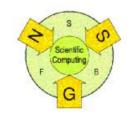
Some Aspect of computational mechanics: From elasticity to plasticity

Students project

Jan Valdman Jan.Valdman@sfb013.uni-linz.ac.at http://www.sfb013.uni-linz.ac.at/ \sim jan

SFB F013 Johannes Kepler University Linz, Austria



Outline

Time: 3×90 minutes

Schedule:

- Elasticity: Modeling (C. Carstensen et al.) + exercises
- Elasticity: Matlab software C. Carstensen et al.
- Elastoplasticity: Modeling + exercises
- Elastoplasticity: Matlab software J. Valdman
- Elastoplasticity: Netgen/NGSOLVE package demonstration

Elasticity: Modeling

Paper: Matlab Implementation of the Finite Element Method in Elasticity - J. Alberty, Kiel, C. Carstensen, Vienna, S.A. Funken, Kiel and R. Klose, Kiel

$$(\lambda + \mu)(\nabla \operatorname{div} u)^T + \mu \triangle u) = -f \quad \Omega, \tag{1}$$

$$(\lambda \operatorname{tr}(\varepsilon(u))I + 2\mu\varepsilon(u)) \cdot n = g \quad \text{on } \Gamma_N, \tag{2}$$

$$M \cdot u = w \quad \text{on } \Gamma_D \tag{3}$$

Exercise: $\sigma := 2\mu\varepsilon + \lambda(\operatorname{tr}\varepsilon)I, \varepsilon(u) := (\nabla u + (\nabla u)^T)/2 \Rightarrow \operatorname{div}\sigma = ?$

Weak formulation

Find
$$u \in H^1(\Omega)$$

$$\int_{\Omega} \varepsilon(u) : \mathbb{C}\varepsilon(v) \, \mathrm{d}x = \int_{\Omega} f \cdot v \, \mathrm{d}x + \int_{\Gamma_N} g \cdot v \, \mathrm{d}x \tag{4}$$

 $\forall v \in H_D^1(\Omega) := \{ v \in H^1(\Omega) : Mv = 0 \text{ on } \Gamma_D \}$

Exercise: Lax-Milgram Lemma $a(u,v)=f(v)\Rightarrow$ existence?

$$a(u,v) \ge c_e||u||||v||?$$
 (5)

$$a(u,v) \le c_b||u||||v||? \tag{6}$$

Finite Element Discretization

$$A_{kl} := \int_{\Omega} \varepsilon(\eta_k) : \mathbb{C}\varepsilon(\eta_l) \, \mathrm{d}x, \quad b_k = \int_{\Omega} f \cdot \eta_k \, \mathrm{d}x + \int_{\Gamma_N} g \cdot \eta_k \, \mathrm{d}x$$

Exercise: What are the properties of A matrix?

Numerical example: Elasticity in Matlab

Matlab software: Carstensen et al.

- Understanding the software structure:
 - assembly of the stiffness matrix
 - incorporating of BC
 - linear solver
 - postprocessing
- Students contribution
 - Creating the simple 2D geometry triangles, rectangles
 - Various BC conditions representing various loads

Elastoplasticity: Modeling

(from J. Kienesberger)

Find $u \in W^{1,2}(0,T;\,H^1_0(\Omega)^n)$, $p \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^{n\times n}))$, $\sigma \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^{n\times n}))$, $\alpha \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^m))$ such that

$$-\operatorname{div} \sigma = b$$

$$\sigma = \sigma^{T}$$

$$\varepsilon(u) = \frac{1}{2} \left(\nabla u + (\nabla u)^{T} \right)$$

$$\varepsilon(u) = \mathbb{C}^{-1} \sigma + p$$

$$\varphi(\sigma, \alpha) < \infty$$

$$\dot{p} : (\tau - \sigma) - \dot{\alpha} : (\beta - \alpha) \le \varphi(\tau, \beta) - \varphi(\sigma, \alpha)$$

are satisfied in the variational sense with $(u, p, \sigma, \alpha)(0) = 0$ for all (τ, β) . b and \mathbb{C}^{-1} are given, b(0) = 0.

Exercise: What happens if p = 0?

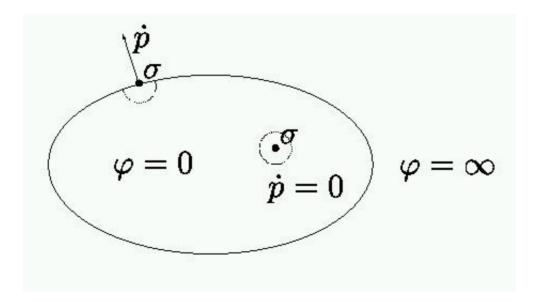
Normality law

(from J. Kienesberger)

Formulas without α (perfect plasticity)

$$\varphi(\sigma) < \infty$$

$$\dot{p}: (\tau - \sigma) \leq \varphi(\tau) - \varphi(\sigma)$$



Some convex analysis

Definition 1 (indicator function, conjugate function). Let $Y \subset X$ be a convex set, $x \in Y$. Then For any set $S \subset X$, the indicator function I_S of S is defined by

$$I_S(x) = \begin{cases} 0 & \text{if } x \in S, \\ +\infty & \text{if } x \notin S. \end{cases}$$
 (7)

For a function $f: X \to [-\infty, \infty]$ we define the conjugate function $f^*: X^* \to [-\infty, \infty]$ by

$$f^*(x^*) = \sup_{x \in X} (\langle x^*, x \rangle - f(x)). \tag{8}$$

Exercise: von Mises yield condition

$$S = \{ \sigma \in \mathbb{R}_{sym}^{d \times d} : ||\operatorname{dev} \sigma||_F \le \sigma_y \}, \tag{9}$$

Calculate I_S and I_S^* ?

Some convex analysis

Definition 2 (subdifferential). Let f be a convex function on X. For any $x \in X$ the subdifferential $\partial f(x)$ of x is the possibly empty subset of X^* defined by

$$\partial f(x) = \{x^* \in X^* : \langle x^*, y - x \rangle \le f(y) - f(x) \quad \forall y \in X\}. \tag{10}$$

Exercise: What is $\partial |x|$?

Exercise: Show that $\frac{x}{||x||} \in \partial ||\cdot||(x)$

Numerical example: Elastoplasticity in Matlab

Matlab software: J. Valdman - software to PhD. thesis: Mathematical and Numerical Analysis of Elastoplastic Material with Multi-Surface Stess-Strain Relation

- Understanding of additional software features (compare to elasticity)
 - solving of the nonlinear system
 - elastoplastic zones
- Students contribution
 - Testing of prepared models: Cook's membrane, plate with a hole

Netgen/NGSOLVE

Explanation of some new features

- 3D geometry
- Multigrid solver
- Elastoplasticity