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Motivation

Computing solutions numerically avoids e.g. expensive crash tests:
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Motivation

Computing solutions numerically avoids e.g. expensive crash tests:

Literature:

e Plasticity: Carstensen, Han/Reddy
e Variational inequalities: Ekeland/Teman, Glowinski et al.

e FEM and multigrid: Braess, Bramble, Brenner/Scott, Hackbusch
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Modeling

Find w € W12(0,T; HL(Q)™), p € Wh2(0,T; L2(Q, R™*™)),
o€ WH2(0,T; L*(Q,R"™ ")), a € WH2(0,T; L*(Q,R™)) such that

—dive = b
o = T )
e(u) = 5 (Vu+ (Vu)")
e(u) = Clo+p
plo,a) < o0
)

IN A

90(7_7 6) o 90(0_7 Ck)

are satisfied in the variational sense with (u,p, o, a)(0) = 0 for all (7, 3).
b and C! are given, b(0) = 0.
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Formulas without o (perfect plasticity)

Normality law

<
pi(r—o0) < o) —p(o)
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Numeric-analytic steps

e Time discretization: t1 = tg + At

e Reformalution of the problem using functional-analytic arguments
(switching arguments in variational inequalities using a dual functional)

e Equivalent minimization problem
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Minimization problem for isotropic hardening

The minimization problem is

flu,p) := %/Q(C[s(u) —p|: (e(u) — p)dx + %/Q(ao—l—ayH\p_pODQda:—l—/

oylp — poldr — / b(t) u dx
Q Q

under the constraint tr(p — pg) =0
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Minimization problem for isotropic hardening

The minimization problem is

1 1

flu,p) := —/ Cle(u) — p] : (e(u) — p)dx + —/(ao + o, H|p — po|)?dx —I—/ oylp — poldr — / b(t) u dx
2 Q 2 Q Q Q

under the constraint tr(p — pg) = 0.

New variable: p = p — pg
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Minimization problem for isotropic hardening

The minimization problem is

1 1
f(u,p) := 5/ Cle(u) — p| : (e(u) — p)dx + 5/(a0 + o, H|p — po|)?dx —I—/ oylp — poldr — / b(t) u dx
Q Q Q Q

under the constraint tr(p — pg) = 0.
New variable: p = p — pg
A differentiable approximation of |p|:

e = { ‘1p| !f Ip| > €

‘ sclpl* +5 if [l <e
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Minimization problem for isotropic hardening

The minimization problem is

1 1
f(u,p) := 5/ Cle(u) — p| : (e(u) — p)dx + 5/(a0 + o, H|p — po|)?dx —I—/ oylp — poldr — / b(t) u dx
Q Q Q Q

under the constraint tr(p — pg) = 0.
New variable: p = p — pg
A differentiable approximation of |p|:

e = { ‘1p| !f Ip| > €

‘ sclpl* +5 if [l <e

Minimization strategy in each time step:

k+1

w1 = argmin, min f(v, ¢) = argmin, f(v, gopt(v))
q

Thenp=po+0p
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Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

1 . 1 N~ :
§(Bu —p)IC(Bu —p) + ipT]H[(]p\e)p — bu — min!

Matrix notation:

v\ [ BTCB -BTC U n —b— BTCpy Sy . minl
D —CB C+H D Cpo D '

DO |
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Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

1 . 1 N~ :
§(Bu —p)IC(Bu —p) + ipT]H[(]p\e)p — bu — min!

Matrix notation:
T T T T T
1/ u B*CB —-B*C U)o —b — B* Cpq u il
2 ﬁ —CB (C —|— H ﬁ (Cpo ﬁ .

Necessary condition:
BTCB -B'C U\ —b— B'Cpy \ 0
—CB C+H ]5 Cpo -

The Schur-Complement system in u with the matrix
S=B'(C-C(C+H)'C)B

is solved by multigrid preconditioned conjugate gradient method.
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Minimization in p
The objective in each integration point writes as
~ L s L 5 09 ~ -
F(p) = 5 Cp+pyCp — p* Ce(u) + §ayH p|* + 0y(1 + apH)|p|e — min!

p is determined by a modified Newton Algorithm in each integration point.
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Minimization in p
The objective in each integration point writes as

1~T

. . . 1 8 _ .
F(p) = Cp + pt Cp — p' Ce(u) + =02H?|p|* + 0, (1 + agH)|p|. — min!

2 2 Y
p is determined by a modified Newton Algorithm in each integration point.

Are there symbolic methods (as in the unregularized case)?

(||dev Al| — b), dev A

15 —
2u+o2H?  ||dev A|[’
where
A =Cle(u) —po),b =0y(1 + o H).
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Minimization in p

The objective in each integration point writes as

L . 1 8 _ .
F(p) = =p* Cp + ps Cp — p* Ce(u) + o2 H?|p|* + o, (1 + apH)|p|. — min!

2 2 Y
p is determined by a modified Newton Algorithm in each integration point.

Are there symbolic methods (as in the unregularized case)?

(||dev Al| —b)y dev A
2u+o2H?  ||dev A|[’

D=

where
A =Cle(u) —po),b =0y(1 + o H).

What about the constraint?
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Constraint trp =0

in 2D: pos = —p11, in 3D: p33 = —p11 — Pao.

Projection matrix P: p = Pp

(1 0O 0 0 0\

- O 1 0 0 0

1 -1 0 0 0

2D.P<—01 (1)> sD:P=| 0o,
O 0 0 1 0

\0 0 0 0 1)

Modified Newton system:
PTF"(p)Pp = P F'(p)
Modified Schur-Complement Matrix:

S =BY(C-CcPP(C+H)P)'PIC)B
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Numerical results - Quarter of a ring

FEM shape functions: u piecewise quadratic, p piecewise constant

Symmetric problem:

| F

JF .fll /

Constants:
E=1,v=02 H=001,0,=1 F=0.25

Number of time steps: 10
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Displacement in x-direction

-7 .B9042193 -0, 73206816E -3,77471433 -1.81686001 0,14099331

iiix Hetgen 4,2
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Plasticity domain

0, 00000000 0, 25000000 0, 50000000 0, 7R000000 1,00000000

iiix Hetgen 4,2
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Linear Complexity

I I I I ICPU-timé
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O
(3]
"
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dofs
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Conclusions

We have considered:

e Problem formulation and discretization
e Regularized minimization problem of isotropic hardening

e Minimization: 3D time-dependent algorithm
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Outlooks

Future Work:

e Convergence proof
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Outlooks

Future Work:

e Convergence proof
e Other hardening laws (kinematic hardening, multi-yield plasticity)
e Minimize p using symbolic methods (with RISC-Linz)

e h-p methods in elastoplasticity

Download Netgen and NGSolve:
http://www.hpfem.jku.at/netgen/
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Why Multi-yield (Two-yield) model?

More realistic hysteresis stress-strain relation in materials!
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NGSOLVE calculations

Elastoplastic domains (blue -elastic, green - first plastic, red - second plastic)

I @ T I -
0, 0000000 0, 50000000 1, 00000000 1, 50000000 2,00 0. 00000000 0.50000000 1.00000000 1.50000000 2

ix Hetgen 4.2 w Hetgen 4.2

Kinematic hardening model. Two-yield hardening model.
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Direct minimization problem in p

Kinematic hardening model:

f(Q):%(C‘FH)QZQ—Q:A—I-O?JHQH—>min
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Direct minimization problem in p

Kinematic hardening model:

f(Q):%(C‘FH)QZQ—Q:A—I-O?JHQH—>min

Two-yield hardening model:

1 A .
=5 (O ) (S(ED) - (2):(L) + ol + el — min
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Direct minimization problem in p

Kinematic hardening model:
1 .
f(Q) :§(C+H)Q :Q —Q: A+ 0Y||Q|| — min

(||dev Al| — o¥), dev A
200+ h | dev Al

minimizer p =

Two-yield hardening model:

1 A .
=5 (O ) (S(ED) - (2):(L) + ol + el — min
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Direct minimization problem in p

Kinematic hardening model:
1 .
f(Q) :§(C+H)Q :Q —Q: A+ 0Y||Q|| — min

(||dev Al| — o¥), dev A
200+ h | dev Al

minimizer p =
Two-yield hardening model:

1 A .
=5 (O ) (S(ED) - (2):(L) + ol + el — min

minimizer (p1,p2) =7
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Direct minimization problem in p

Kinematic hardening model:
1 .
f(Q) :§(C+H)Q :Q —Q: A+ 0Y||Q|| — min

(||dev A|| — o¥)y dev A
21+ h | dev Al

minimizer p =
Two-yield hardening model:

1 A .
=5 (O ) (S(ED) - (2):(L) + ol + el — min

minimizer (p1,p2) =7

p2 # 0 = ||p2|| is a root of a 6-th degree polynomial.
Grobner basis?
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