Multiyield models in Plasticity

( Why multiyield models in plasticity? )
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Figure 1: single yield and multiyield model

Models of plasticity involving single yield surface, such as
those of linear kinematic hardening, do not provide sat-
isfactory description of the transition between the elastic
and plastic phase. In concrete experiments, the transi-
tion between the elastic and plastic regime is smooth.
For this reason, so called multiyield models are intro-
duced. The figure shows € — o (strain-stress) relation for
the case of single and multiyield models. The multiyield
model which in comparison to the single yield model con-
tains more so called rigid-plastic elements (it is only one
element for the single yield model) gives a more realistic
description of change of the elastic to the plastic phase.
With increasing number of rigid-plastic elements ¢ — o
dependence becomes smooth.

( Prandtl-Ishlinskii model of the play type )
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Figure 2: Prandtl-Ishlinskii model of the play type

A good example for the multiyield model is the so-called
Prandtl-Ishlinskii model of the play type, Figure 2.The
model can be described by the following system of vari-
ational equalities and inequalities, [5]

e=¢e+p,

N
p=> pr,

r=1

o =o; + 0%, Vr=1...N
oy € Z,,
(pr, 7 —07) <0,
o = Ce,

oy = H,p,, Vr=1...N,

V7. €Z,, Vr=1...N

€ denotes the strain defined as e(u) = 1(Vu + (Vu)?),
e its elastic and p its plastic part. o is then stress in
the material, C' the elasticity matrix and H,, r = 1..N,
are hardening matrices. The given system of equalities
and inequalities is satisfied at every point of a bounded
Lipschitz domain 2 in R* which is occupied by the elasto-
plastic body. Variables in equalities and inequalities are

. . d
time and space dependent, where p = 2.

( Variational inequality

Qualitative analysis is applied to another equivalent form
of our system of equalities and variational inequalities,
namely only one variational inequality in the form

1) (y—2(t)) < a(z(t),y—&())+4(y)—¥(2(1)),

where z = (u, p1, ..., pn) is the solution vector, y = (v, q1, ..., qn)

is a vector of test functions in the variational inequality
and

a(z,y)
+/H1p1 1 g1 d1+---+/HNpN 1 gn dzx
Q Q

) : HoR <t<t>,y>=/nf<t)-v dz,

bw) = [ (Da@)+ .+ Dnlan))da,
Q
and D;(q:) = cilqil, Vi.

Let H=V X Qo X Qo X ... X Qo, where

N times
V = [H3(9)],

Qo = {q = (gij)axa : @ij = ¢ji,%i; € L?,tr(q) = 0}.
Here a(., .) is symmetric, continuous and H-elliptic. ¥ (y) :
H — R is convex, nonnegative, positively homogeneous
and Lipschitz continuous. For I € H'(0,T;H’),1(0) =0

there exists a unique solution of the variational inequality
in H, [4].

Vy € H,

/n Cle(w) —p1 — . — pn) : (() — a1 — - — ) da

)

( Continuous problem

More generally, corresponding to the continuous case of
the Prantl-Ishlinskii model of the play type, we consider
the same variational inequality with more generalized
terms, namely let I € R be an index set with measure p,
then:

z = (u,pr), y= (v,qr), rel

a@y) = [ (Ce@= [p au@)): (o) = [a nw) ao

+/ /.Hrpr 1 gr dp(r)dz
aJr

/Q/IDT(q,.) du(r)dz

Also in this case the same conditions on a(.,.),%(.),as
before are satisfied and the variational inequality has the
unique solution.
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( Conjecture

Our problems can be described as the variational inequal-
ity similar to the kinematic hardening problem [1, 2, 4].
Hence, we expect corresponding results, such as existence
of the discrete problem, error of approximation, a-priori
and a-posteriori for the error. Besides, a MATLAB pro-
gram [1] for numerical solution of plasticity problem will
be modified in order to compare numerical results with
theoretical estimates.
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