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Abstract

We discuss a new solution algorithm for quasi-static elastoplastic problems with

hardening. Such problems are described by a time dependent variational inequality,

where the displacement and the plastic strain fields serve as primal variables. After

discretization in time, one variational inequality of the second kind is obtained per time

step and can be reformulated as each one minimization problem with a convex energy

functional, which depends smoothly on the displacement and non-smoothly on the

plastic strain. There exists an explicit formula how to minimize the energy functional

with respect to the plastic strain for a given displacement. Thus, by its substitu-

tion, an energy functional depending only on the displacement can be obtained. Our

technique based on the well known theorem of Moreau from convex analysis shows

that the energy functional is differentiable with an explicitely computable first deriva-

tive. The second derivative of the energy functional exists everywhere in the domain

apart from the elastoplastic interface, which separates the deformed continuum in

elastic and plastic parts. A Newton-like method exploiting slanting functions of the

energy functional’s first derivative is proposed and implemented numerically. The lo-

cal super-linear convergence of the Newton-like method in the discrete case is shown

and sufficient regularity assumptions are formulated to guarantee local super-linear

convergence also in the continuous case.

1 Introduction

We consider a quasi-static initial-boundary value problem for small strain elastoplasticity

with hardening. Throughout the paper, only the linear isotropic hardening is considered,

however an extention to other kinds of linear hardening is straightforward. Several compu-

tation techniques for solving the elastoplastic problem with various kinds of hardening can
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be found in [KL84, Bla97, SH98, ACZ00, KLV04, Kie06]. For the efficient solution of prob-

lems without hardening, i. e. perfect Prandtl Reuß plasticity, we refer to [Wie00, Wie06].

Combining the equilibrium of forces with the elastoplastic hardening law under the as-

sumption of small deformations, we formulate a time-dependent variational inequality.

The existence of a uniquene solution to such inequality has been for instance proved in

[Joh76] utilizing results for general variation inequalities [DL76].

The traditional numerical methods for solving the time-dependent variational inequal-

ity were based on the explicit Euler time-discretization with respect to the loading his-

tory. In this case the idea of implicit return mapping discretization [SH98] turned out

fruitful for calculations. By an implicit Euler time-discretization on the other side, the

time-dependent inequality is approximated by a sequence of time-independent variational

inequalities for the unknown displacement u and the plastic strain p. Each of these inequal-

ities is equivalent [GLT81] to a minimization problem with the convex but non-smooth

energy functional

J̄(u, p) → min .

It has been already shown in [Car97] that a method of alternating minimization in the

displacement and in the plastic strain convergences globally and linearly. The minimization

in the plastic strain can be calculated locally using the explicitely known dependence

[AC00] of the plastic strain on the total strain, i.e., p = p̃(ε(u)). Thus the equivalent

energy minimization problem for the displacement u only

J(u) := J̄(u, p̃(ε(u)) → min

can be defined. Since the dependencies of the energy functional on the plastic strain

p, and of the minimizer p̃ on the total strain ε(u) are continuous but non-smooth, the

Fréchet derivate D J(u) seems not to exist. Therefore, a Newton-like method introduced

in [ACZ00] using damping theoretically converges globally but only linearly, the super-

linear convergence is discussed but not proved there.

The main theoretical contribution of this paper is the extension of the analysis done

in [ACZ00]. We show that the structure of the energy functional J(u) satisfies the as-

sumptions of Moreau’s theorem from convex analysis and therefore the energy functional

J(u) is Fréchet differentiable (Proposition 1 on page 10) with the explicitely computable

Fréchet derivative D J(u). The second derivative of the energy functional D 2J(u) exists

everywhere in the domain apart from the elastoplastic interface only, which separates the

deformed continuum in elastically and plastically deformed parts.

Using the concept of slant differentiability we define a Newton-like method for which

the super-linear convergence is investigated. The notion of slanting functions and slant

differentiability was, recently, introduced by X. Chen, Z. Nashed and L. Qi in [CNQ01].

One of the key features of slanting functions is, that Newton-like methods utilizing slanting
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functions instead of classical Fréchet derivatives also converge locally super linearly. By

detailed analysis we show that the second derivative of the elastoplastic energy functional

D 2J(u) serves well as a slanting derivative (D J)o (u) and that its value on the elastoplastic

interface can be chosen arbitrarily without effect on slant differentiability and on the super-

linear convergence of the Newton-like method. This conclusion is easy to see in the spacial

discrete case (e.g. after the FEM discretization) and it also provides an explanation to an

open question of a rigorous proof of superlinear convergence formulated in Remark 7.5 of

[ACZ00].

The continuous case is more complicated and requires some extra regularity assump-

tions for the trial stress in each Newton-like step. To the best knowledge of the authors,

there are no theoretical results known, which would guarantee the required regularity

properties. Already existing regularity results, e. g. such as in [FS00, BF02], concern the

regularity of stress solution and displacement solution, but not of the trial stresses during

the Newton-like iteration. Thus, this work may serve as a starting point for more advanced

theoretical analysis on the regularity of elastoplastic problems.

Various numerical experiments conclude the paper. For the space-discretization, the

finite element method of the lowest order with piece-wise linear nodal ansatz-functions for

the displacement and the piece-wise constant plastic strain is used. The unknown discrete

displacement u has to satisfy the necessary condition D J(u) = 0, which represents the

system of nonlinear equations to solve. Three examples in two dimensions provide the

following conclusions.

• The number of iteration steps is (almost) independent of the size of the discretization.

• The Newton-like method converges super-linearly, and even quadratically after the

elastoplastic zones are identified sufficiently. This conclusion has also been explained

theoretically for different types of Newton-like solvers [Bla97].

2 Mathematical Modeling

Let Θ := [0, T ] be a time interval, and let Ω be a bounded Lipschitz domain in the space

R
3. The equilibrium of forces in the quasi-static case reads

− div(σ(x, t)) = f(x, t) for (x, t) ∈ Ω × Θ , (1)

where σ(x, t) ∈ R
3×3 is called Cauchy’s stress tensor and f(x, t) ∈ R

3 is called the volume

force acting at the material point x ∈ Ω at the time t ∈ Θ. Let u(x, t) ∈ R
3 be the

displacement of the body, and let

ε(u) :=
1

2

(
∇u+ (∇u)T

)
(2)
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denotes the (linearized) Green-St. Venant strain tensor. In elastoplasticity, the strain ε is

split additively into an elastic part e and a plastic part p, that is,

ε = e+ p . (3)

The stress-strain relation is given by Hook’s law

σ = Ce, (4)

where the fourth-order elasticity tensor C ∈ R
3×3×3×3 is defined by Cijkl := λδijδkl +

µ(δikδjl + δilδjk). Here, λ > 0 and µ > 0 denote the Lamé constants, and δij is the

Kronecker-symbol.

Let the boundary Γ := ∂Ω be split into a Dirichlet-part ΓD and a Neumann-part ΓN ,

which satisfy Γ = ΓD ∪ ΓN . We assume the boundary conditions

u = uD on ΓD , (5)

σ n = g on ΓN , (6)

where n(x, t) is the exterior unit normal, uD(x, t) ∈ R
3 denotes a prescribed displacement

and g(x, t) ∈ R
3 is a prescribed traction force. By neglecting the plastic term in (3), i.e.

p = 0, the system (1) - (6) describes elastic behavior of the continuum Ω.

Another two properties incorporating the admissibility of a stress field σ with respect

to a certain hardening law and the time evolution of the plastic strain p are required.

Therefore, we introduce the hardening parameter α and call a tuple (σ, α) the generalized

stress. Such generalized stress is called admissible, if for a given convex yield functional φ

there holds

φ(σ, α) ≤ 0 . (7)

The explicit form of φ depends on the choice of the hardening law. In this paper we

concentrate on the isotropic hardening law only, where the hardening parameter α is a

scalar function α : Ω → R and the yield functional φ is then defined by

φ(σ, α) :=

{

‖dev σ‖F − σy(1 +Hα) if α ≥ 0,

+∞ if α < 0.
(8)

Here, the matrix Frobenius norm ‖A‖F := 〈A , A〉
1/2
F is defined via the matrix scalar

product 〈A , B〉F :=
∑

ij aijbij for A = (aij) ∈ R
3×3 and B = (bij) ∈ R

3×3 and the

deviator is defined for square matrices as devA = A− tr A
tr I I, where the trace of a matrix is

defined by trA = 〈A , I〉F with I denoting the identity matrix. The material constants σy

and H are both positive real numbers and called yield stress and modulus of hardening,

respectively. The second property addresses the time development of the generalized plastic

strain (p,−α). There must hold the normality condition

〈(ṗ,−α̇) , (τ, β) − (σ, α)〉F ≤ 0 ∀(τ, β) satisfying φ(τ, β) ≤ 0 , (9)
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where ṗ and α̇ denote the first time derivatives of p and α. The initial conditions read

p(x, 0) = p0(x) and α(x, 0) = α0(x) ∀x ∈ Ω , (10)

with given initial values p0 : Ω → R
3×3
sym and α0 : Ω → [0,∞[.

Problem 1 (classical formulation). Find (u, p, α) such, that (1)–(7), (9) and (10) are

satisfied.

Problem 1 is formal in the sense, that no function spaces have been specified so far.

Convenient spaces turn out to be V :=
[
H1(Ω)

]3
and Q := [L2(Ω)]3×3

sym with their associ-

ated scalar products and norms

〈u , v〉V :=

∫

Ω
(〈u , v〉F + 〈∇u , ∇v〉F ) dx , ‖v‖V := 〈v , v〉

1/2
V ,

〈p , q〉Q :=

∫

Ω
〈p , q〉F dx , ‖q‖Q := 〈q , q〉

1/2
Q .

Further we denote VD := {v ∈ V | v|ΓD
= uD} and V0 := {v ∈ V | v|ΓD

= 0}.

Then it is possible to derive a time-dependent variational inequality for unknown dis-

placement u ∈ H1(Θ;VD) and plastic strain p ∈ H1(Θ;Q) from Problem 1, see [HR99] for

details. It is know that such a time-dependent variational inequality has a unique solution.

The numerical treatment requires a time discretization of the a time-dependent variational

inequality. Therefore, let NΘ ∈ N, τ := T/NΘ and Θτ := {tk := kτ | k ∈ {0, . . . ,NΘ}} be

a uniform discretization of the time interval Θ = [0, T ]. We introduce the notation

uk := u(tk) , pk := p(tk) , αk := α(tk) , fk := f(tk) , gk := g(tk) , . . . ,

and approximate time derivatives by the backward difference quotients, that is,

ṗk ≈ (pk − pk−1) /τ and α̇k ≈ (αk − αk−1) /τ.

Consequently, the time-dependent problem can be decomposed in a sequence of time

independent variational inequalities of the second kind, each of which can be equivalently

expressed by the minimization of a convex functional mapping to R = R ∪ {±∞}. The

resulting time discretized minimization problem reads [Car97]:

Problem 2. Let k ∈ {1, . . . , NΘ} denote a given time step, pk−1 ∈ Q and αk−1 ∈ L2(Ω) be

given such, that αk−1 ≥ 0 almost everywhere. Define J̄k : V ×Q→ R by J̄k(v, q) := +∞

if tr q 6= tr pk−1, else

J̄k(v, q) :=
1

2

∫

Ω
〈C(ε(v) − q) , ε(v) − q〉F + (αk−1 + σyH‖q − pk−1‖F )2 dx

+

∫

Ω
σy‖q − pk−1‖F dx−

∫

Ω
fk · v dx−

∫

ΓN

gk · v ds .
(11)

Find (uk, pk) ∈ VD ×Q such that J̄k(uk, pk) ≤ J̄k(v, q) holds for all (v, q) ∈ VD ×Q.

5



Problem 2 represents a one time step problem. The convex functional J̄k expresses the

mechanical energy of the deformed system at the k−th time step. The goal is to find a

displacement uk and a plastic strain pk such that the energy J̄k is minimized. J̄k is smooth

with respect to the displacements v, but not with respect to the plastic strains q.

The hardening parameter αk ∈ L2(Ω) does not appear in Problem 2 directly, but can

be calculated analytically in dependence on the plastic strain by αk = α̃k(pk), where, in

the case of isotropic hardening, α̃k : Q→ L2(Ω) reads [Car97]

α̃k(q) = αk−1 + σyH‖q − pk−1‖F . (12)

3 Derivation of a Smooth Minimization Problem with Re-

spect to the Displacement Only

Various strategies have been introduced to solve the minimization in Problem 2. C. Car-

stensen investigated a separated minimization in the displacement v and in the plastic

strain q alternately and proved the linear convergence of the resulting method in [Car97].

Another interesting technique is to reduce Problem 2 to a minimization problem with

respect to the displacements v only. We will make an important observation that such

reduced minimization problem is smooth with respect to the displacements v and its

derivative is explicitly computable. To discuss this issue, let us first introduce a more

abstract formulation of (11). Therefore, we define the C-scalarproduct, the C-norm, a

convex functional ψk and a linear functional lk by

〈q1 , q2〉C :=

∫

Ω
〈C q1(x) , q2(x)〉F dx , ‖q‖C := 〈q , q〉

1/2
C
, (13)

ψk(q) :=







∫

Ω

(
1
2 α̃k(q)

2 + σy‖q − pk−1‖F

)
dx if tr q = tr pk−1 ,

+∞ else ,
(14)

lk(v) :=

∫

Ω
fk · v dx+

∫

ΓN

gk · v ds , (15)

where α̃k(q) is defined in (12). Then the functional J̄k(v, q) in (11) simply rewrites:

J̄k(v, q) =
1

2
‖ε(v) − q‖2

C + ψk(q) − lk(v) . (16)

The following results are formulated for functionals mapping from a Hilbert space H

into the set of extended real numbers R = R ∪ {±∞}. The Hilbert space H provides

a scalar product 〈◦ , ⋄〉H and the norm ‖·‖H := 〈· , ·〉
1/2
H . The topological dual space of

H is denoted by H∗. Further, if a function F is Fréchet differentiable, we will denote

its derivative in a point x by D F (x) and its Gâteaux differential into the direction y by

D F (x ; y).
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Definition 1 (convexity). Let F be a mapping of H into R. F is said to be convex if, for

every x and y in H, we have

F (tx+ (1 − t)y) ≤ tF (x) + (1 − t)F (y) ∀t ∈ [0, 1] , (17)

whenever the right hand side is defined.

Definition 2 (strict convexity). Let F be a mapping of H into R. F is said to be strictly

convex if it is convex and the strict inequality holds in (17) for all x, y ∈ H with x 6= y

and for all t ∈ ]0, 1[.

Definition 3 (proper function, effective domain). Let F be a mapping of H into R. F is

said to be proper if there exists x ∈ H such that F (x) < +∞ and if for all y ∈ H there

holds F (y) > −∞. The set {x ∈ H | F (x) < +∞} is said to be the effective domain of F

and denoted by domF .

Definition 4 (subdifferential). Let F be a mapping of H into R. F is said to be subdiffer-

entiable at the point x ∈ H if there exists x∗ ∈ H∗ such that F (x+ y) ≥ F (x) + 〈x∗ , y〉H

holds for all y ∈ H. We call x∗ a subgradient, and the set of all subgradients in x is said

to be the subdifferential of F in x and denoted by ∂F (x).

The following lemma summarizes three well known results from convex analysis which

will be frequently used later.

Lemma 1. Let F : H → R be a convex function. Then the following two properties hold:

a) F is continuous in H if and only if there exists a non-empty open subset U ⊂ H on

which F is bounded above by a constant C ∈ R.

b) If F is continuous, then F is subdifferentiable in H.

c) If F is continuous and has a unique subgradient at y ∈ H, then F is Fréchet differ-

entiable at y and its derivative is identical to the subgradient.

Proof. Ad a), see [ET99, Proposition 2.5]. Ad b), see [ET99, Proposition 5.2]. Ad c), see

[ET99, Proposition 5.3].

Now we can formulate a theorem, which can be seen as a generalization of a work of

J. J. Moreau [Mor65]. The precise difference is discussed later in Remark 1 on page 10.

Theorem 1. Let Φ : H → R be a convex and Fréchet differentiable function with the

derivative D Φ ∈ H∗, and let Ψ : H → R be a convex and proper function. We define the

functions f : H×H → R and F : H → R by

f(x, y) := Φ(x− y) + Ψ(x) and F (y) := inf
x∈H

f(x, y) . (18)
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Let us assume additionally, that the infimum F (y) is attained for all y ∈ H, that is, there

exists a function x̃ : H → H such that F (y) = f(x̃(y), y). Then the following statements

are valid:

1. F is convex and continuous in H. If either Φ is strictly convex is H or Ψ is strictly

convex in its effective domain, then F is strictly convex in H.

2. The subdifferential of F writes ∂F (y) = {−D Φ(x̃(y) − y)} for all y ∈ H.

Proof. Hence Φ is finite and Ψ is proper, the function f(·, y) = Φ(· − y) + Ψ(·) is proper

with respect to the first argument for all y ∈ H. Due to the minimization property of x̃,

there holds that Ψ(x̃(y)) and F (y) are finite for all y ∈ H. Thus, F in (18) is well defined

as a mapping of H into R . Moreover, we note that f(x̃(y), z) is finite for all y and z in

H. For the convexity of F , we must check that

F (ty1 + (1 − t)y2) ≤ tF (y1) + (1 − t)F (y2)

for all y1 ∈ H, y2 ∈ H and t ∈ [0, 1]. Let y := ty1 +(1− t)y2 and x := tx̃(y1)+(1− t)x̃(y2).

Utilizing the minimization property of x̃ we obtain

F (ty1 + (1 − t)y2) = F (y) = f(x̃(y), y) ≤ f(x, y). (19)

Using the structure f(x, y) = Φ(x− y) + Ψ(y) and the convexity of Φ and Ψ, elementary

calculations yield

f(x, y) ≤ tf(x̃(y1), y1) + (1 − t)f(x̃(y2), y2) = tF (y1) + (1 − t)F (y2). (20)

The substitution of (20) in (19) proves the convexity of F . If either Φ or Ψ|domΨ
was

strictly convex, the inequality in (20) would hold strictly for y1 6= y2 and t ∈ ]0, 1[. As a

result, F would be strictly convex. It remains to show, that F is continuous in H. We

arbitrarily fix x̂ ∈ dom Ψ, ŷ ∈ H, and ǫ > 0. Then, obviously

F (y) = inf
x∈H

(Φ(x− y) + Ψ(x)) ≤ Φ(x̂− y) + Ψ(x̂).

Since Φ is continuous in x̂− ŷ, there exists δ > 0, such that for all y : ‖y − ŷ‖H < δ there

holds Φ(x̂−y)+Ψ(x̂) ≤ Φ(x̂− ŷ)+ ǫ+Ψ(x̂). Thus, F is bounded above on the non-empty

open set U := {y : ‖y − ŷ‖H < δ} and Lemma 1 a) concludes the continuity of F in H.

Note, that due to Lemma 1 b), the function F is subdifferentiable. Let y ∈ H, and

G ∈ ∂F (y) be arbitrary. By the definition of the subdifferential, there holds

F (y + z) ≥ F (y) + 〈G , z〉H (21)

for all z ∈ H. On the other hand, for all z ∈ H, there holds

F (y + z) = f(x̃(y + z), y + z) ≤ f(x̃(y), y + z) . (22)

8



Since f(x, y) = Φ(x − y) + Ψ(x) and Φ is Fréchet differentiable, there exists a function

r : H → R with the property limz→0|r(z)|/‖z‖H = 0 such that

f(x̃(y), y + z) = f(x̃(y), y)
︸ ︷︷ ︸

=F (y)

−〈D Φ(x̃(y) − y) , z〉H + r(z) . (23)

Combining (22) and (23) we obtain

− F (y + z) ≥ −F (y) + 〈D Φ(x̃(y) − y) , z〉H − r(z) . (24)

Summation of (21) and (24) yields r(z) ≥ 〈G+D Φ(x̃(y)−y) , z〉H ≥ −r(−z) for all z ∈ H,

and thus there holds limz→0
〈G+D Φ(x̃(y)−y) , z〉H

‖z‖H
= 0 , which implies G = −D Φ(x̃(y) − y).

Since G was chosen arbitrarily in ∂F (y), we end up with ∂F (y) = {−D Φ(x̃(y)− y)}.

Notice, the subdifferential ∂F (y) does not necessarily contain one element only, but

depends on the set of functions x̃ satisfying F (y) = f(x̃(y), y). If x̃ was unique, then

∂F (y) would contain only one subgradient identical to derivative D F (y) according to

Lemma 1 c). We formulate a sufficient condition for the (unique) existence of x̃ under the

assumptions of coercivity and lower semicontinuity.

Definition 5 (coercivity). Let F be a mapping of H into R. F is said to be coercive, if

for all C ∈ R there exists K ∈ R such that for all x ∈ H there holds

F (x) ≤ C ⇒ ‖x‖H ≤ K .

Definition 6 (lower semicontinuity). Let F be a mapping of H into R. F is said to be

lower semi continuous (l.s.c. for short) at x ∈ H if

lim
y→x

F (y) ≥ F (x) .

F is said to be l.s.c. in H if F is l.s.c. at all x ∈ H.

Theorem 2. Let F : H → R be l.s.c., proper, convex and coercive. Then there exists

x̂ ∈ H such that F (x̂) = infx∈H F (x). If F is strictly convex, then x̂ is unique.

Proof. See [ET99, Proposition 1.2 of Chapter II].

Corollary 1 (Moreau). Let the function f : H×H → R be defined

f(x, y) =
1

2
‖x− y‖2

H + ψ(x) (25)

where ψ is a convex, proper, l.s.c. and coercive function of H into R. Then F (y) :=

infx∈H f(x, y) defines a mapping F : H → R and there exists a unique function x̃ : H → H

such, that F (y) = f(x̃(y), y) for all y ∈ H, and there holds:

1. F is strictly convex and continuous in H.
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2. F is Fréchet differentiable with

D F (y) = 〈y − x̃(y) , ·〉H ∈ H∗ for all y ∈ H . (26)

Proof. Let y ∈ H be fixed arbitrarily. Then, f(·, y) satisfies the assumptions of Theorem 2.

Thus, there exists a unique element x̃(y) ∈ H such that f(x̃(y), y) = F (y). Theorem 1 (by

choosing Φ(z) := 1
2‖z‖

2
H) states, that F is strictly convex, continuous and subdifferentiable

with a unique subgradient 〈y− x̃(y) , ·〉H. Together with Lemma 1 c) we conclude that F

is Fréchet differentiable with D F (·) as in (26).

Remark 1. This corollary was first formulated and proved in 1965 by J. J. Moreau [Mor65,

7.d. Proposition], and can be interpreted as an immediate consequence of Theorem 1 and

Theorem 2.

Now, we apply Corollary 1 to Problem 2 to obtain the following proposition.

Proposition 1. Let k ∈ {1, . . . , NΘ} denote the time step, and let J̄k be defined as in

(11). Then there exists a unique mapping p̃k : Q→ Q satisfying

J̄k (v, p̃k (ε (v))) = inf
q∈Q

J̄k (v, q) ∀v ∈ VD . (27)

Let Jk be a mapping of VD into R defined as

Jk(v) := J̄k(v, p̃k(ε(v))) ∀v ∈ VD . (28)

Then, Jk is strictly convex and Fréchet differentiable. The associated Gâteaux differential

reads

D Jk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉C − lk(w) ∀w ∈ V0 (29)

with the scalar product 〈◦ , ⋄〉C defined in (13) and lk defined in (15).

Proof. Recall, that the functional J̄k : V ×Q→ R defined in (16) using (13), (14), and (15)

can be decomposed as J̄k(v, q) = fk(ε(v), q) − lk(v), where the functional fk : Q×Q→ R

reads

fk(s, q) :=
1

2
‖q − s‖2

C + ψk(q).

Then, Corollary 1 states an existence of a unique minimizer p̃k : Q → Q which satisfies

the condition fk(ε(v), p̃k(ε(v))) = infq∈Q fk(ε(v), q), where the functional

Fk(ε(v)) := fk(ε(v), p̃k(ε(v)))

is strictly convex and differentiable with respect to ε(v) ∈ Q. Since ε : v → ε(v) is a

Fréchet differentiable, linear and injective mapping of VD into Q, the compound functional

Fk(ε(v)) is Fréchet differentiable and strictly convex with respect to v ∈ VD. Considering

the Fréchet differentiability and linearity of lk with respect to v ∈ VD, we can conclude the
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strictly convexity and Fréchet differentiability (in VD) of the functional Jk defined in (28).

The explicit form of the Gâteaux differential D Jk(v ; w) in (29) results from the linearity of

the two mappings lk and ε, and the Fréchet derivative DFk(ε(v) ; ·) = 〈ε(v)− p̃k(ε(v)) , ·〉C

as in (26), combined using the chain rule for functionals.

Proposition 1 tells us, that for each displacement v there exists exactly one plastic

strain p̃k(ε(v)), such that the energy functional J(v, q) attains its minimum J(v, p̃k(ε(v)).

By the definition of ∆p̃k(·) := p̃k(·) − pk−1, there holds that for fixed v ∈ VD finding the

minimizer p̃k(ε(v)) of functional J̄k(v, q) in (11) with respect to q is equivalent to finding

the minimizer ∆p̃k(ε(v)) of the functional

1

2

(
2µ+ σ2

yH
2
)
‖q‖2

Q − 〈C (ε(v) − pk−1) , q〉Q + 〈σy (1 + αk−1H) , ‖q‖F 〉L2
(30)

amongst trace-free elements q ∈ Q.

The explicit form of ∆p̃k is presented in the following theorem, which is a generalization

of [ACZ99, Proposition 7.1] in the sense we analyse the plastic strain field instead of the

pointwise value. The validity of the pointwise equalities and inequalities occurring there,

has to be understood in accordance with Lebesque spaces as almost everywhere (denoted

a. e.), i.e. up to a set of a zero measure.

Theorem 3. Let Q = L2(Ω)3×3
sym , A ∈ Q, b ∈ L2(Ω) with b(x) > 0 in Ω, and ξ ∈ R with

ξ > 0. Then there exists exactly one p ∈ Q with ‖tr p‖L2(Ω) = 0, that satisfies

〈A− ξp , q − p〉Q ≤ 〈b , ‖q‖F − ‖p‖F 〉L2
(31)

for all q ∈ Q with ‖tr q = 0‖L2(Ω). This p is characterized as the minimizer of

ξ

2
‖q‖2

Q − 〈A , q〉Q + 〈b , ‖q‖F 〉L2
(32)

amongst trace-free elements q ∈ Q, and reads

p =
1

ξ
max{0, ‖devA‖F − b}

devA

‖devA‖F
on Ω. (33)

The minimal value of (32), attained for p as in (33), is

−
1

2ξ
‖max{0, ‖devA‖F − b}‖2

L2
. (34)

Proof. According to Definition 4, expression (31) states that

A− ξp ∈ b ∂‖·‖F (p) (35)

where ∂‖·‖F denotes the subgradient of the Frobenius norm, and only trace-free arguments

are under consideration. The Frobenius norm ‖·‖F : Q→ R is a convex functional and so

is (32). The identity (35) is equivalent to 0 belonging to the subgradient of (32), which
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characterizes the minimizers of (32). Moreover, there holds 〈A , q〉Q = 〈devA , q〉Q for all

trace-free elements q ∈ Q, whence the matrix A can be replaced by the matrix devA in

(31) and (32).

Let us separate the domain Ω into three disjoint subdomains

Ωe := {x ∈ Ω | ∃ open ω ⊂ Ω : x ∈ ω ∧ ‖devA‖F − b ≤ 0 in ω} ,

Ωp := Ω \ Ωe , Γep := Ω \ (Ωe ∪ Ωp) .

Note that Ωe and Ωp are open, Γep has zero measure, it holds ‖devA‖F − b ≤ 0 on Ωe and

‖devA‖F − b > 0 on Ωp. Consequently, the minimization of (32) results in finding p ∈ Q

with ‖tr p‖L2(Ω) = 0, such that the functionals

Ji(p) :=
ξ

2

∫

Ωi

‖p‖2
F dx−

∫

Ωi

〈devA , p〉F dx+

∫

Ωi

b‖p‖F dx i ∈ {e, p} (36)

are minimized, or equivalently the inequalities

∫

Ωi

〈devA− ξp , q − p〉F dx ≤

∫

Ωi

b (‖q‖F − ‖p‖F ) dx i ∈ {e, p} (37)

are satisfied for all q ∈ Q with ‖tr q‖L2(Ω) = 0.

We will show identity (33). An application of the pointwise Cauchy-Schwarz inequality

〈devA , p〉F ≤ ‖devA‖F ‖p‖F yields

Je(p) ≥
ξ

2

∫

Ωe

‖p‖2
F dx+

∫

Ωe

(b− ‖devA‖F )
︸ ︷︷ ︸

≥0

‖p‖F dx ≥ 0.

By choosing p = 0 on Ωe we obtain Je(p) = 0. Therefore,

p = 0 on Ωe (38)

minimizes Je in (36). Moreover, there holds p(x) 6= 0 on Ωp which we show by contradic-

tion. Choose Ω′ ⊂ Ωp arbitrary and fix. Assuming, that p = 0 on Ω′ and plugging it into

(37) for i = p would yield

∫

Ω′

〈devA , q〉F dx ≤

∫

Ω′

b‖q‖F dx

for all trace-free elements q ∈ Q, which satisfy q = p on Ωp \ Ω′. By the choice of

q = devA on Ω′ one obtains
∫

Ω′‖devA‖F − b dx ≤ 0 and this would be a contradiction to

the definition of Ωp.

Thus there holds p(x) 6= 0 and consequently ∂‖·‖F (p) = {p/‖p‖F } on Ωp, whence (37)

with i = p rewrites

∫

Ωp

(

devA− ξ p− b
p

‖p‖F

)

: q dx = 0 ∀q ∈ Q , ‖tr q‖L2(Ω) = 0 .

12



Necessarily, there must hold

devA− ξ p− b
p

‖p‖F
= 0 on Ωp , (39)

whence we conclude

‖p‖F =
1

ξ
(‖devA‖F − b) . (40)

Plugging (40) into (39) yields

p =
1

ξ
(‖devA‖F − b)

devA

‖devA‖F
on Ωp. (41)

Combining the formulae (38) and (41) we obtain (33). Finally, plugging (33) into (32)

yields (34).

We define the trial stress σ̃k : Q → Q at the kth time step and the yield function

φk−1 : Q→ R (cf. (8)) at the k − 1st time step by

σ̃k(q) := C(q − pk−1) and φk−1(σ) := ‖dev σ‖F − σy(1 +H αk−1) . (42)

After using the substitution ∆p̃k(ε(v)) = p̃k(ε(v)) − pk−1, Theorem 3 tells us that for a

fixed displacement v ∈ VD the minimizer p̃k(ε(v)) of (11) reads

p̃k(ε(v)) =
1

2µ+ σ2
yH

2
max{0, φk−1(σ̃k(ε(v)))}

dev σ̃k(ε(v))

‖dev σ̃k(ε(v))‖F
+ pk−1 . (43)

Therefore, if the minimizer uk ∈ VD of the functional Jk(·) = J̄k(·, p̃k(ε(·))) in (28)

is known, then the plastic strain pk at the time step k is provided by the formula (43)

as pk = p̃k(ε(uk)). Notice that the formula (43) also satisfies the necessary condition

tr pk = tr pk−1 to guarantee the minimization property Jk(uk) = J̄k(uk, pk) < +∞ (cf.

(16) and (14)).

At each time step k the domain Ω can be decomposed into three disjoint parts (see

Figure 1), analogously to the decomposition we used in the proof to Theorem 3:

• Ωe
k(v) := {x ∈ Ω | ∃ open ω ⊂ Ω : x ∈ ω ∧ φk−1(σ̃k(ε(v))) ≤ 0 a. e. in ω}, which is

the set of elastic increment points,

• the set of plastic increment points Ωp
k(v) := Ω \ Ωe

k(v),

• and the set of elastoplastic interface points Γep
k (v) := Ω \ (Ωp

k(v) ∪ Ωe
k(v)).

Obviously, both sets Ωe
k(v) and Ωp

k(v) are open, Γep
k (v) has zero measure, and that

φk−1(σ̃k(ε(v))) ≤ 0 a. e. in Ωe
k(v),

φk−1(σ̃k(ε(v))) > 0 a. e. in Ωp
k(v).

(44)

For a one-time step problem, the sets Ωe(v) := Ωe
1(v) and Ωp(v) := Ωp

1(v) specify elastically

and plastically deformed parts of the continuum, respectively.

We obtain a smooth minimization problem with respect to the displacement field uk

only:
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Ω

Ωe
k : φk−1(σ̃k) ≤ 0

Ωp
k : φk−1(σ̃k) > 0

Γep
k

Figure 1: Domain decomposition of Ω at the kth time step, generated by the trial stress

σ̃k(ε(v))(x) with x ∈ Ω, as an argument of the yield functional φk−1 (cf. 42).

Problem 3. Let k ∈ {1, . . . , NΘ} denote the time step. Let pk−1 ∈ Q and αk−1 ∈ L2(Ω)

be given, such that αk−1 ≥ 0 almost everywhere. Find uk ∈ VD such that for all v ∈ VD

there holds Jk(uk) ≤ Jk(v) with the strictly convex and Fréchet differentiable functional

Jk defined in (28) using p̃k as in (43). The Gâteaux differential of Jk is presented in (29).

Remark 2 (unique existence of a solution). We know, that there exists a unique solution

(uk, pk) to Problem 2, and the second component pk can be calculated by the identity

pk = p̃k(ε(uk)) explicitely. This implies that, due to the definition Jk(·) = J̄k(·, p̃k(·)),

there holds Jk(uk) ≤ Jk(v) for all v ∈ VD. Thus, there exists a solution, namely uk ∈ VD,

to Problem 3. The uniqueness of the solution follows from the strict convexity of the

energy functional Jk, as it is shown in Proposition 1.

4 Computing a Solution of the Smooth Problem by Means

of a Newton-like Method

The minimizer p̃k in (43) is a continuous mapping of Q into Q. Thus, D Jk(v ;w) in (29) is

continuous with respect to v as well, and a gradient method could be used for a numerical

solution. Instead, we investigate the existence of the second derivative of Jk(v), which

would allow the use of Newton’s method or at least some Newton-like method.

4.1 An Attempt to Calculate the Second Derivative of Jk

The Gâteaux differential of D Jk defined in (29) reads

D 2Jk(v ; w1, w2) = 〈ε(w1) − D p̃k(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1, w2 ∈ V0

provided that the Gâteaux differential D p̃k(ε(v) ; ε(w1)) ∈ Q of the plastic strain mini-

mizer p̃k(ε(v)) defined in (43) exists in the whole domain Ω.
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In the set of elastic increment points Ωe
k(v), where φk−1(σ̃k(ε(v))) ≤ 0 (cf. (42)), there

obviously holds

D p̃k(ε(v) ; q) = 0 (45)

for all q ∈ Q, and therefore we obtain the formula known from theory of elasticity

D 2Jk(v ; w1, w2) = 〈ε(w1) , ε(w2)〉C ∀w1, w2 ∈ V0.

In the set of plastic increment points Ωp
k(v), where φk−1(σ̃k(ε(v))) > 0 holds a. e., the

plastic strain reads

p̃k(ε) = (2µ+ σ2
yH

2)−1φk−1(σ̃k(ε))
dev σ̃k(ε)

‖dev σ̃k(ε)‖F
.

For the moment, we omit the dependency of ε on v in our notation, and calculate the

Gâteaux differential of p̃k with respect to ε. By using the product and the chain rules, we

obtain

D p̃k(ε ; q) = (2µ+ σ2
yH

2)−1

(

D φk−1(σ̃k(ε) ; D σ̃k(ε ; q))
dev σ̃k(ε)

‖dev σ̃k(ε)‖F

+ φk−1(σ̃k(ε))D
(·)

‖·‖F
(dev σ̃k(ε) ; D dev σ̃k(ε ; q))

)

.

Using the derivatives rules (cf. (42))

D σ̃k(ε ; q) = D σ̃k( q) = C q, D dev σ̃k(ε ; q) = D dev σ̃k( q) = 2µ dev q

and

D φk−1(σ ; τ) =
〈dev σ , D dev(σ ; τ)〉F

‖σ‖F
, D

(·)

‖·‖F
(σ ; τ) =

τ

‖σ‖F
−
σ〈σ , τ〉F
‖σ‖3

F

,

we end up with the formula

D p̃k(ε ; q) =
2µ

2µ+ σ2
yH

2

(
φk−1(ε)

‖dev σ̃k(ε)‖F
dev q

+

(

1 −
φk−1(ε)

‖dev σ̃k(ε)‖F

)
〈dev σ̃k(ε) , dev q〉F

‖dev σ̃k(ε)‖2
F

dev σ̃k(ε)

)

.

(46)

The set of elastoplastic interface points Γep
k (v) represents the only part of the domain

Ω where p̃k in (43), due to the term max{0, φk−1}, is not differentiable.

To summarize it, the second derivative D 2Jk(v) exists everywhere in the sets of elastic

and plastic increment points, but is not computable on the elastoplastic interface (see

Figure 1). No matter that the elastoplastic interface is a set of zero measure, a classical

Newton method is not applicable to Problem 3.
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4.2 Concept of Slant Differentiability

Our goal here is to solve Problem 3 by means of a Newton-like method which replaces the

requirement of the second derivative D 2Jk(v) on the elastoplastic interface in a way that

the local superlinear convergence rate can be shown.

The main tool here to overcome the non-differentiability of D Jk due to the map-

ping max{0, ·} is the concept of slant differentiability, which was recently introduced by

X. Chen, Z. Nashed and L. Qi in [CNQ01]. Other concepts of semi smoothness, e. g.

[Ulb03], or the regularization of the non-differentiable terms, e. g. [Kie06], are not dis-

cussed here and might be considered for alternate analysis of elastoplastic problems.

Henceforth, let X, Y , and Z be Banach spaces, and L(◦, ⋄) denote the set of all linear

mappings of the set ◦ into the set ⋄.

Definition 7 (slant differentiability pointwise). Let U ⊆ X be an open subset and x ∈ U .

A function F : U → Y is said to be slantly differentiable at x if there exist

1. mappings F o : U → L(X,Y ) and r : X → Y with limh→0
‖r(h)‖
‖h‖ = 0 such, that

F (x+ h) = F (x) + F o(x+ h)h+ r(h)

holds for all h ∈ X satisfying (x+ h) ∈ U , and

2. constants δ > 0 and C > 0 such that for all h ∈ X with ‖h‖ < δ there holds

‖F o(x+ h)‖ := sup
y∈X\{0}

‖F o(x+ h) y‖

‖y‖
≤ C .

We say, that F o(x) is a slanting function for F at x.

Definition 8 (slant differentiability in an open set). Let U ⊆ X be an open subset. A

function F : U → Y is said to be slantly differentiable in U if there exists F o : U → L(X,Y )

such that F o is a slanting function for F at every point x ∈ U . F o is said to be a slanting

function for F in U . The set of all functions which are slantly differentiable in U and

map to Y is denoted by S(U ;Y ).

Remark 3. In analogy to the relation between Gâteaux differential and Gâteaux derivative,

we define the slanting differential for F o at x along the direction h by F̃ o : U ×X → Y

with F̃ o(x ; h) := F o(x)h. Since the mappings F o and F̃ o are taking a different number

of arguments, it is sufficient, if we characterize both by the same denomination F o and

forget about F̃ o. In other words, we shall write F o(·) for a slanting function and F o(◦ ; ⋄)

for the appropriate slanting differential for F .

Theorem 4. Let U ⊆ X be an open subset, and F : U → Y be a slantly differentiable

function with a slanting function F o : U → L(X,Y ). We suppose, that x∗ ∈ U is a
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solution to the nonlinear problem F (x) = 0. If F o(x) is non-singular for all x ∈ U and

{‖F o(x)−1‖ : x ∈ U} is bounded, then the Newton-like iteration

xj+1 = xj − F o(xj)−1F (xj) (47)

converges super-linearly to x∗, provided that ‖x0 − x∗‖ is sufficiently small.

Proof. See [CNQ01, Theorem 3.4] or [HIK02, Theorem 1.1].

We solve the smooth minimization problem in the displacement (Problem 3) by finding

uk ∈ VD such, that D Jk(uk;w) = 0 for all w ∈ V0 with D Jk as in (29). Therefore, we use

the Newton-like method (47) with the choice

X = V , Y = V0
∗ , U = VD , F = D Jk , xj = vj , and x∗ = uk .

The iteration scheme for the Newton-like method is formulated either as an identity in

V0
∗ or in R:

Find vj+1 in VD (D Jk)o (vj ; vj+1 − vj) = −D Jk(v
j) . (48)

Find vj+1 in VD (D Jk)o (vj ; vj+1 − vj , w) = −D Jk(v
j ; w) ∀w ∈ V0 . (49)

4.3 Slanting Functions for p̃k and D Jk

Let us now calculate a slanting function (D Jk)
o for D Jk in VD. Henceforth we will use

the following property, which is easy to verify: A Fréchet differentiable function is slantly

differentiable, with the Fréchet derivative serving as a slanting function, and the Gâteaux

differential serving as a slanting differential. Due to the chain rule for slanting functions

(Theorem 7 in the Appendix) we obtain

(D Jk)
o (v ; w1, w2) = 〈ε(w1) − p̃k

o(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1, w2 ∈ V0 . (50)

It remains to calculate the slanting function p̃k
o. Taking to account, that a Fréchet

derivative serves as a slanting function, we obtain from (45) and (46), that

p̃k
o(ε(v) ; q) =







0 in Ωe
k(v) ,

ξ
(

βk dev q + (1 − βk)
〈dev σ̃k ,dev q〉F

‖dev σ̃k‖
2
F

dev σ̃k

)

in Ωp
k(v) ,

where the abbreviations

ξ :=
2µ

2µ+ σ2
yH

2
, βk :=

φk−1(σ̃k)

‖dev σ̃k‖F
, σ̃k := σ̃k(ε(v)) (51)

with the mappings φk−1 and σ̃k defined in (42) are used. Since the modulus of hardening

H, the yield stress σy, and the Lamé parameter µ are positive and due to (12), (42) and

(44), we always have

ξ ∈ ]0, 1[ and βk : Ωp
k(v) → ]0, 1[ . (52)
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The minimizer p̃k is not differentiable on the whole domain Ω, since it is not differentiable

on Γep
k (v) due to the term max{0, φk} in (43).

M. Hintermüller, K. Ito and K. Kunisch discuss the slant differentiability of the map-

ping max{0, y} for certain Banach spaces, that is, for the finite dimensional case y ∈ R
n

in [HIK02, Lemma 3.1], and the infinite dimensional case y ∈ Lq(Ω) in [HIK02, Proposi-

tion 4.1]. Let us summarize their results in the following two theorems.

Theorem 5 (The finite dimensional case). Let n ∈ N be arbitrary, and F be a mapping

of R
n into R

n defined as F (y) := max{0, y}. Then, F is slantly differentiable, and, for all

γ ∈ R
n, the matrix valued function

F o(y) := diag (fi(yi))
n
i=1 with fi(z) =







0 if z < 0 ,

1 if z > 0 ,

γi if z = 0

(53)

serves as a slanting function.

The next theorem addresses the slant differentiability of the mapping max{0, y} in the

infinite dimensional case y ∈ Lq(Ω). Therefore we require a decomposition of the domain

Ω into three distinct subspaces Ω = Ω≤∪Γ| ∪Ω>, where Ω> denotes the union of all open

subsets of Ω satisfying y(x) > 0 a. e., Ω≤ is the interior of the complement of Ω> with

respect to Ω, and Γ| denotes the interface between Ω> and Ω≤.

Theorem 6 (The infinite dimensional case). Let p and q in R be fixed arbitrarily such

that 1 ≤ p ≤ q ≤ +∞ is satisfied, and let F be a mapping of Lq(Ω) into Lp(Ω) defined as

F (y) := max{0, y}. Then there holds, that for γ fixed arbitrarily in R, the function

F o(y)(x) :=







0 on Ω≤ ,

1 on Ω> ,

γ on Γ| .

(54)

serves as a slanting function for F if p < q, but F o does in general not serve as a slanting

function for F if p = q.

We apply the last two theorems to find a slanting function for the minimizer p̃k(ε)

defined in (43) each in the continuous and the spatially discretized case.

The task turns out to be trivial in the latter case (see Section 5), but some further

regularity assumptions are required in the continuous case due to the following considera-

tions: The minimizer p̃k works as a mapping Q→ Q in order to keep the energy functional

Jk in (28) well-defined. The explicit formula (43) says, that p̃k maps into Q if and only if

max{0, φk−1(σ̃k(ε(v)))}
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maps into L2(Ω), where φk−1 and σ̃k are defined in (42).

To apply Theorem 6 to the slant differentiation of the max-term measured in the

L2(Ω)-norm, we must guarantee, that its argument

φk−1(σ̃k(ε(v)))

is bounded in the L2+ǫ(Ω)-norm for some ǫ > 0 and for all v ∈ VD, or at least for those

v ∈ VD which are run through by the Newton-like method. This issue is not further

discussed in this work, but left as an open question for theoretical analysis on regularities

of elastoplastic problems. See Table 5 in the Appendix on page 36 for a compact summary

of the still open issue.

Thus, under the assumption φk−1(σ̃k(ε(v))) ∈ L2+ǫ(Ω), we can formulate an immediate

result as the combination of the chain rule, Theorem 6 (with the setting γ = 0), and the

explicit formula (43).

Corollary 2. Let k ∈ {1, . . . , NΘ} and v ∈ VD be arbitrarily fixed. If there exists ǫ > 0

such that φk−1(σ̃k(ε(v))), as defined in (42), is in L2+ǫ(Ω), then the mapping p̃k : Q→ Q

defined in (43) is slantly differentiable at ε(v). The mapping

p̃k
o(ε(v) ; q) =







ξ
(

βk dev q + (1 − βk)
〈dev σ̃k , dev q〉F

‖dev σ̃k‖2
F

dev σ̃k

)

in Ωp
k(v) ,

0 else ,
(55)

for all q ∈ Q serves as a slanting function for p̃k at ε(v), wherein the abbreviations (51)

together with the definitions (42) are used. Moreover, the functional D Jk(v) is slantly

differentiable with the slanting function (D Jk)
o (v) as in (50).

Corollary 2 corresponds to Corollary 3 in Section 5 on page 22, which states the

slant differentiability of the energy functional’s first derivative D Jk and the plastic strain

minimizer p̃k in finite dimensional FE-spaces. Unlike the infinite dimensional case, no

additional assumptions will be necessary in the finite dimensional case (cf. Theorem 5 and

Theorem 6).

4.4 Local Superlinear Convergence Rate of the Algorithm

In order to apply Theorem 4, the existence and boundedness of the inverse operator

[(D Jk)
o]−1 is required. It is proved in detail in Proposition 2 on page 21, which uses the

boundedness and ellipticity of the bilinear form (D Jk)
o (v) := (D Jk)

o (v ; ⋄, ◦) from the

following lemma.

Lemma 2. Let k ∈ {1, . . . , NΘ} and v ∈ VD be fixed arbitrarily, and let the mapping

(D Jk)o : VD → L(V0, V0
∗) be defined (D Jk)

o (v) := (D Jk)
o (v ; ⋄, ◦) as in (50) with the
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mapping p̃k
o as in (55). Then there exist positive constants κ1 and κ2 which satisfy

(D Jk)
o (v ; w,w) ≥ κ1‖w‖

2
V ∀w ∈ V0 (ellipticity) , (56)

(D Jk)
o (v ; w,w) ≤ κ2‖w‖V ‖w‖V ∀w,w ∈ V0 (boundedness) . (57)

Proof. Let us recall the definition of (D Jk)o in (50), i.e.,

(D Jk)
o (v ; w,w) = 〈ε(w) − p̃k

o(ε(v) ; ε(w)) , ε(w)〉C . (58)

First, we prove the contractivity of the operator pk
o(ε(v), ·) defined in (55) with respect

to its second argument:

‖p̃k
o(ε(v) ; q)‖2

C =

∫

Ω
〈Cpk

o(ε(v) ; q) , pk
o(ε(v) ; q)〉F dx = 2µ

∫

Ω
‖pk

o(ε(v) ; q)‖2
F dx

= ξ2 2µ

∫

Ωp

k
(v)

‖βk dev q + (1 − βk)
〈dev σ̃k , dev q〉F

‖dev σ̃k‖
2
F

dev σ̃k‖
2
F dx

≤ ξ2 2µ

∫

Ω
‖dev q‖2

F = ξ2
∫

Ω
〈C dev q , dev q〉F dx

≤ ξ2
∫

Ω
〈Cq , q〉F dx = ξ2‖q‖2

C ∀q ∈ Q.

Then the substitution of this estimate to (58) yields

(D Jk)
o (v ; w,w) ≥ (1 − ξ)‖ε(w)‖2

C ,

which together with Korn’s inequality from the theory of linear elasticity (there exists a

constant κe
1 > 0 such, that ‖ε(w)‖2

C
≥ κe

1‖w‖
2
V holds for all w in V0) already provides the

ellipticity with the constant

κ1 := (1 − ξ)κe
1.

We show the boundedness (57). The Cauchy-Schwarz inequality reads

(D Jk)
o (v ; w,w) ≤ ‖ε(w) − p̃k

o(ε(v) ; ε(w))‖C‖ε(w)‖C ∀w,w ∈ V0 . (59)

Then the triangle inequality and the contractivity of p̃k
o provide

(D Jk)
o (v ; w,w) ≤ (1 + ξ) ‖ε(w)‖C‖ε(w)‖C ∀w,w ∈ V0. (60)

It is well know from the theory of linear elasticity, that there exists a constant κe
2, which

satisfies ‖ε(w)‖C‖ε(w)‖C ≤ κe
2‖w‖V ‖w‖V . Thus, (57) holds with

κ2 = (1 + ξ)κe
2. (61)
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Remark 4. By exploiting the structure of the slanting function p̃k
o(ε(v); ε(w)) the bound-

edness constant κ2 from (61) can be further improved to

κ2 = κe
2. (62)

Let us check that for all w ∈ V0 there holds a. e. in Ωp
k(v):

‖p̃k
o(ε(v) ; ε(w))‖2

F = ξ2
(

β2
k‖dev ε(w)‖2

F + (1 + βk)(1 − βk)
〈dev σ̃k , dev ε(w)〉2F

‖dev σ̃k‖2
F

)

≤ ξ

(

βk‖dev ε(w)‖2
F + 2(1 − βk)

〈dev σ̃k , dev ε(w)〉2F
‖dev σ̃k‖2

F

)

≤ 2ξ

(

βk‖dev ε(w)‖2
F + (1 − βk)

〈dev σ̃k , dev ε(w)〉2F
‖dev σ̃k‖2

F

)

= 2〈dev ε(w) , p̃k
o(ε(v) ; ε(w))〉F .

This inequality holds trivially a. e. in Ωe
k(v), where p̃k

o(ε(v) ; ·) ≡ 0. Using the scalar

product 〈◦ , ⋄〉Q =
∫

Ω〈◦ , ⋄〉F dx, we obtain

‖p̃k
o(ε(v) ; ε(w))‖2

Q ≤ 2〈dev ε(w) , p̃k
o(ε(v) ; ε(w))〉Q,

which is equivalent thanks to Lemma 3 to

‖p̃k
o(ε(v) ; ε(w))‖2

C ≤ 2〈ε(w) , p̃k
o(ε(v) ; ε(w))〉C. (63)

Due to (63), there holds ‖ε(w) − p̃k
o(ε(v) ; ε(w))‖2

C
≤ ‖ε(w)‖2

C
, which applied to the

inequality (59) improves the inequality (60) and provides the sharper constant (62).

Proposition 2. Let k ∈ {1, . . . ,NΘ} be fixed and the assumptions of Corollary 2 be

fulfilled. Let the mapping D Jk : VD → V0
∗ be defined D Jk(v) := D Jk(v ; ◦) as in (29),

and (D Jk)
o : VD → L(V0, V0

∗) be defined (D Jk)
o (v) := (D Jk)

o (v ; ⋄, ◦) as in (50). Then,

the Newton-like iteration

vj+1 = vj −
[
(D Jk)o (vj)

]−1
D Jk(v

j)

converges superlinearly to the solution uk of Problem 3, provided that ‖v0 − uk‖V is suffi-

ciently small.

Proof. We check the assumptions of Theorem 4 for the choice F = D Jk. Let v ∈ VD be

arbitrarily fixed. The mapping (D Jk)
o (v) : V0 → V0

∗ serves as a slanting function for

D Jk at v. Moreover, (D Jk)
o (v) : V0 → V0

∗ is bijective if and only if there exists a unique

element w in V0 such, that for arbitrary but fixed f ∈ V0
∗ there holds

(D Jk)o (v ; w,w) = f(w) ∀w ∈ V0 . (64)
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Since the bilinear form (D Jk)
o (v) is elliptic and bounded (Lemma 2), we apply the Lax-

Milgram Theorem to ensure the existence of a unique solution to (64). Finally, the uniform

boundedness of [(D Jk)
o (·)]−1 follows from the estimate

‖[(D Jk)
o (v)]−1‖L(V0

∗,V0) = sup
w∗∈V0

∗

‖[(D Jk)
o (v)]−1 w∗‖V

‖w∗‖V0
∗

= sup
w∈V0

‖w‖V

‖(D Jk)
o (v ; w, ·)‖V0

∗

= sup
w∈V0

inf
w∈V0

‖w‖V ‖w‖V

|(D Jk)
o (v ; w,w)|

≤ sup
w∈V0

‖w‖2
V

|(D Jk)
o (v ; w,w)|

≤
1

κ1
,

with κ1 denoting the v-independent ellipticity constant from Lemma 2.

5 Spatial Discretization

We decompose the domain Ω by a shape-regular triangulation T = {T open ⊂ Ω}, such

that
⋃
T = Ω and

⋂
T = ∅. We approximate the infinite-dimensional space V by the finite-

dimensional subspace Vh := {uh ∈ V | uh ∈ C1(T )3 ∀T ∈ T } and define VhD := Vh ∪ VD

and Vh0 := Vh ∪ V0. Analogous results to Corollary 2 and Proposition 2 can be shown for

the finite-dimensional subspace Vh without any additional assumptions:

Corollary 3. Let k ∈ {1, . . . , NΘ} and vh ∈ VhD be arbitrarily fixed. Let DJk : VhD →

Vh0
∗ and p̃k : C(T )3×3

sym → C(T )3×3
sym for all T ∈ T be defined as in (29) and (43). Then,

DJk is slantly differentiable at vh and p̃k is slantly differentiable at ε(vh) with the slanting

functions

(D Jk)
o (vh ; wh, wh) =

∑

T∈T

∫

T
C (ε(wh) − p̃k

o(ε(vh) ; ε(wh))) : ε(wh) dx , (65)

p̃k
o(ε(vh) ; ε(wh)) =







ξ
(

βk dev ε(wh) + (1 − βk)
〈dev σ̃k ,dev ε(wh)〉F

‖dev σ̃k‖
2
F

dev σ̃k

)

in Ωp
k(vh) ,

0 else ,

for all wh, wh ∈ Vh0. Herein the abbreviations (51) together with the definitions (42) are

used.

Proof. The result follows due to the piecewise continuously differentiability of vh, which

implies that dev σ̃k(ε(vh)) and φk−1(dev σ̃k(ε(vh))) in (42) are continuous mappings, and

thus Theorem 5 is applicable (where we choose γ = 0).

Proposition 3. Let k ∈ {1, . . . , NΘ} be fixed and the assumptions of Corollary 2 be

fulfilled. Let the mapping D Jk : VhD → Vh0
∗ be defined D Jk(vh) := D Jk(vh ; ◦) as in

(29), and (D Jk)
o : VhD → L(Vh0, Vh0

∗) be defined (D Jk)
o (vh) := (D Jk)

o (vh ; ⋄, ◦) as in

(65). Then, the Newton-like iteration

vj+1
h = vj

h −
[

(D Jk)
o (vj

h)
]−1

D Jk(v
j
h)

converges superlinearly to the solution uhk of Problem 3, provided that ‖v0
h − uhk‖V is

sufficiently small.
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Proof. The proof is analogous to the proof of Proposition 2 since Vh is a subspace of V .

5.1 Vector Representation

This subsection is based on [ACFK02]. Here we consider the 2D case only. The additional

information about the implementation including Matlab code can be found in [GV06].

We approximate the possibly non-polygonal 2D domain Ω by a polygonal 2D domain

Ω′ with the boundary Γ′ split into the approximated Dirichlet and Neumann part Γ′
D

and Γ′
N . Let T = {T open ⊂ Ω′} be a shape-regular triangulation of Ω′, where all T

are triangles, E = {E} be a set of edges and EN = E ∩ Γ′
N be its intersection with the

approximated Neumann boundary Γ′
N . The vertices of all triangles are collected in the

set N = {x ∈ R
2 | ∃T ∈ T : x is vertex of T}. Let ϕi : Ω′ → R be affine linear on

each element T ∈ T such that for an arbitrary node xl the condition ϕi(xl) = δil is

satisfied for all i, l ∈ {1, . . . , |N |}. Further, let ej denote the j-th unit vector. Then, uh

can be expressed by uh(x) :=
∑

i,j ui,jϕi(x)ej , where ui,j := (u(xi))j , or for short, we

can write uh(x) = Φ(x)T u by defining Φ(x) := (ϕi(x) ej)i∈{1,...,|N |},j∈{1,2} ∈ R
2|N | and

u := (ui,j)i∈{1,...,|N |},j∈{1,2} ∈ R
2|N |. We then lead the infinite-dimensional space V into a

finite-dimensional subspace Vh := {uh ∈ V | uh = ΦTu, u ∈ R
2|N |}.

We consider the domain Ω to be thin with respect to one of the three space dimensions.

Thus, the strain ε (plain strain model) or the stress σ (plain stress model) have zero

components in that direction. The following formulations hold for the plain strain model

only, the plain stress model can be expressed analogously. We assume the total strain ε,

the plastic strain p and the stress tensor σ in forms

ε =







ε11 ε12 0

ε12 ε22 0

0 0 0






, p =







p11 p12 0

p12 p22 0

0 0 p33






, σ =







σ11 σ12 0

σ12 σ22 0

0 0 σ33






.

The certain structure of ε in the plain strain case implies the certain structure of the

plastic strain p by the application of the minimizer property (43). Moreover, the structure

of the stress σ in the plain strain case follows from Hook’s Law (4). it is sufficient to store

the information about ε, p and σ in the vectors ε := (ε11, ε22, 2ε12)
T , p := (p11, p22, p12)

T

and σ := (σ11, σ22, σ12)
T . Analogous operations in tensor and vector representation, such

as norms, traces and deviators, are summarized in Table 1. It follows 〈σε , ε〉F = (σε)
T

ε

and 〈σp , ε〉F = (σp)
T

ε. Let RT and RE be operators which restrict the global vector u

onto a local element T by

uT = RTu , uE = REu . (66)

Let the fixed triangle T ∈ T have the vertices (xα,xβ ,xγ) with the coordinates

((xα,1, xα,2) , (xβ,1, xβ,2) , (xγ,1, xγ,2)) .
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Common (Tensor) Representation Vector Representation

ε :=





ε11 ε12 0
ε12 ε22 0
0 0 0



 ε :=

( ε11
ε22

2 ε12

)

σε := C ε =





σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33



 σε :=

(
σε,11

σε,22

σε,12

)

=





λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ





︸ ︷︷ ︸

=:C

ε ,

with C ε = 2µ ε+ λ tr ε I σε,33 =
λ

2 (λ+ µ)
︸ ︷︷ ︸

=ν

(
1 1 0

)
σε, tr σε = ν+1

ν
σε,33

dev σε = σε −
tr σε

tr I
I devσε :=





(devσε)11
(devσε)22
(devσε)12



 = σε −
tr σε

tr I





1
1
0



 ,

thus, devσε =



I −
ν + 1

dim(σε)





1 1 0
1 1 0
0 0 0









︸ ︷︷ ︸

=:K

σε

p =





p11 p12 0
p12 p22 0
0 0 − (p11 + p22)



 p :=

( p11

p22

p12

)

, ‖p‖2
N := pT





2 1 0
1 2 0
0 0 2





︸ ︷︷ ︸

=:N

p ,

then: ‖p‖N = ‖p‖F

σp := C p =





σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33



 σp :=

(
σp,11

σp,22

σp,12

)

= 2µp

with C p = 2µ p+ λ tr p
︸︷︷︸

=0

I = 2µ p and σp,33 = −
(
1 1 0

)
σp

σ = C (ε− p) = σε − σp σ = σε − σp and σ33 = σε,33 − σp,33

dev σ = devσε − dev σp
︸ ︷︷ ︸

=σp

, devσ = devσε − σp , ‖dev σ‖F = ‖devσ‖N ,

‖devσ‖2
F =

∑

i,j (dev σ)
2

ij (dev σ)
33

= −
(
1 1 0

)
devσ

Table 1: Table of Vector Representation regarding the Plain Strain Model.
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Then ε(uh) can be calculated on T by

ε(uh)(x)|T =







∂1ϕα 0 ∂1ϕβ 0 ∂1ϕγ 0

0 ∂2ϕα 0 ∂2ϕβ 0 ∂2ϕγ

∂2ϕα ∂1ϕα ∂2ϕβ ∂1ϕβ ∂2ϕγ ∂1ϕγ





















uα,1

uα,2

uβ,1

uβ,2

uγ,1

uγ,2















,

or in a more compact way,

ε(uh)(x)|T = B uT , (67)

where the partial derivatives of ϕα, ϕβ , and ϕγ can be obtained by

∇







ϕα

ϕβ

ϕγ







=







1 1 1

xα,1 xβ,1 xγ,1

xα,2 xβ,2 xγ,2







−1





0 0

1 0

0 1







.

Integration over body and surface forces may be realized by the midpoint rule. We ap-

proximate fk and gk by fT := fk(xT ) and gE := gk(xE), where xT and xE denote the

center of mass of the element T , and the edge E, respectively. Defining

fT :=
|T |

3
RT

T fT , and gE :=
|E|

2
RT

E gE ,

on each T ∈ T and on each E ∈ EN there hold

∫

T
fT vh dx ≈ fT

T v , and

∫

E
gT vh ds ≈ gT

Ev . (68)

5.2 Derivatives and Slanting Functions in Vector Representation

The whole integral over Ω can be split into a sum of integrals on single elements T ∈ T .

Therefore, by combining (66), (67) and (68) we obtain from (29) the discrete formulation

of the energy functional’s Gâteaux-differential

D Jk(u ; v) :=
∑

T∈T

[

|T | (C B uT − 2µ p̃k(B uT ))T BRT − fT
T

]

v −
∑

E∈EN

gT
E v

with

p̃k(B uT ) :=
max{0, φk−1(devσ̃k(B uT ))}

2µ+ σ2
yH

2

devσ̃k(B uT )

‖devσ̃k(B uT )‖N
+ pk−1 , (69)

where

devσ̃k(B uT ) := KCB uT − 2µpk−1 , (70)

φk−1(devσ̃k(B uT )) := ‖devσ̃k(B uT )‖N − σy(1 +Hαk−1) . (71)
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Since D Jk(u ; v) is linear in v, there exists the Fréchet-derivative

D Jk(u) =
∑

T∈T

(

|T | (CB uT − 2µ p̃k(B uT ))T BRT − fT

)

−
∑

E∈EN

gE . (72)

Due to Corollary 3, the mapping D Jk is slantly differentiable with

(D Jk)
o (u) =

∑

T∈T

|T |RT
T B

T (C − 2µ p̃o
k(B uT ))T BRT ,

where

p̃o
k(B uT ) =







ξ
(

(1 − βk)
devσ̃kdevσ̃

T
k N

‖devσ̃k‖
2
N

+ βkI
)

KC if φk(σ̃k) > 0 ,

0 else .
(73)

serves as a slanting function for p̃k defined in (69). Here, the definitions ξ := 1
2µ+σ2

yH2 and

βk :=
φk−1(devσ̃k)
‖devσ̃k‖N

, and the abbreviation devσ̃k for devσ̃k(B uT ) as in (70) are used.

5.3 The Newton-like Method for the Discrete Problem

The Newton-like method is applied for the calculation of u ∈ R
d·|N | such that DJk(u) = 0

and u satisfies the Dirichlet boundary condition:

ui = ui−1 + ∆ui (∀i ∈ N), (74)

where ∆ui solves

− (D Jk)
o (ui−1) ∆ui = D Jk(ui−1) .

Note, that ui must satisfy (generally inhomogeneous) Dirichlet boundary conditions for

all i ∈ N. Therefore, it is sufficient for the initial approximation u0 to satisfy the inhomo-

geneous Dirichlet conditions, and for ∆ui to solve the homogeneous Dirichlet conditions.

For the termination of the Newton-like method we check, if

|uh,i − uh,i−1|ε
|uh,i|ε + |uh,i−1|ε

(75)

with |·|ε := (
∫

Ω‖ε(·)‖
2
F dx)1/2, is smaller than a given prescribed bound ǫ > 0.

6 Numerical Examples

The following tests were calculated on a computer with 2.4 GHz CPU, 2 GB RAM using

Matlab c© version 7.0 on Linux OS. We define ’DOF’ as the short form of degrees of freedom,

and ’VPZ’ to be the short form of variation in plastic zones which is calculated as follows:

In the i-th iteration step, the vector wi stores the information about which elements are

plastic and which are not by defining its components wi
j := 1 if Tj is deformed plastically
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(φk−1(devσ̃k(B uT )) > 0), and wi
j := 1 else. Let the starting vector w0 = 0. Variation in

plastic zones VPZi
i−1 from the (i− 1)-st to the i-th iteration step is defined by

VPZi
i−1 =

100

|T |

|T |
∑

j=1

|wi
j − wi−1

j |. (76)

At all numerical examples, the termination bound ǫ = 1e− 12 was used.

Example 1 (L-Shape). This example is taken from [ACFK02] and its geometry and the

coarse grid triangulation are displayed in Figure 2. We assume non-homogeneous Dirichlet

boundary conditions in polar coordinates r, θ

ur(r, θ) =
1

2µ
rα [−(α+ 1) cos((α+ 1) θ) + (C2 − (α+ 1))C1 cos((α − 1) θ)] ,

uθ(r, θ) =
1

2µ
rα [(α+ 1) sin((α + 1) θ) + (C2 + (α− 1))C1 sin((α− 1) θ)] .

(77)

The critical exponent α ≈ 0.544483737 is the solution to the equation

α sin(2ω) + sin(2ωα) = 0

with C1 = −(cos((α + 1)ω))/ cos((α − 1)ω),C2 = (2(λ + 2µ))/(λ + µ) and ω = 3π
4 . It

can be shown that the formulae (77) describe the solution to the purely elastic problem

with the same non-homogeneous Dirichlet boundary conditions also in the interior of the

Lshape domain. Thus there is a strain-singularity in the reentrant corner, which can also

be expected for the elastoplastic case. The material parameters are defined as

E = 1e5, ν = 0.3, σY = 2.2, H = 1.

Figure 3 shows the yield function (right) and the elastoplastic zones (left), where purely

elastic zones are colored green (light gray in case of a non-color print respectively), and

elastoplastic zones are colored pink (dark grey respectively). The domain’s displacement is

multiplied by factor 3e3. Table 2 reports on convergence behavior of Newton-like method

for graduated uniform meshes.

Example 2 (Wrench). This example simulates the deformation of a screw-wrench under

pressure. Problem geometry is shown in Figure 4: A screw-wrench sticks on a screw

(homogeneous Dirichlet boundary condition) and a surface load g is applied to a part of

the wrench’s handhold in interior normal direction (Neumann boundary condition, cf. 4).

The material parameters are set

E = 2e8 , ν = 0.3 , σY = 2e6 , H = 0.001

and the traction intensity amounts |g| = 6e4. Figure 5 shows the yield function (right)

and the elastoplastic zones (left), where purely elastic zones are colored green (light gray

27



1

2
3

4
5

6

1

2

3

4

5

6

7

8

Figure 2: Problem geometry and the coarse triangulation of Example 1. The L-shape

domain Ω is described by the polygon (−1,−1), (0,−2), (2, 0), (0, 2), (−1, 1), (0, 0).
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Figure 3: Elastoplastic zones (left) and yield function (right) of the deformed domain in

Example 1. The displacement is magnified by factor 3e3.
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DOF 10 66 . . . 20466 97282 391170
relative error:

step 1 2.8383e-02 3.9827e-02 . . . 7.2243e-02 7.0236e-02 6.8321e-02
step 2 1.0467e-04 1.2352e-03 . . . 1.1004e-02 1.1063e-02 1.1022e-02
step 3 2.3781e-09 6.1409e-07 . . . 1.1453e-03 1.2746e-03 1.3552e-03
step 4 1.0944e-16 2.9589e-13 . . . 2.0826e-05 4.0743e-05 5.9611e-05
step 5 . . . 6.8005e-09 5.1957e-08 2.0693e-07
step 6 . . . 5.2211e-15 1.3866e-13 4.3361e-12
step 7 . . . 1.8774e-14

VPZ (%):
step 0-1 16.67 10.42 . . . 10.59 10.61 10.62
step 1-2 0 2.083 . . . 2.873 2.816 2.752
step 2-3 0 0 . . . 0.2686 0.2218 0.1638
step 3-4 0 0 . . . 0.04069 0.02848 0.01882
step 4-5 . . . 0 0 0
step 5-6 . . . 0 0 0
step 6-7 . . . 0

Time (sec.) 2.00537 2.25042 . . . 142.29 590.106 2692.87

Table 2: Convergence table in Example 1 (Lshape). The table displays the relative error

in displacements (75) and the variation of plastic zones (VPZ) per iteration step for various

uniformly refined meshes.

Level 0 1 . . . 5 6 7
DOF 60 202 . . . 41662 165246 658174

relative error:
step 1 2.3834e-14 3.6169e-03 . . . 1.3194e-01 1.4872e-01 1.5846e-01
step 2 2.3598e-06 . . . 5.6966e-02 6.9302e-02 7.9603e-02
step 3 1.5324e-11 . . . 7.5805e-03 1.3223e-02 2.9909e-02
step 4 4.5752e-15 . . . 4.0307e-04 2.4344e-03 3.5626e-03
step 5 . . . 5.9665e-06 2.1840e-04 1.2013e-04
step 6 . . . 2.9485e-10 1.5089e-05 1.0364e-05
step 7 . . . 7.8696e-14 3.8914e-09 1.1642e-09
step 8 . . . 1.5508e-13 2.9988e-13

VPZ (%):
step 0-1 0 1.25 . . . 1.819 1.83 1.828
step 1-2 0 . . . 0.9741 1.168 1.27
step 2-3 0 . . . 0.3564 0.5591 0.7588
step 3-4 0 . . . 0.05127 0.1501 0.1418
step 4-5 . . . 0.002441 0.02563 0.02319
step 5-6 . . . 0 0.00183 0.004425
step 6-7 . . . 0 0 0
step 7-8 . . . 0 0

Time (sec.) 1.31385 2.58625 . . . 262.304 1177.64 4892

Table 3: Convergence table in Example 2 (wrench). The table displays the relative error

in displacements (75) and the variation of plastic zones (VPZ) per iteration step for various

uniformly refined meshes.
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Figure 4: Problem geometry in Example 2.
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Figure 5: Elastoplastic zones (left) and yield function (right) of the deformed domain in

Example 2. The displacement is magnified by factor 10.
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Level 0 1 . . . 3 4 5
DOF 245 940 . . . 14560 57920 231040

relative error:
step 1 2.1826e-02 3.5365e-02 . . . 4.5238e-02 4.6300e-02 4.6603e-02
step 2 2.2225e-03 5.8553e-03 . . . 8.0839e-03 8.3886e-03 8.5454e-03
step 3 1.0478e-04 1.6539e-04 . . . 3.4440e-04 4.0032e-04 4.1602e-04
step 4 1.4404e-08 3.9755e-08 . . . 1.5206e-05 1.2050e-05 1.3944e-05
step 5 7.2634e-16 6.9728e-15 . . . 2.4947e-07 7.2972e-07 3.2631e-07
step 6 . . . 3.5062e-13 5.3972e-12 1.6473e-12
step 7 . . . 7.2441e-15 1.4518e-14

VPZ (%):
step 0-1 4.889 5.889 . . . 7.042 7.116 7.129
step 1-2 1.333 4.222 . . . 5.444 5.549 5.546
step 2-3 0.8889 1.222 . . . 1.056 1.125 1.098
step 3-4 0 0 . . . 0.1597 0.1233 0.1215
step 4-5 0 0 . . . 0.01389 0.01042 0.008247
step 5-6 . . . 0 0 0
step 6-7 . . . 0 0

Time (sec.) 2 4.6 . . . 64 286 1195

Table 4: Convergence table in Example 3 (plate with a hole). The convergence table

displays the relative error in displacements (75) and the variation of plastic zones VPZ

(76) per iteration step for various uniformly refined meshes.

in case of a non-color print respectively), and elastoplastic zones are colored pink (dark

grey respectively). The displacement of the domain is multiplied by factor 10. Table 3

reports on the convergence of the Newton-like method for graduated uniform meshes.

Example 3 (Plate with a hole). The example is taken from [Ste03] and serves as a bench-

mark problem in computational plasticity. In difference to the original problem setup, we

choose H to be non-zero, thus hardening effects are considered. The calculation of the

original perfect plastic problem can be found in [GV06, GV07]. We consider a thin plate

represented by the square (−10, 10)× (−10, 10) with a circular hole of the radius r = 1 in

the middle, as can be seen in Figure 6. A surface load g is applied on the plate’s upper and

lower edge with the intensity |g| = 450. Due to the domain’s symmetry, only the right up-

per quarter is discretized. Therefore it is necessary to incorporate homogeneous Dirichlet

boundary conditions in the normal direction (gliding conditions) to both symmetry axes.

The material parameters are set

E = 206900, ν = 0.29, σY =

√

2

3
450, H =

1

2
.

Figure 7 shows the yield function (right) and the elastic-plastic zones, where purely elastic

zones are colored green (light gray in case of a non-color print respectively), and elastic-

plastic zones are colored pink (dark grey respectively). The displacement is multiplied by

100. Table 4 reports on the convergence of the Newton-like method.
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Figure 6: Problem geometry in Example 3.
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Figure 7: The two plots show the elastoplastic zones (left) and the yield function (right)

of the deformed domain in Example 3. The displacement is magnified by the factor 100.
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Figure 8: Hysteresis curve for Example 3 with respect to the time dependent surface load

g(t) = (0, sin(πt)) for t ∈ [0, 4]. At the material point with coordinates roughly (2,2), the

stress component σ22 is plotted versus the strain component ε22. Both quantifiers are set

to zero at t = 0. The time development takes place in direction of the arrows.

−6 −4 −2 0 2 4 6

x 10
−3

−600

−400

−200

0

200

400

600

strain in y direction (ε
22

 )

st
re

ss
 in

 y
 d

ire
ct

io
n 

(σ
22

 )

Hysteresis Curve in y direction

Figure 9: Same hysteresis curve as in Figure 8, except for H = 0 which models a perfect

plastic material behaviour.
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7 Appendix

A few simple properties concerning the deviator are summarized in the following lemma,

and extently used throughout this work.

Lemma 3. Let n ∈ N, λ ∈ R with λ > 0, µ ∈ R with µ > 0, and I denote the identity

matrix in R
n×n. Let the mappings dev : R

n×n → R
n×n and C : R

n×n → R
n×n be defined

dev x := x−
〈x , I〉F
〈I , I〉F

I , Cx := µ(x+ xT ) + λ〈x , I〉F I .

Then, for all matrices x and y in R
n×n, the the following properties hold:

1. 〈dev x , y〉F = 〈x , dev y〉F , 2. dev I = 0 ,

3. 〈dev x , I〉F = 0 , 4. dev dev x = dev x ,

5. dev Cx = µ
(
dev x+ dev xT

)
, 6. C dev x = µ

(
dev x+ dev xT

)
,

7. 〈Cx , I〉F = (2µ+ 〈I , I〉Fλ)〈x , I〉F , 8. 〈C dev x , dev x〉F ≤ 〈Cx , x〉F .

Proof. The first and the second property follow from the definition of the deviator:

〈dev x , y〉F = 〈x , y〉F −
〈x , I〉F 〈y , I〉F

〈I , I〉F
= 〈x , dev y〉F ,

dev I = I −
〈I , I〉F
〈I , I〉F

I = 0 .

The third property follows from the first two properties:

〈dev x , I〉F = 〈x , dev I〉F = 0 .

The fourth property holds due to the third property:

dev dev x = dev x−
〈dev x , I〉F
〈I , I〉F

I = dev x .

The fifth property relies on the second property,

dev Cx = µ(dev x+ dev xT ) + λ〈x , I〉F dev I = µ
(
dev x+ dev xT

)
,

and the sixth property relies on the third property,

C dev x = µ
(
dev x+ dev xT

)
+ λ〈dev x , I〉F I = µ

(
dev x+ dev xT

)
.

The seventh property follows from the definition of the mapping C:

〈Cx , I〉F = µ(〈x , I〉F + 〈xT , I〉F ) + 〈I , I〉Fλ〈x , I〉F = (2µ+ 〈I , I〉Fλ)〈x , I〉F .

The eighth property can be shown by

〈C dev x , dev x〉F = 〈dev Cx , dev x〉F = 〈Cx , dev dev x〉F = 〈Cx , dev x〉F

= 〈Cx , x〉F −
〈Cx , I〉F 〈x , I〉F

〈I , I〉F
≤ 〈Cx , x〉F .
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The chain rule for slanting functions is provided by the next theorem. Herein we use,

that a slantly differentiable function is continuous on a Banach space X, since

lim
h→0

(F (x+ h) − F (x)) = lim
h→0

(F o(x+ h)h+ r(h)) = 0 ∀x ∈ X ,

for limh→0 F
o(x+ h) is bounded.

Theorem 7. (chain rule) Let U ⊆ X and V ⊆ Y be open subsets. Let F ∈ S(U ;Y ) such

that F (U) ⊆ V and G ∈ S(V ;Z). Let F o be a slanting function for F in U and Go be a

slanting function for G in V . Then there holds G ◦ F ∈ S(U ;Z) where

(G ◦ F )o (x) := Go(F (x))F o(x) ∀x ∈ U

serves as a slanting function for G ◦ F in U .

Proof. Let x ∈ U be arbitrary. Since U is open, there exists an open neighborhood N ⊆ X

centered at zero, such that (x+ h) ∈ U if h ∈ N . The function F is slantly differentiable

in U with the slanting function F o. That is, there exists a mapping r : X → Y with

limh→0
‖r(h)‖
‖h‖ = 0 such that, for all h ∈ N , there holds

F (x+ h) = F (x) + F o(x+ h)h + r(h) .

Alike, the function G is slantly differentiable in V with the slanting function Go. That is,

there exists a mapping s : Y → Z with limk→0
‖s(k)‖
‖k‖ = 0 such that

G(y + k) = G(y) +Go(y + k) k + s(k) (78)

holds for all y ∈ V and k ∈ Y , which satisfy (y + k) ∈ V . The certain choice of y := F (x)

and k(h) := F (x + h) − F (x) = F o(x + h)h + r(h) for h ∈ N satisfies y ∈ V and

(y + k(h)) ∈ V , and yields

G(F (x+ h)) = G(F (x)) +Go(F (x+ h))F o(x+ h)h + t(h) ,

where t(h) := Go(F (x+ h)) r(h) + s(k(h)), due to (78). It remains to show, that

lim
h→0

‖t(h)‖

‖h‖
= 0 .

Let ε > 0 be arbitrary. Since limh→0‖F
o(x + h)‖ is bounded, limh→0 k(h) = 0, and

limk→0
‖s(k)‖
‖k‖ = 0, there holds

lim
h→0

(

(‖F o(x+ h)‖ + ε)
‖s(k(h))‖

‖k(h)‖

)

= 0 . (79)

There exists δ > 0, such that for all h ∈ N with ‖h‖ < δ there holds

(‖F o(x+ h)‖ + ε) ‖h‖ > ‖F o(x+ h)‖‖h‖ + ‖r(h)‖ ≥ ‖F o(x+ h)h + r(h)‖ = ‖k(h)‖ .
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Using this together with (79), we obtain limh→0
‖s(k(h))‖

‖h‖ = 0 . Hence a slantly differentiable

function is continuous, the function F is continuous. Thus, the limit limh→0‖G
o(F (x+h))‖

is bounded, and we conclude

lim
h→0

‖t(h)‖

‖h‖
≤ lim

h→0

(

‖Go(F (x+ h))‖
‖r(h)‖

‖h‖

)

+ lim
h→0

(
‖s(k(h))‖

‖h‖

)

= 0 .
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Let j ∈ N0 denote the Newton-like iteration index and k ∈ N0 the time index.

Choose a real and strictly decreasing sequence (ǫj), which satisfies limj→∞ ǫj > 0.

Let φk−1(σ) = ‖dev σ‖F − σy(1 +Hαk−1) and σ̃k(ε(v)) = C (ε(v) − pk−1).

Let vj ∈ VD be such, that φk−1(σ̃k(ε(vj)) ∈ L2+ǫj
(Ω).

Let ξ = 2µ
2µ+σ2

yH2 and βk =
φk−1(σ̃k(ε(v))))
‖dev σ̃k(ε(v))‖F

.

Then there hold (by the substitution v = vj):

p̃k(ε(v)) = 1
2µ+σ2

yH2 max{0, φk−1(σ̃k(ε(v)))}
dev σ̃k(ε(v))

‖dev σ̃k(ε(v))‖F
+ pk−1,

D Jk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉C −
∫

Ω f · w dx−
∫

ΓN
g · w ∀w ∈ V0,

p̃o
k(ε(v); ε(w)) =







ξ
(

βk dev ε(w) + (1 − βk)
〈dev σ̃k ,dev ε(w)〉F

‖dev σ̃k‖
2
F

dev σ̃k

)

in Ωp
k(v) ,

0 else ,

(D Jk)
o (v ; w1, w2) = 〈ε(w1) − p̃o

k(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1, w2 ∈ V0.

Notice, that the integrability of pk−1 and αk−1 underlies the solution uk−1 ∈ VD, for

pk−1 = p̃k−1(ε(uk−1)) and αk−1 = α̃k−1(pk−1) with α̃k(q) = αk−1 + σyH‖q − pk−1‖F .

Using the above defined quantifiers, the j + 1st Newton-like step reads:

Calculate vj+1 ∈ VD by solving

(D Jk)o (vj ; vj+1 − vj, w) = −D Jk(vj ; w) for all w ∈ V0.

The task is now to show, that there holds φk−1(σ̃k(ε(vj+1))) ∈ L2+ǫj+1
(Ω).

Table 5: A summary of the still open regularity problem, as discussed in subsection 4.3.
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