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Summary. The quasi-static evolution of an elastoplastic body with a multi-surface constitutive
law of linear kinematic hardening type allows the modeling of curved stress-strain relations. It
generalises classical small-strain elastoplasticity from one to various plastic phases. Firstly, we
briefly recall a mathematical model represented by an initial-boundary value problem in the
form a variational inequality. Then, the main concern of this paper is focused on an efficient
numerical implementation of a one time-step problem. Based on the minimisation problem we
describe an iterative non-linear algorithm whose linear subsystems are solved by a geometrical
multigrid method. Finally, the numerical computations in 2D and 3D are presented.
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1 Introduction

In this paper we consider the quasi-static initial-boundary value problem for small strain
elastoplasticity with a multi-surface constitutive law. We treat here a Prandtl-Ishlinskii
model of a play type which goes back in the 1D case to Prandtl [Pra28] and Ishlin-
skii [Ish54] and in the multidimensional case to Besseling [Bes58] and Iwan [Iwa66].
The model extends the classical linear kinematic harding model (single-yield model), that
goes back to Melan [Mel38] and Prager [Pra49] in the sense, that is operates with more
plastic strains (multi-yield model). Hysteresis properties have been intensively studied
by Visintin [Vis94] or Krejč́ı [Kre96] amongst others. Our functional formulation of
the model and its analysis is based on a direct extention of the work of Han and
Reddy [HR99] for the linear kinematic hardening model in terms of a time dependent
variational inequality. Our numerical approximation for one time-step problem uses the
formulation of Alberty, Carstensen, and Zarrabi [ACZ99] extended for a two-yield
model, where the solution parameters, i.e., the displacement and two plastic strains, are
sought as minimisers of a convex but non-smooth functional. For our approach we regu-
larise this functional, thus standard methods can be applied to the quadratic optimisation
problem. The main idea for the algorithm is the use of the Schur-Complement form of
the discretised problem in the displacements. The arising linear system is solved by a
multi-grid preconditioned conjugate gradient solver.

The paper is organised as follows: In Section 2, the local material model is presented,
which is the basis for the boundary value problem in Section 3. The numerical algorithm
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Fig. 1. Prandtl-Ishlinskii model of play type (left) and its σ − ε hysteresis type behaviour for
a periodical stress σ(t) = A sin(t), t ∈ (0, 2π) (right).

is designed in Section 4, the numerical experiments are presented in Section 5. Finally,
an outlook on the work still to do is given.

2 The Local Material Model

The constitutive law furnishes the relationship between the stress tensor σ and the strain
tensor ε. The model discussed here is the Prandtl-Ishlinskii model of play type described
by Visintin [Vis94] and Krejč́ı [Kre96] among others. It contains finitely many surfaces
and its rheological structure and typical hysteresis behaviour are depicted in Figure 1. It
is local in the sense that for any given material point x it involves only the time histories
σ = σ(t) and ε = ε(t) at that point. It is given by the following system of equations and
an evolution variational inequality:

ε = e+ p
p =

∑
r∈I

pr

σ = σb
r + σp

r , r ∈ I
(1)

σ = Ce (2)

σb
r = Hrpr, r ∈ I (3)

σp
r ∈ Z, ṗr : (τr − σp

r ) ≤ 0 for all τr ∈ Zr, r ∈ I, (4)

Equation (1) represents the additive decomposition of the strain ε into its elastic part
e and its plastic part p as well as of the stress σ into the backstresses σb

r and the plastic
stress σp

r , where r ∈ I = {1, . . . ,M}. The plastic strain p is additively decomposed to
internal plastic strains pr. The equation (2) denotes a linear elastic law, in the isotropic
case one has

Cε = 2µε+ λ(tr ε)I, (5)

where the (positive) coefficients µ and λ are called Lamé coefficients. Here I denotes the
second order identity tensor (an identity matrix) and tr : Rd×d → R defines the trace of
a matrix, tr ε :=

∑d
j=1 εjj , for ε ∈ Rd×d, where d is the problem dimension. Equation

(3) couples the backstresses σb
r and the plastic strains pr through linear mappings with

positive definite hardening matrices Hr, r ∈ I. A typical choice will be Hr = hrI, where
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hr > 0, r ∈ I are hardening coefficients. Variational inequality (4) formalises the Prandtl-
Reuß normality law, also called the principle of maximal dissipation. The sets Zr ⊂
Rd×d

sym, r ∈ I describe the admissible (plastic) stresses, their boundaries ∂Zr are called the
yield surfaces. We will exclusively use the standard von Mises cylinder with yield stress
σy

Zr = {σ ∈ Rd×d
sym : ||dev σ|| ≤ σy

r}. (6)

Here, ||a||2 = a : a, a : b =
∑d

i,j=1 aijbij defines the (Frobenius) norm and the corre-
sponding scalar product, and the deviator of σ is defined as dev σ := σ − 1

d (trσ)I. Since
this model is described by more (namely M) yield stresses σy

r , we classify the model as a
multi-yield model or as M -yield model in order to express the number of yield stresses.
If M = 1 then we speak about a single-yield model, which represents a classical linear
kinematic hardening model.

3 The Boundary Value Problem

The elastoplastic continuum is assumed to occupy a bounded domain Ω ⊂ Rd, with a
Lipschitz boundary Γ = ∂Ω. The boundary Γ is split into a Dirichlet boundary ΓD, a
closed subset of Γ with a positive surface measure, and the remaining (relatively open
and possibly empty) Neumann part ΓN := Γ \ΓD. We pose essential and static boundary
conditions, namely

u = 0 on ΓD and σ · n = g on ΓN ,

where g is a given applied surface force and n denotes the outer normal to the boundary
ΓN . Our analysis will be restricted to the study of a boundary value problem defined in
these functional spaces:

H1
D(Ω) = {v ∈ H1(Ω)d|v = 0 on ΓD},

Q = {q : q ∈ dev Rd×d
sym, qij ∈ L2(Ω)},

where H1(Ω) and L2(Ω) are the usual Sobolev and Lebesgue spaces. The condition
q ∈ dev Rd×d

sym in the definition of Q implies that tr q = 0, i.e., q is a trace free matrix.
It is shown by Brokate, Carstensen, Valdman [BCV03] that the combination of
the system (1)-(4) describing the Prandtl-Ishlinskii model of the play type together with
(quasi-static) equilibrium between external (denoted as f) and internal forces, i.e.,

div σ(x, t) + f(x, t) = 0, x ∈ Ω, t ∈ (0, T ) (7)

results in the time-dependent variational inequality for the state variable w = (u, (pr)r∈I):

a(w(t), z − ẇ(t)) + ψ(z)− ψ(ẇ(t)) ≥ 〈`(t), z − ẇ(t)〉 , for all z ∈ H. (8)

w is considered to be an element of the Hilbert space H = H1
D(Ω) ×

∏
r∈I Q and to

satisfy the zero initial condition w(0) = 0. Writing z = (v, (qr)r∈I), a bilinear form a(·, ·),
a linear functional `(·) and a nonlinear functional ψ(·) are defined as:

a : H×H → R, a(w, z) =
∫
Ω

C(ε(u)−
∑
r∈I

pr) : (ε(v)−
∑
r∈I

qr) dx+

+
∑
r∈I

∫
Ω

Hpr : qr dx,
(9)
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`(t) : H → R, 〈`(t), z〉 =
∫
Ω

f(t) · v dx+
∫

ΓN

g(t) · v dS(x), (10)

ψ : H → R, ψ(z) =
∑
r∈I

∫
Ω

σy
r ||qr||dx. (11)

Thus we can formulate the following formulation of the boundary value problem of quasi-
static elastoplasticity.

Problem 1 (BVP of quasi-static multi-surface elastoplasticity).
For given l ∈ H1(0, T ;H∗) with `(0) = 0, find w ∈ H1(0, T ;H) with w(0) = 0, such that
(8) holds for almost all t ∈ (0, T ).

The unique solvability of Problem 1 under the assumption that the elastic and hard-
ening tensors are symmetric and positive definite bases on the extension on the proof
of Han and Reddy [HR95, HR99] and can be found in works of Valdman [Val02] or
Brokate, Carstensen, Valdman [BCV03]:

Theorem 1. Let l ∈ H1(0, T ;H∗) with `(0) = 0. Then there exists a unique solution
w ∈ H1(0, T ;H) of Problem 1.

4 Numerical Algorithm

The starting point for the finite element method is the time-discretised form of the
variational problem. Problem 1 is solved by an implicit time discretisation, we use the
implicit Euler scheme with equidistant time intervals.

It was shown by Alberty, Carstensen, and Zarrabi [ACZ99] that in the single-
yield case, i.e., M = 1, the time-discretised dual formulation in each time step is equiv-
alent to an optimisation problem depending only on the displacement u and the plastic
strain p. This result was obtained by using functional analytic arguments, as the vari-
ational inequality is regarded as a sub-differential, for which the dual sub-differential
exists and can be reformulated. The resulting objective depends on the chosen hardening
law (linear kinematic hardening or isotropic hardening), though the structure remains the
same. In Kienesberger [Kie03] an algorithm solving the single-yield problems was devel-
oped using the results and notation of Alberty, Carstensen, and Zarrabi [ACZ99].
Since the multi-yield hardening model structurally generalises the linear kinematic hard-
ening model, authors managed to extend the original code using templates in C++
effectively in the way, that the multi-yield hardening model becomes a new hardening
model. For computational reasons new parameters αr are introduced, which are internal
hardening parameters of the the same dimension as the plastic strains pr and are defined
by αr = Hrpr.

The notation is as follows: For given variables with index 0 of an initial time step t0,
the upgrades of the variables at the time step t1 = t0 +∆t have to be determined. The
already time-discretised generalised optimisation problem for the multi-yield case in each
time step, subject to the modifications for fitting to the single-yield algorithm, reads as:
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f(u, p1, . . . ,pM ) :=
1
2

∫
Ω

C(ε(u)−
∑
r∈I

pr) : (ε(u)−
∑
r∈I

pr) dx

+
1
2

∫
Ω

∑
r∈I

|α0
r|2 dx+

1
2

∫
Ω

∑
r∈I

|pr − p0
r|2 dx+

∫
Ω

∑
r∈I

α0
r : (pr − p0

r) dx

+
∫
Ω

∑
r∈I

σy
r |pr − p0

r|dx−
∫
Ω

fu dx→ min,

(12)

where α0 is the internal hardening variable from the initial time step.
The basic idea idea for solving the quasi-static problem is using a uniform time

discretisation and iterate in each time step until the minimisers, i.e., the displacement u
and the plastic strains pr are determined. Then these values and the separately calculated
αr are used as the reference values with index 0 for the next time step t2.

The fifth term in (12) contains a norm the sharp bend of which may cause trouble, as
the function f is not differentiable. To apply standard methods, the objective is desired
to be differentiable and quadratic, thus the function is regularised as follows: The term
|.| is regularised by smoothing the norm function, i.e.,

|.|ε :=
{
|.| if |.| ≥ ε,
1
2ε |.|

2 + ε
2 if |.| < ε.

(13)

For small ε, the quadratised function f(u, p1, . . . , pM ) is very similar to the original one,
but its properties change enormously. Therefore, it will be referred to by the new symbol
f̄ .

Another simplification is defining the change of pr by p̃r = pr − p0
r, and using it as

an argument of the objective instead of pr:
The spatial discretisation is carried out by the standard finite element method using

linear triangular, resp. tetrahedral finite elements. For reasons of better readability and
coherence, the name of the vector denoting the discretised displacement u is again u. The
same is valid for p̃r, p0

r, furthermore the symmetric matrices are transformed to vectors,
e.g. in 2D (

p̃11
r p̃12

r

p̃12
r p̃22

r

)
=⇒

 p̃11
r

p̃22
r

p̃12
r

 ,

such that the objective and other equations can be written in a matrix and vector nota-
tion.

For the derivation of the algorithm and numerical experiments we will consider only
the two-yield case, i.e., M = 2, as it shows the characteristics of the multi-yield problem
and can be extended easily. Now, the objective reads as

f̄(u, p̃1, p̃2) =
1
2

 u
p̃1

p̃2

TBT CB −BT C −BT C
−CB C +D1 C
−CB C C +D2

 u
p̃1

p̃2

+

−f −BT C(p0
1 + p0

2)
C(p0

1 + p0
2) + Qα0

1

C(p0
1 + p0

2) + Qα0
2

T u
p̃1

p̃2


+

1
2

Cp0
1 : p0

1 +
1
2

Cp0
2 : p0

2 +
1
2
|α0

1|2 +
1
2
|α0

2|2 → min,

(14)

where Bu denotes the discretised strain ε(u), and Q is the result of regarding p̃r as
vectors, i.e., the matrix norm is defined by |p| = (pT Qp) 1

2 .



6 Johanna Kienesberger, Jan Valdman

Fig. 2. Geometry of a beam (left) and the quarter of a ring (right) problems.

D1 = Q(1 + 2σy
1

|p̃1|ε ) is the non-linear iteration matrix of f̄ with respect to p̃1, and
analogous for D2 and p̃2. These matrices are computed in every iteration step using
the current pr, but apart from that the dependencies on |p̃r|ε will be neglected. This
is not an exact method for determining the change of the plastic strain, but its error
will be corrected later on as the p̃r will be calculated separately and iteratively with the
alternating direction method. The matrix in (14) is positive definite, thus the minimiser
(u, p̃1, p̃2) has to fulfill the necessary condition of the derivative being equal to zero:BT CB −BT C −BT C

−CB C +D1 C
−CB C C +D2

  u
p̃1

p̃2

 +

−f −BT C(p0
1 + p0

2)
C(p0

1 + p0
2) + Qα0

1

C(p0
1 + p0

2) + Qα0
2

 = 0. (15)

Extracting the vector (p̃1, p̃2)T from the two lower lines in (15) and inserting it into the
first one yields the Schur-Complement system in u:

BT (C−
(

C
C

)T (
C +D1 C

C C +D2

)−1 (
C
C

)
)Bu

=f +BT C((p0
1 + p0

2)−
(
I
I

)T (
C +D1 C

C C +D2

)−1 (
C(p0

1 + p0
2) + Qα0

1

C(p0
1 + p0

2) + Qα0
2

)
).

(16)

This linear system is solved by a multigrid preconditioned conjugate gradient method, see
e.g. Bramble [Bra95]. From the numerical tests we have seen that it is not necessary to
use the multigrid preconditioner arising from the plasticity problem, the preconditioner
for the related problem of elasticity is sufficient and much faster.

For the multigrid method, we use one Gauss-Seidel pre- and post-smoothing step
in a V-Cycle, the system on the coarse grid is solved exactly. Furthermore, the nested
iteration approach was used, which means that the starting values for the coarse grid
correction are the restrictions of the fine grid functions.

5 Numerical Experiments

The algorithm was implemented in NGSolve - the finite element solver extension pack-
age of the mesh generator tool NETGEN developed in our group. Finite element basis
functions were chosen as piecewise linear for the displacement u and piecewise constant
for the plastic strains p1 and p2. Furthermore, the full multigrid method was used, i.e.,
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Fig. 3. Plasticity domains in the single-yield (left) and two-yield case (right) of the beam.

Fig. 4. Plasticity domains in the single-yield (left) and two-yield case (right) of the quarter of
the ring.

we started with a coarse grid, solved the problem, refined the grid, solved the problem
on the finer grid et cetera.

The algorithm was tested on two- as well as on three-dimensional domains, for both
the single-yield and multi-yield case, see Figure 2 for the geometries.

The first testing geometry is the 2D beam of Figure 2 with the left edge fixed and the
right edge charged with a force acting in the direction of the external normal vector. The
second geometry tested is the 3D quarter of a ring from Figure 2 with constant thickness
in the z-axis which is the same as the thickness of the ring in the 2D sketch. The quarter
ring is fixed on the lower face and a force is acting upwards on the right face. The finest
uniform mesh consists of 131 072 triangles (which corresponds to 658 428 degrees of
freedom DOF in the calculation of u) for the 2D examples and 25 088 tetrahedra (122
334 DOF) for the 3D example. Figures 3 and 4 show the plasticity domains in the single-
yield and in the multi-yield case. The elastic zones are colored light grey, the first plastic
zones are middle-grey, and the second plastic zone is dark-grey.

6 Conclusions and Future Work

In this paper a multi-yield plasticity model and its numerical computations were shown.
The nonlinear iterative algorithm that uses a multigrid preconditioned solver was pre-
sented, its performance in 2D and 3D was demonstrated.

In the future we will extend the solution idea to a quasi-Newton algorithm, i.e., the
Schur-Complement matrix will have some Hessian-type entries in order to improve the
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computational performance. This idea is already implemented for the single-yield case,
where the numerical results demonstrate the faster algorithm performance with linear
complexity. We expect the same result for the multi-yield case.

Another long-term aim is to identify the interfaces between the elastic and plastic
zones and to refine the mesh adaptively in such a way, that the interface is approximated
by the mesh. Then we expect an even faster performance of the algorithm.
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