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Abstract. We consider a convex variational problem related to
a time-step problem in elasto-plastic models with isotropic hard-
ening. Our goal it to derive a posteriori error estimate of the dif-
ference between the exact solution and any function in the admis-
sible (energy) class of the problem considered. The estimates are
obtained by a advanced version of the variational approach earlier
used for linear boundary-value problems and nonlinear variational
problems with convex functionals (see [20, 21] and the monography
[18]). They do no contain mesh-dependent constants and are valid
for any conforming approximations regardless of the method used
for their derivation.

It is shown that the structure of error majorant reflects prop-
erties of the exact solution so that the majorant vanishes only if
an approximate solution coincides with the exact one. Moreover,
it possesses necessary continuity properties, so that any sequence
of approximations converging to the exact solution in the energy
space generates a sequence of positive numbers (explicitly com-
putable by the majorant functional) that tends to zero.

1. Introduction

Incremental models in the theory of elasto-plasticity are among the
most widely used in the numerical analysis of processes that include
plasticity phenomenon. These typically include memory effect and ex-
hibit hysteresis behavior which are described by time-dependent vari-
ational inequalities. If an implicit Euler scheme is used, then the evo-
lutionary variational inequality is approximated by a sequence of sta-
tionary variational inequalities of the second kind [14] in which the un-
known functions are displacement u and plastic strain p. Each of these
inequalities is equivalent to a minimization problem with a convex but
non-smooth energy functional, J(u, p) → min. There exist various
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methods for solving this minimization problems such a return map-
ping algorithm [25], an alternating minimization [2] or quasi-Newton
methods [15, 7]. The main focus of this paper is not to develop new
methods for solving the minimization problems itself, but to provide a
guaranteed a posteriori estimate to measure the quality of the numer-
ical solution computed.

A posteriori estimates of approximation errors are intended to (a)
give a presentation on the overall accuracy of an approximate solution
and (b) serve as an error indicator that show regions with excessively
high errors (typically a new finite dimensional space constructed on
the basis of this information has extra trial functions in each regions).
There exist various approaches to the construction of a posteriori error
estimates (a discussion of them can be found in e. g., in monographs
[3, 1, 4, 18] or in the recent overview [22]. In application of a posteriori
techniques to elasto-plasticity, let us mention the works [19, 9].

In this paper we use the method exposed it the book [18], in the
framework of which the estimates are derived by purely functional
analysis of the respective variational problem and its dual counterpart.
Hence, a computable upper bound of the error is obtained on a purely
functional level without exploitation of specific properties of an approx-
imation or a method used for its computing. Therefore, estimates of
such a type are often called “functional a posteriori estimates”. One of
the first publications presenting this method was [24] where the a pos-
teriori estimates were derived for a deformation plasticity model with
hardening. Recently, the method was applied to the Ramberg-Osgood
model (sometimes also called Norton-Hoff) in the theory of nonlinear
solid media, see [6]. Also, we note close publications [5] and [12] where
such estimates were derived for nonlinear viscous flow problems. Fi-
nally, we mention [11], where the method was applied to the variational
functional arising in the theory of Reissner- Mindlin plates, which from
the mathematical point of view has common features with the one con-
sidered in the present paper.

Based on their experience in implementation of functional a poste-
riori estimates for problems with nonlinear boundary conditions [23],
authors plan in the forthcoming paper to concentrate on numerical
implementation and verification of estimates derived here.
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2. Minimization problem

Let us consider the first plastic time-step problem in the isotropic
hardening case of elasto-plasticity [16, 2]. It can be described as a
minimization problem related to the functional

(2.1) J(v, q) :=
1

2

∫
Ω

C(ε(v)− q) : (ε(v)− q) + σyH|q|2 dx

+

∫
Ω

σy|q| dx−
∫
Ω

fv dx → min.

The free variables are displacement

v ∈ V0 + u0,

where V0 := H1
0 (Ω; Rd), u0 ∈ H1(Ω; Rd) satisfied the prescribed bound-

ary condition u0 = uD (in the sense of traces) on the Dirichlet boundary
ΓD and the plastic strain

q ∈ Q0 := {q ∈ L2(Ω; Rd×d
sym) : tr q = 0 a. e. in Ω}.

Note that tr · denotes the trace operator defined by tr A = A : I for all
A ∈ Rd×d with I denoting the identity matrix . The positive constants
H and σy represent an isotropic hardening parameter and a yield stress.
The external forces f are assumed to satisfy

f ∈ L2(Ω; Rd)

and C ∈ L(Rd×d, Rd×d) denotes the fourth-order elastic stiffness tensor
which satisfies a relation (for known positive constants c1, c2)

(2.2) c1|q| ≤ Cq : q ≤ c2|q|

for all q ∈ Rd×d. Finally, the linearized Green-St. Venant strain tensor
is defined as

(2.3) ε(v) :=
1

2

(
∇v + (∇v)T

)
.

3. Variational inequality

Theorem 1. The pair (u, p) ∈ (V0 +u0)×Q0 that solves (2.1) satisfies
the variational inequality

a(u, p; v − u, q − p) + Ψ(q)−Ψ(p)− l(v − u) ≥ 0,(3.1)
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where

a(u, p; v, q) :=
1

2

∫
Ω

C(ε(u)− p) : (ε(v)− q) + σyHp : q dx,

Ψ(q) :=

∫
Ω

σy|q| dx,

l(v) :=

∫
Ω

fv dx

for all (v, q) ∈ (V0 + u0)×Q0.

Proof. Due to the assumption (2.2), the ellipticity and boundedness
of the bilinear form a(u, p; v, q) can be proved. Then the variational
inequality follows from the Lions-Stampacchia Theorem [17]. �

4. Basic estimate of the deviation from exact solution

Theorem 2. For any (v, q) ∈ (V0 + u0)×Q0, an estimate

1

2
|||(u− v), (p− q)|||2 ≤ J(v, q)− J(u, p)(4.1)

holds, where a norm ||| · ||| is defined as

|||(u− v), (p− q)||| := ‖ε(u− v)− p + q‖2 + H ‖p− q‖2 .

Proof. The direct calculation shows

J(v, q)− J(u, p) =
1

2
a(v, q; v, q)− 1

2
a(u, p; u, p) + Ψ(q)−Ψ(p)− l(v) + l(u)

=
1

2
|||(u− v), (p− q)|||2

+a(u, p; v − u, q − p) + Ψ(q)−Ψ(p)− l(v − u)

≥ 1

2
|||(u− v), (p− q)|||2,

where we used the inequality (3.1). �

5. Perturbed problem and Lagrangian

Let us introduce a perturbed problem

Jλ(v, q) :=
1

2
a(v, q; v, q)− l(v) +

∫
Ω

σyλ : q dx
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and Lagrangian

Lλ(v, q; τ, ξ) : =

∫
Ω

(τ : (ε(v)− q)− C−1

2
τ : τ + ξ : q − 1

2σyH
|ξ|2 − fv) dx

+

∫
Ω

σyλ : q dx,

=

∫
Ω

(τ : ε(v)− fv) dx +

∫
Ω

q : (ξ − τ + σyλ) dx

−
∫
Ω

(
1

2
C−1τ : τ +

1

2σyH
|ξ|2

)
dx

where the multiplier

λ ∈ Λ := {λ ∈ L∞(Ω, Rd×d) : |λ| ≤ 1 a. e. in Ω}

and

τ, ξ ∈ Q := L2(Ω; Rd×d
sym).

Note that

sup
λ

Jλ(v, q) = J(v, q) and sup
τ,ξ

Lλ(v, q; τ, ξ) = Jλ(v, q)

for all (v, q) ∈ (V0 + u0)×Q0. Thus it holds

J(u, p) = inf
v,q

J(v, q) ≥ inf
v,q

Jλ(v, q) = inf
v,q

sup
τ,ξ

Lλ(v, q; τ, ξ)

≥ sup
τ,ξ

inf
v,q

Lλ(v, q; τ, ξ)

≥ inf
v,q

Lλ(v, q; τ, ξ)

and therefore the substitution in (4.1) yields an estimate

1

2
|||(u− v), (p− q)|||2 ≤ J(v, q)− inf

v,q
Lλ(v, q; τ, ξ)(5.1)

valid for all τ, ξ ∈ Q. Using the substitution w = v − u0 ∈ H1
0 (Ω; Rd),

we can reformulate

Lλ(w, q; τ, ξ) =

∫
Ω

(τ : ε(w)− fw) dx +

∫
Ω

q : (ξ − τ + σyλ) dx

−
∫
Ω

(
1

2
C−1τ : τ +

1

2σyH
|ξ|2 − τ : ε(u0) + fu0

)
dx.
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Note that

inf
w,q

∫
Ω

(τ : ε(w)− fw) dx =

{
0 if div τ + f = 0 a. e. in Ω,
−∞ otherwise,

and

inf
w,q

∫
Ω

q : (ξ−τ+σyλ) dx =

{
0 if dev τ = dev ξ + σy dev λ a. e. in Ω,
−∞ otherwise,

where dev · defines a deviatoric operator dev A = A − tr(A)
d

I for all

A ∈ Rd×d. In summary, we can conclude

inf
w,q

Lλ(w, q; τ, ξ) = −
∫
Ω

(
1

2
C−1τ : τ +

1

2σyH
|ξ|2 − τ : ε(u0) + fu0

)
dx,

if the pair (τ, ξ) satisfies the constrain (τ, ξ) ∈ Qfλ
, where

Qfλ
:= {(τ, ξ) ∈ Q×Q :

div τ + f = 0, dev τ = dev ξ + σy dev λ a. e. in Ω}.

If the constrain (τ, ξ) ∈ Qfλ
is not satisfied, it holds

inf
w,q

Lλ(w, q; τ, ξ) = −∞.

Now, in order to utilize the estimate (5.1), let us compute the difference

M(v, q, τ, ξ, λ) := J(v, q)− inf
v,q

Lλ(v, q; τ, ξ)

which defines a functional majorant. Under the validity of the constrain
(τ, ξ) ∈ Qfλ

, after the substitution for J(v, q) we obtain

J(v, q)− inf
v,q

Lλ(v, q; τ, ξ)

=
1

2

∫
Ω

C(ε(v)− q) : (ε(v)− q) + C−1τ : τ dx +

∫
Ω

σyH

2
|q|2 +

1

2σyH
|ξ|2 dx

+

∫
Ω

σy|q| dx−
∫
Ω

f(v − u0) dx−
∫
Ω

τ : ε(u0) dx

=
1

2

∫
Ω

C(ε(v)− q − C−1τ) : (ε(v)− q − C−1τ) dx +
1

2

∫
Ω

σyH(q − 1

σyH
ξ)2 dx

+

∫
Ω

σy|q| dx−
∫
Ω

q : τ − ξ : q dx +

∫
Ω

τ : ε(v − u0)− f(v − u0) dx.
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The last two terms are simplified due the the constrain (τ, ξ) ∈ Qfλ
as∫

Ω

q : τ − ξ : q dx =

∫
Ω

σyλ : q dx,

∫
Ω

τ : ε(v − u0)− f(v − u0) dx = 0

and the functional majorant finally reads

M(v, q, τ, ξ, λ) :=
1

2

∫
Ω

C(ε(v)− q − C−1τ) : (ε(v)− q − C−1τ) dx

+
1

2

∫
Ω

σyH(q − 1

σyH
ξ)2 dx +

∫
Ω

σy|q| − σyλ : q dx.(5.2)

We proved an upper (reliability) estimate

1

2
|||(u− v), (p− q)|||2 ≤ M(v, q, τ, ξ, λ)(5.3)

valid for arbitrary λ ∈ Λ, (τ, ξ) ∈ Qfλ
, v ∈ V0 + u0, q ∈ Q0. For

practical implementation, v and q will represent discrete displacement
and plastic strain which will be computed numerically, e. g., by the
finite element method. Then, in order to keep this estimate as sharp
as possible, we analyze an estimate

1

2
|||(u− v), (p− q)|||2 ≤ inf

(τ,ξ)∈Qfλ

M(v, q, τ, ξ, λ)(5.4)

which is valid for arbitrary λ ∈ Λ. The structure of the functional
majorant allows for

Theorem 3. The majorant (5.2) attains the zero value if and only if
the following conditions hold almost everywhere in Ω:

div τ + f = 0,(5.5)

ε(v)− q = C−1τ,(5.6)

q =
1

σyH
ξ,(5.7)

λ ∈
{

Λ if q = 0,
q
|q| otherwise.(5.8)

The interpretation of Theorem (3) has a clear meaning: the majorant
value M(v, q, τ, ξ, λ) attains the zeros value if and only if the discrete
solution is equal to the exact solution of the minimization problem
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(2.1), i.e., u = v and p = q. Then τ represents an exact stress which
has to satisfy the equilibrium of forces (5.5) and is also compatible with
the additive decomposition of strain combined with a Hook’s law (5.6).
The equation (5.7) then represent a normal flow law for the von Mises
criteria [2] under which the minimization problem (2.1) was derived.
Finally, the Lagrange multiplier λ activates in (5.8) if the plasticity
strain p is present.

6. Basic estimate of the deviation from exact solution

The practical implementation of the estimate (5.3) is not straightfor-
ward since the variable τ inM(v, q, τ, ξ, λ) must satisfy the equilibrium
condition ∫

Ω

(τ : ε(w)− fw) dx = 0 for all w ∈ V0,

as a part of the constrain (τ, ξ) ∈ Qfλ
. Using for instance an equilibra-

tion technique [8], we might be able to reconstruct τ from ∇v. Then,
the estimate (5.3) would reduced to a simpler residual-type estimate

|||(u− v), (p− q)|||2 ≤
∫
Ω

C(ε(v)− q − C−1τ) : (ε(v)− q − C−1τ) dx.

Here, we derive another estimate from (5.3) to avoid the equilibrium
constrain. Let us decompose

τ = τ − τ̂ + τ̂ ,

where a variable τ̂ ∈ Q does not need to satisfy the equilibrium condi-
tion and rewrite

1

2

∫
Ω

C(ε(v)− q − C−1τ) : (ε(v)− q − C−1τ) dx

=
1

2

∫
Ω

C(ε(v)− q − C−1(τ − τ̂ + τ̂)) : (ε(v)− q − C−1(τ − τ̂ + τ̂) dx

≤ 1

2
(1 + β1)

∫
Ω

C(ε(v)− q − C−1τ̂) : (ε(v)− q − C−1τ̂) dx

+
1

2
(1 +

1

β1

)

∫
Ω

C−1(τ − τ̂) : (τ − τ̂) dx,



FUNCTIONAL A POSTERIORI ESTIMATES IN ELASTO-PLASTICITY 9

which is valid for all β1 > 0. Note that the last term can be further
estimated in order to eliminate the equilibrated unknown τ as

inf
(τ,ξ)∈Qfλ

1

2

∫
Ω

C−1(τ − τ̂) : (τ − τ̂) dx

= inf
(τ,ξ)∈Qfλ

sup
w∈V0

1

2

∫
Ω

(
C−1(τ − τ̂) : (τ − τ̂) + τ : ε(w)− fw

)
dx

the interchange of operators follows e. g., from [10], Theorem 4.1.

= sup
w∈V0

inf
(τ,ξ)∈Qfλ

∫
Ω

(
1

2
C−1(τ − τ̂) : (τ − τ̂) + τ : ε(w)− fw

)
dx

(the infimum is attained at the argument τ = τ̂ − Cε(w))

= sup
w∈V0

−∫
Ω

1

2
Cε(w) : ε(w) dx−

∫
Ω

(−τ̂ : ε(w) + fw) dx


= sup

w∈V0

−1

2
‖ε(w)‖2

C −
∫
Ω

(div τ̂ + f)w dx


≤ sup

w∈V0

(
−1

2
‖ε(w)‖2

C + ‖div τ̂ + f‖ ‖w‖
)

≤ sup
w∈V0

(
−1

2
‖ε(w)‖2

C + C ‖div τ̂ + f‖ ‖ε(w)‖C

)
=

1

2
C2 ‖div τ̂ + f‖2 ,

where the constant C > 0 satisfies the inequality

‖w‖ ≤ C ‖ε(w)‖C

valid for all w ∈ V0. The existence of such constant follows from the
Korn’s and Friedrichs’ inequalities. Altogether we have formulated the
inequality

inf
(τ,ξ)∈Qfλ

M(v, q, τ, ξ, λ) ≤ inf
(τ̂ ,ξ)∈Q̂fλ

M̂(v, q, τ̂ , ξ, λ, β1)

valid for all λ ∈ Λ and β1 > 0, where

M̂(v, q, τ̂ , ξ, λ, β1) :=
1

2
(1 + β1)

∫
Ω

C(ε(v)− q − C−1τ̂) : (ε(v)− q − C−1τ̂) dx

+
1

2
(1 +

1

β1

)C2 ‖div τ̂ + f‖2

+
1

2

∫
Ω

σyH(q − 1

σyH
ξ)2 dx +

∫
Ω

σy|q| − σyλ : q dx
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and

Q̂fλ
:= {(τ̂ , ξ) ∈ Q×Q : dev τ̂ = dev ξ + σy dev λ a. e. in Ω}.

7. Particular case

Theorem 3 provides optimal choice of parameters

τ̂ = C(ε(v)− q), ξ = σyHq, λ ∈
{ q

|q| if q 6= 0,

Λ if q = 0
(7.1)

which annulates the majorant M̂(v, q, τ̂ , ξ, λ, β1) (for any β1 > 0) in
the case of the exact solutions v = u and q = p. However, for the
arbitrary approximate solutions v and q, these parameters can not be
substituted to the majorant M̂(v, q, τ̂ , ξ, λ, β1), since the constrain

(τ̂ , ξ) ∈ Q̂fλ
(7.2)

is not necessary satisfied.

Let us discuss this condition for the isotropic case, which assumes the
elasticity tensor in the form Cijkl = Kδijδkl +µ(δikδjl + δilδjk− 2

3
δijδkl).

It reads in a matrix notation as follows

Cε(v) = 2µ dev(ε(v)) + K tr(ε(v))I,

where the constants K and µ represent the bulk and the shear elastic
moduli. Secondly, let us now consider a special discrete solution, where
the discrete plastic strain q is related to the discrete displacement v
through a pointwise formula

q =

{
2µ| dev(ε(v))|−σy

2µ+σyH
dev(ε(v))
| dev(ε(v))| if 2µ| dev(ε(v))| ≥ σy,

0 if 2µ| dev(ε(v))| ≤ σy.
(7.3)

This formula is known due to [2] and allows to express a plastic strain
q from a given displacement v in the first plastic time-step, so that the
energy J(v, q) in (2.1) is minimal.

Then, to check, whether the substitution of parameters (7.1) does
not violate the condition (7.2), it must hold

2µ(dev(ε(v)− q) = σyHq + σy
dev(ε(v))

| dev(ε(v))|
if q 6= 0,(7.4)

2µ dev(ε(v)) = σyλ if q = 0(7.5)

for some λ ∈ Λ. A careful substitution of (7.3) shows the equal-
ity (7.4) in the plastic case q 6= 0 holds true. Obviously, the value
λ = 2µ

σy
dev(ε(v)) ∈ Λ validates the equality (7.5). Then, majorant
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M̂(v, q, τ̂ , ξ, λ, β1) reduces in both cases q 6= 0 and q = 0 in the limit
case β1 → +∞ to

M̂(v, q, τ̂) =
1

2
C2 ‖div τ̂ + f‖2 .

The simplified form of the majorant states, the error of discrete solu-
tion can be estimated from above by its stress only.
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