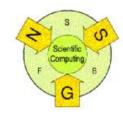
Multigrid Preconditioned Solvers for Some Elastoplastic Type Problems

Johanna Kienesberger

Jan Valdman

SFB F013 Johannes Kepler University Linz, Austria



Outline

- Motivation
- Modeling
- Algorithm for isotropic hardening
- Numerical results
- Conclusions
- Outlooks

Motivation

Computing solutions numerically avoids e.g. expensive crash tests:

Motivation

Computing solutions numerically avoids e.g. expensive crash tests:

Literature:

- Plasticity: Carstensen, Han/Reddy
- Variational inequalities: Ekeland/Teman, Glowinski et al.
- FEM and multigrid: Braess, Bramble, Brenner/Scott, Hackbusch

Modeling

Find $u \in W^{1,2}(0,T; H_0^1(\Omega)^n)$, $p \in W^{1,2}(0,T; L^2(\Omega,\mathbb{R}^{n\times n}))$, $\sigma \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^{n\times n})), \ \alpha \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^m))$ such that

$$-\operatorname{div} \sigma = b$$

$$\sigma = \sigma^{T}$$

$$\varepsilon(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^{T} \right)$$

$$\varepsilon(u) = \mathbb{C}^{-1} \sigma + p$$

$$\varphi(\sigma, \alpha) < \infty$$

$$\dot{p} : (\tau - \sigma) - \dot{\alpha} : (\beta - \alpha) \le \varphi(\tau, \beta) - \varphi(\sigma, \alpha)$$

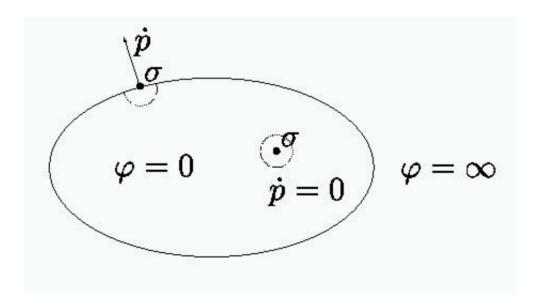
are satisfied in the variational sense with $(u, p, \sigma, \alpha)(0) = 0$ for all (τ, β) . b and \mathbb{C}^{-1} are given, b(0) = 0.

Normality law

Formulas without α (perfect plasticity)

$$\varphi(\sigma) < \infty$$

$$\dot{p}: (\tau - \sigma) \leq \varphi(\tau) - \varphi(\sigma)$$



Numeric-analytic steps

- Time discretization: $t_1 = t_0 + \Delta t$
- Reformalution of the problem using functional-analytic arguments (switching arguments in variational inequalities using a dual functional)
- Equivalent minimization problem

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint $tr(p - p_0) = 0$

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint $tr(p - p_0) = 0$.

New variable: $\tilde{p} = p - p_0$

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint $tr(p - p_0) = 0$.

New variable: $\tilde{p} = p - p_0$

A differentiable approximation of $|\tilde{p}|$:

$$|p|_{\epsilon} := \left\{ \begin{array}{ll} |p| & \text{if } |p| \ge \epsilon \\ \frac{1}{2\epsilon} |p|^2 + \frac{\epsilon}{2} & \text{if } |p| < \epsilon \end{array} \right.$$

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint $tr(p - p_0) = 0$.

New variable: $\tilde{p} = p - p_0$

A differentiable approximation of $|\tilde{p}|$:

$$|p|_{\epsilon} := \left\{ \begin{array}{ll} |p| & \text{if } |p| \ge \epsilon \\ \frac{1}{2\epsilon} |p|^2 + \frac{\epsilon}{2} & \text{if } |p| < \epsilon \end{array} \right.$$

Minimization strategy in each time step:

$$u^{k+1} = \operatorname{argmin}_v \min_q \bar{f}(v, q) = \operatorname{argmin}_v \tilde{f}(v, q_{\mathsf{opt}}(v))$$

Then $p = p_0 + \tilde{p}$

Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

$$\frac{1}{2}(Bu - \tilde{p})^T \mathbb{C}(Bu - \tilde{p}) + \frac{1}{2}\tilde{p}^T \mathbb{H}(|\tilde{p}|_{\epsilon})\tilde{p} - bu \longrightarrow \min!$$

Matrix notation:

$$\frac{1}{2} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix}^T \begin{pmatrix} B^T \mathbb{C} B & -B^T \mathbb{C} \\ -\mathbb{C} B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C} p_0 \\ \mathbb{C} p_0 \end{pmatrix}^T \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} \longrightarrow \min!$$

Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

$$\frac{1}{2}(Bu - \tilde{p})^T \mathbb{C}(Bu - \tilde{p}) + \frac{1}{2}\tilde{p}^T \mathbb{H}(|\tilde{p}|_{\epsilon})\tilde{p} - bu \longrightarrow \min!$$

Matrix notation:

$$\frac{1}{2} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix}^T \begin{pmatrix} B^T \mathbb{C} B & -B^T \mathbb{C} \\ -\mathbb{C} B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C} p_0 \\ \mathbb{C} p_0 \end{pmatrix}^T \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} \longrightarrow \min!$$

Necessary condition:

$$\begin{pmatrix} B^T \mathbb{C} B & -B^T \mathbb{C} \\ -\mathbb{C} B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C} p_0 \\ \mathbb{C} p_0 \end{pmatrix} = 0$$

The Schur-Complement system in u with the matrix

$$S = B^{T}(\mathbb{C} - \mathbb{C}(\mathbb{C} + \mathbb{H})^{-1}\mathbb{C})B$$

is solved by multigrid preconditioned conjugate gradient method.

Minimization in \tilde{p}

The objective in each integration point writes as

$$F(\tilde{p}) = \frac{1}{2} \tilde{p}^T \mathbb{C} \tilde{p} + p_0^T \mathbb{C} \tilde{p} - \tilde{p}^T \mathbb{C} \varepsilon(u) + \frac{1}{2} \sigma_y^2 H^2 |\tilde{p}|^2 + \sigma_y (1 + \alpha_0 H) |\tilde{p}|_{\epsilon} \longrightarrow \min!$$

 \tilde{p} is determined by a modified Newton Algorithm in each integration point.

Minimization in \tilde{p}

The objective in each integration point writes as

$$F(\tilde{p}) = \frac{1}{2}\tilde{p}^T \mathbb{C}\tilde{p} + p_0^T \mathbb{C}\tilde{p} - \tilde{p}^T \mathbb{C}\varepsilon(u) + \frac{1}{2}\sigma_y^2 H^2 |\tilde{p}|^2 + \sigma_y (1 + \alpha_0 H) |\tilde{p}|_{\epsilon} \longrightarrow \min!$$

 \tilde{p} is determined by a modified Newton Algorithm in each integration point.

Are there symbolic methods (as in the unregularized case)?

$$\tilde{p} = \frac{(||\operatorname{dev} A|| - b)_{+}}{2\mu + \sigma_{y}^{2}H^{2}} \frac{\operatorname{dev} A}{||\operatorname{dev} A||},$$

where

$$A = \mathbb{C}[\varepsilon(u) - p_0], b = \sigma_v(1 + \alpha_0 H).$$

Minimization in \tilde{p}

The objective in each integration point writes as

$$F(\tilde{p}) = \frac{1}{2} \tilde{p}^T \mathbb{C} \tilde{p} + p_0^T \mathbb{C} \tilde{p} - \tilde{p}^T \mathbb{C} \varepsilon(u) + \frac{1}{2} \sigma_y^2 H^2 |\tilde{p}|^2 + \sigma_y (1 + \alpha_0 H) |\tilde{p}|_{\epsilon} \longrightarrow \min!$$

 \tilde{p} is determined by a modified Newton Algorithm in each integration point.

Are there symbolic methods (as in the unregularized case)?

$$\tilde{p} = \frac{(||\operatorname{dev} A|| - b)_{+}}{2\mu + \sigma_{y}^{2}H^{2}} \frac{\operatorname{dev} A}{||\operatorname{dev} A||},$$

where

$$A = \mathbb{C}[\varepsilon(u) - p_0], b = \sigma_y(1 + \alpha_0 H).$$

What about the constraint?

Constraint $\operatorname{tr} \tilde{p} = 0$

in 2D: $\tilde{p}_{22} = -\tilde{p}_{11}$, in 3D: $\tilde{p}_{33} = -\tilde{p}_{11} - \tilde{p}_{22}$.

Projection matrix P: $\tilde{p} = P\bar{p}$

$$2D: P = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad 3D: P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Modified Newton system:

$$P^T F''(\tilde{p}) P \bar{p} = P^T F'(\tilde{p})$$

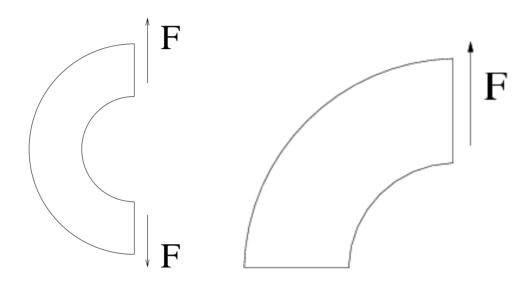
Modified Schur-Complement Matrix:

$$S = B^{T}(\mathbb{C} - \mathbb{C}P(P^{T}(\mathbb{C} + \mathbb{H})P)^{-1}P^{T}\mathbb{C})B$$

Numerical results - Quarter of a ring

FEM shape functions: u piecewise quadratic, p piecewise constant

Symmetric problem:

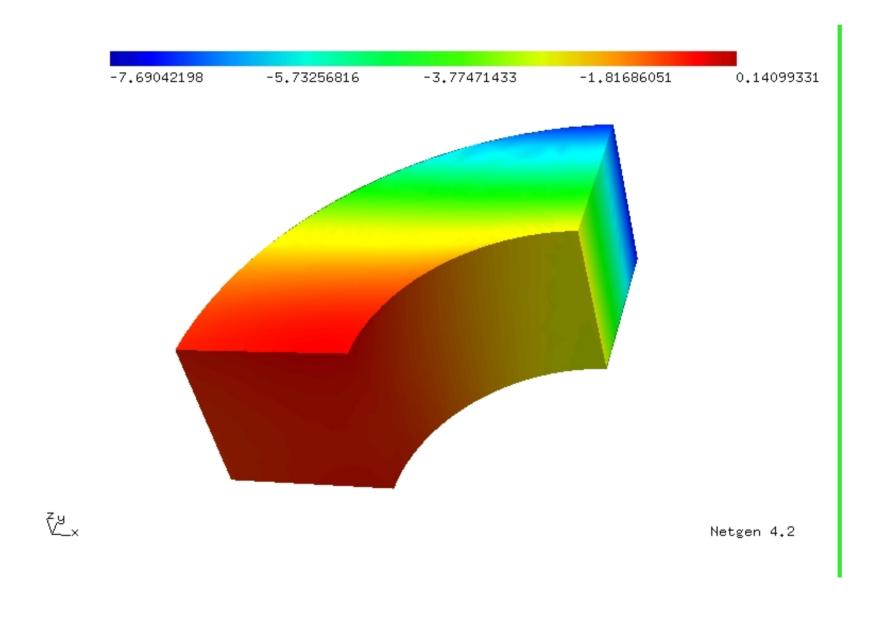


Constants:

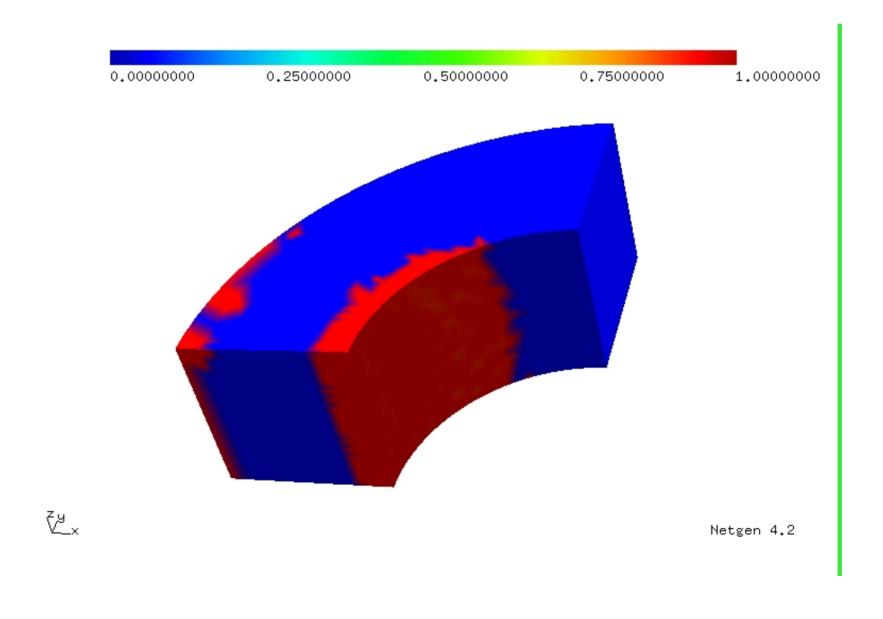
E=1,
$$\nu$$
 = 0.2, H = 0.01, σ_y = 1, F = 0.25

Number of time steps: 10

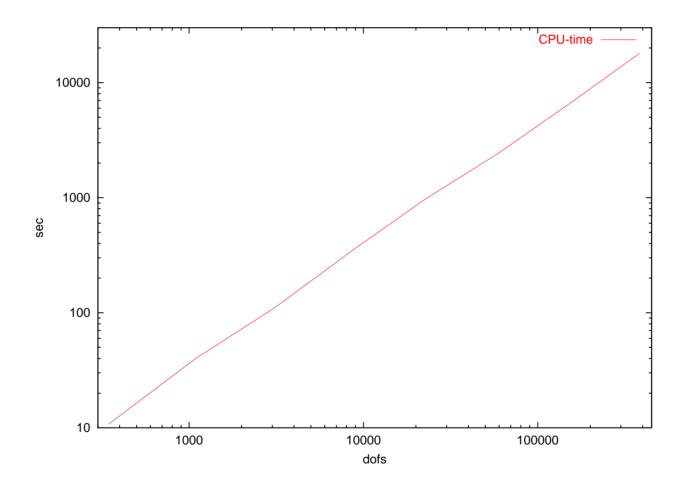
Displacement in x-direction



Plasticity domain



Linear Complexity



Conclusions

We have considered:

- Problem formulation and discretization
- Regularized minimization problem of isotropic hardening
- Minimization: 3D time-dependent algorithm

Future Work:

• Convergence proof

Future Work:

- Convergence proof
- Other hardening laws (kinematic hardening, multi-yield plasticity)

Future Work:

- Convergence proof
- Other hardening laws (kinematic hardening, multi-yield plasticity)
- Minimize \tilde{p} using symbolic methods (with RISC-Linz)

Future Work:

- Convergence proof
- Other hardening laws (kinematic hardening, multi-yield plasticity)
- Minimize \tilde{p} using symbolic methods (with RISC-Linz)
- \bullet h-p methods in elastoplasticity

Future Work:

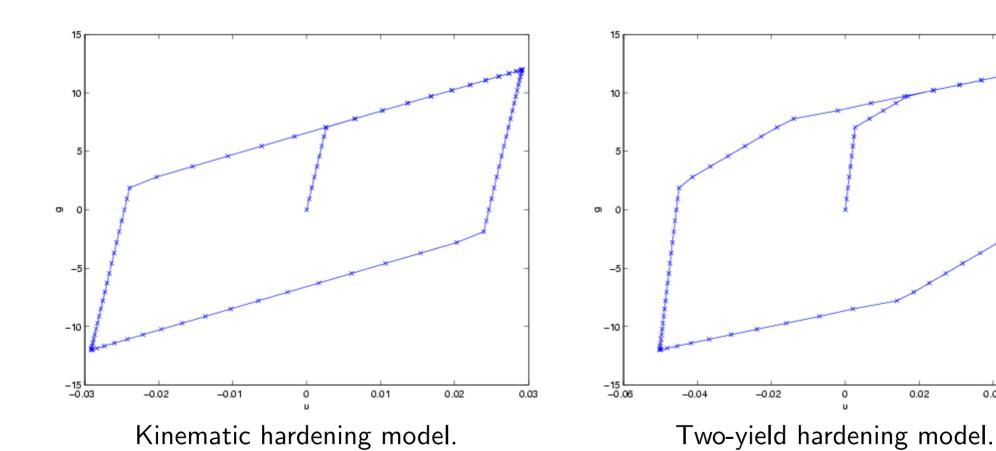
- Convergence proof
- Other hardening laws (kinematic hardening, multi-yield plasticity)
- Minimize \tilde{p} using symbolic methods (with RISC-Linz)
- *h-p* methods in elastoplasticity

Download Netgen and NGSolve:

http://www.hpfem.jku.at/netgen/

Why Multi-yield (Two-yield) model?

• More realistic hysteresis stress-strain relation in materials!

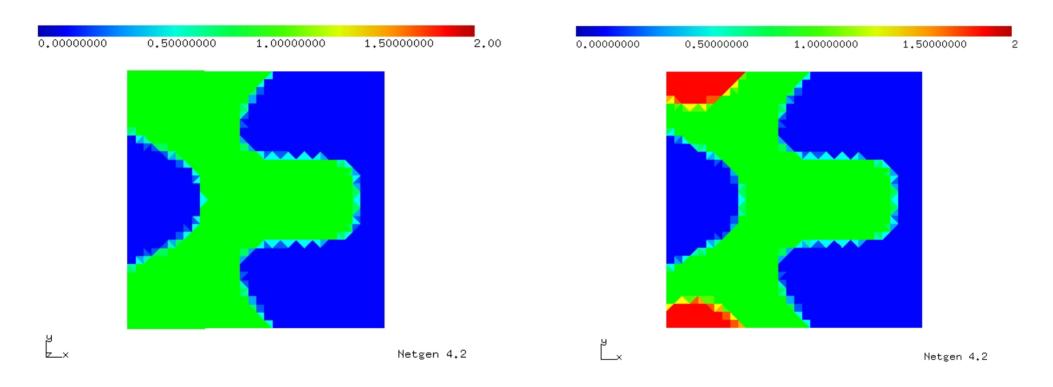


0.04

0.06

NGSOLVE calculations

Elastoplastic domains (blue -elastic, green - first plastic, red - second plastic)



Kinematic hardening model.

Two-yield hardening model.

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \rightarrow \min$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

minimizer
$$\tilde{p} = \frac{(||\operatorname{dev} A|| - \sigma^y)_+}{2\mu + h} \frac{\operatorname{dev} A}{||\operatorname{dev} A||}$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

minimizer
$$(\tilde{p}_1, \tilde{p}_2) = ?$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

minimizer
$$(\tilde{p}_1, \tilde{p}_2) = ?$$

 $\tilde{p}_2 \neq 0 \Rightarrow ||\tilde{p}_2||$ is a root of a 6-th degree polynomial. Gröbner basis?