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Mathematical model of elastoplasticity

Basic equations

The stress field of a deformed body in R" has to satisfy

—divo =50
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with given body forces b. The linearized strain tensor is de-

fined by
() = 5 (Vut (Vu)")

The phenomenon of plasticity is described by an additional
non-linear term in the stress-strain relation

e(u) =C o +p

The admissible stresses are restricted by a yield function ¢
depending on the hardening of the material, the Prandtl-

Minimization problem for
iIsotropic hardening

The dual functional can be computed and the minimization
problem simplifies and writes as: Find the minimizer (u, p)

of

flu,p) =15 [ Cle(w) =9l s (e(w) = p)da — [ buda
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under the constraint tr (p — pg) = 0. Define p =p — po. f
Is a convex, non-differentiable function with quadratic terms.
It is by smoothing the sharp bend of the absolute

value:
if |p| > e

_Jlr
b= L5 <
The minimization strategy in each time step is

uk—H — argminv mqin f(va Q) — argminvf(va qopt(v))

e NGSolve - finite element package
e FEM basis functions: piecewise quadratic

e Full multigrid method

Testing geometry

2D sketches of the 3D testing geometry:
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Plasticity domain

The material in the red domain is permanently deformed.

ReuB normality law describes the time development
p(o,a) < 0o
p:(t—o)=d:(8—a)<e(r,8)—¢loa)
The hardening parameter o depends on the material law. p
denotes the time derivative of the plastic strain p.

Normality law

If we consider the Prandtl-ReuBB normality law without ¢,
that is the case of perfect plasticity, then ¢ describes the
domain where the stress is admissible:

Algorithm

Minimization in «
The Finite-Element-IVlethod discretization of the uncon-
strained objective in matrix form is equivalent to
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H is the Hessian with respect to p. Necessary condition:
(BT@B —BT@> (u) (—b - BT@pO>
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The system in u with the matrix
S=B'(c—-c(c+H)'C)B

is solved by

Results and future work

Complexity

The CPU-time depends linearly on the number of unknowns

dofs.

Multi-yield (Two-yield) plasticity
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Numeric-analytic steps

The time dependent variational inequality is solved by an
implicit time discretization, e.g. an
For given values at some time step ¢, the updated values for
t1 =ty + At have to be determined.

The problem is reformulated by using functional-analytic
arguments, i.e., the arguments in the variational inequality
are switched using a dual functional. Then, an equivalent

can be derived: Find the minimizer

(u, p, ) of
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" is the dual functional of .

Minimization problem in p

Minimizing p with the Schur-Complement system would
be an inexact and slow procedure. The minimization can
be done in each integration point using

Constraint

Since the constraint tr p is linear

2D: peo = —pu
3D: ps3 = —p11 — P
the minimization problems can be projected onto a
, where the constraint is satisfied exactly: e.g.

S =B'(c—-cPP'(c+mP)'P'C)B

with the projection matrix P.

Elastoplastic domains

blue elastic, first plastic, red second plastic

Two-yield hardening

Kinematic hardening

Outlook

e Convergence proof of the algorithm
e Extension to other hardening laws
e Exact analytic formulas for minimizing p

e Nonlinear hardening, big deformations
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