, \ldots, b_{m}^{-1}\right)=\operatorname{diag}\left(-b_{1}, \ldots,-b_{m}\right)$
$(D \odot A) \odot x=D \odot b=0 \quad$ normalized system (not homogenous, $0=1$)
Solution set $\quad S(A, b)=\left\{x \in \mathbb{R}^{n}: A \odot x=b\right\}$
As in LA the number of solutions $|S(A, b)|=\{0,1, \infty\}$
But

$$
T(A)=\left\{|S(A, b)|: b \in \mathbb{R}^{m}\right\}=\begin{aligned}
& \{0, \infty\} \\
& \{0,1, \infty\}
\end{aligned}
$$

Even if there is a unique solution for a RHS b then there is a RHS \widetilde{b} with $|S(A, \tilde{b})|=\infty$ and one with no solutions.
$\left(y^{\prime}(x)\right)^{2}=1 \quad$ Solutions: $y_{1}(x)=x \quad y_{2}(x)=-x$
Find $a_{1}, a_{2} \in \mathbb{R}, \quad y=a_{1} \odot y_{1} \oplus a_{2} \odot y_{2}$

$$
y(-1)=y(1)=0 \quad \text { Solve } \quad\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right) \odot\binom{a_{1}}{a_{2}}=\binom{0}{0}
$$

$\mathbb{R}_{\text {max }} a_{1}=-1, a_{2}=-1 \quad \mathbb{R}_{\text {min }} \quad a_{1}=1, a_{2}=1$ $y(x)=\max (-1+x,-1-x) \quad y(x)=\min (1+x, 1-x)$

$$
\begin{array}{r}
y_{1}(x)=x \quad y_{2}(x)=-x \quad y_{3}(x)=1 / 2 x^{2} \\
\left(y^{\prime}(x)-1\right)\left(y^{\prime}(x)+1\right)\left(y^{\prime}(x)-x\right)
\end{array}
$$

Find $a_{1}, a_{2}, a_{3} \in \mathbb{R}, \quad y=a_{1} \odot y_{1} \oplus a_{2} \odot y_{2} \oplus a_{3} \odot y_{3}$

$$
y(-1)=y(0)=y(1)=0 \quad \text { Solve } \quad\left(\begin{array}{ccc}
-1 & 1 & \frac{1}{2} \\
0 & 0 & 0 \\
1 & -1 & \frac{1}{2}
\end{array}\right) \odot\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$\mathbb{R}_{\max }$ No solution
$\mathbb{R}_{\text {min }} a_{1}=1, a_{2}=1, a_{3}=0$

$$
\begin{aligned}
y(x) & =\min \left(1+x, 1-x, 1 / 2 x^{2}\right) \\
& =\frac{1}{4} x^{2}-\frac{1}{2}|x|+\frac{1}{2}-\frac{1}{2}\left|\frac{1}{2} x^{2}-1+|x|\right|
\end{aligned}
$$

Maple implementation:

- Solve max(min)-plus linear systems
- Basic matrix vector operations, generate equations, conversions
- Based on LinearAlgebra package
- Max-plus interpolation
- Use dsolve to solve differential equations

Not all, wrong solutions of max-plus linear systems with solve
Convert max to abs $\quad \max (a, b)=\frac{a+b+|a-b|}{2}$
Solutions of BVPs can be expressed with nested absolute values (advantage for symbolic differentiation)

Conclusion and Outlook

- Solve nonlinear first-order ordinary BVPs given symbolic solutions to the initial value problem via Max-plus interpolation
- No symbolic methods to compute generalized solutions?
- Symbolic integration for nonlinear first-order ODEs
- Use numerical solutions of nonlinear ODEs
- To decide (unique) solvability and compute Max-plus solutions we only need evaluation of the solution at "boundary" points
- Relate Max-plus solutions to known solution concepts
- Consider PDEs (Hamilton-Jacobi equations)

References

[But94] Butkovič, P., "Strong regulartiy of matrices - a survey of results", Discrete Appl. Math. 1994, 48, 45-68
[But03] Butkovič, P., "Max-algebra: the linear algebra of combinatorics?" Linear Algebra Appl., 2003, 367, 313-335
[CG79] Cuninghame-Green, R., Minimax algebra, Springer-Verlag, 1979
[GM97] Gaubert, S. and Plus, M., "Methods and applications of (max,+) linear algebra" Springer LNCS 1200, 1997, 261-282
[Gol99] Golan, J. S., Semirings and their applications, Kluwer Academic Publishers, 1999
[KM97] Kolokoltsov, V. N., Maslov, V. P., Idempotent analysis and its applications Kluwer Academic Publishers Group, 1997

