# Multigrid Preconditioned Solvers for Some Elastoplastic Type Problems

Johanna Kienesberger

Jan Valdman



SFB F013 Johannes Kepler University Linz, Austria



## **Outline**

- Motivation
- Single yield plasticity
  - Modeling
  - Algorithm for isotropic hardening
  - Numerical results
- Multi yield plasticity
  - What is multi yield?
  - Difficilties in symbolic calculations
- Conclusions and outlook

## **Motivation**

Computing solutions numerically avoids e.g. expensive crash tests:



## **Motivation**

Computing solutions numerically avoids e.g. expensive crash tests:



#### Literature:

- Plasticity: Carstensen, Han/Reddy
- Variational inequalities: Ekeland/Teman, Glowinski et al.
- FEM and multigrid: Braess, Bramble, Brenner/Scott, Hackbusch

## **Modeling**

Find  $u \in W^{1,2}(0,T; H_0^1(\Omega)^n)$ ,  $p \in W^{1,2}(0,T; L^2(\Omega,\mathbb{R}^{n\times n}))$ ,  $\sigma \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^{n\times n})), \ \alpha \in W^{1,2}(0,T;L^2(\Omega,\mathbb{R}^m))$  such that

$$-\operatorname{div} \sigma = b$$

$$\sigma = \sigma^{T}$$

$$\varepsilon(u) = \frac{1}{2} \left( \nabla u + (\nabla u)^{T} \right)$$

$$\varepsilon(u) = \mathbb{C}^{-1} \sigma + p$$

$$\varphi(\sigma, \alpha) < \infty$$

$$\dot{p} : (\tau - \sigma) - \dot{\alpha} : (\beta - \alpha) \le \varphi(\tau, \beta) - \varphi(\sigma, \alpha)$$

are satisfied in the variational sense with  $(u, p, \sigma, \alpha)(0) = 0$  for all  $(\tau, \beta)$ . b and  $\mathbb{C}^{-1}$  are given, b(0) = 0.

## **Normality law**

Formulas without  $\alpha$  (perfect plasticity)

$$\varphi(\sigma) < \infty$$

$$\dot{p}: (\tau - \sigma) \leq \varphi(\tau) - \varphi(\sigma)$$



## **Numeric-analytic steps**

- Time discretization:  $t_1 = t_0 + \Delta t$
- Reformalution of the problem using functional-analytic arguments (switching arguments in variational inequalities using a dual functional)
- Equivalent minimization problem

## **Hysteresis curves**



The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint  $tr(p - p_0) = 0$ 

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint  $tr(p - p_0) = 0$ .

New variable:  $\tilde{p} = p - p_0$ 

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint  $tr(p - p_0) = 0$ .

New variable:  $\tilde{p} = p - p_0$ 

A differentiable approximation of  $|\tilde{p}|$ :

$$|p|_{\epsilon} := \left\{ \begin{array}{ll} |p| & \text{if } |p| \ge \epsilon \\ \frac{1}{2\epsilon} |p|^2 + \frac{\epsilon}{2} & \text{if } |p| < \epsilon \end{array} \right.$$

The minimization problem is

$$f(u,p) := \frac{1}{2} \int_{\Omega} \mathbb{C}[\varepsilon(u) - p] : (\varepsilon(u) - p) dx + \frac{1}{2} \int_{\Omega} (\alpha_0 + \sigma_y H|p - p_0|)^2 dx + \int_{\Omega} \sigma_y |p - p_0| dx - \int_{\Omega} b(t) u dx$$

under the constraint  $tr(p - p_0) = 0$ .

New variable:  $\tilde{p} = p - p_0$ 

A differentiable approximation of  $|\tilde{p}|$ :

$$|p|_{\epsilon} := \left\{ \begin{array}{ll} |p| & \text{if } |p| \ge \epsilon \\ \frac{1}{2\epsilon}|p|^2 + \frac{\epsilon}{2} & \text{if } |p| < \epsilon \end{array} \right.$$

Minimization strategy in each time step:

$$u^{k+1} = \operatorname{argmin}_v \min_q \bar{f}(v, q) = \operatorname{argmin}_v \tilde{f}(v, q_{\mathsf{opt}}(v))$$

Then  $p = p_0 + \tilde{p}$ 

#### Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

$$\frac{1}{2}(Bu - \tilde{p})^T \mathbb{C}(Bu - \tilde{p}) + \frac{1}{2}\tilde{p}^T \mathbb{H}(|\tilde{p}|_{\epsilon})\tilde{p} - bu \longrightarrow \min!$$

Matrix notation:

$$\frac{1}{2} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix}^T \begin{pmatrix} B^T \mathbb{C} B & -B^T \mathbb{C} \\ -\mathbb{C} B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C} p_0 \\ \mathbb{C} p_0 \end{pmatrix}^T \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} \longrightarrow \min!$$

#### Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

$$\frac{1}{2}(Bu - \tilde{p})^T \mathbb{C}(Bu - \tilde{p}) + \frac{1}{2}\tilde{p}^T \mathbb{H}(|\tilde{p}|_{\epsilon})\tilde{p} - bu \longrightarrow \min!$$

Matrix notation:

$$\frac{1}{2} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix}^T \begin{pmatrix} B^T \mathbb{C} B & -B^T \mathbb{C} \\ -\mathbb{C} B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C} p_0 \\ \mathbb{C} p_0 \end{pmatrix}^T \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} \longrightarrow \min!$$

Necessary condition:

$$\begin{pmatrix} B^T \mathbb{C} B & -B^T \mathbb{C} \\ -\mathbb{C} B & \mathbb{C} + \mathbb{H} \end{pmatrix} \begin{pmatrix} u \\ \tilde{p} \end{pmatrix} + \begin{pmatrix} -b - B^T \mathbb{C} p_0 \\ \mathbb{C} p_0 \end{pmatrix} = 0$$

The Schur-Complement system in u with the matrix

$$S = B^{T}(\mathbb{C} - \mathbb{C}(\mathbb{C} + \mathbb{H})^{-1}\mathbb{C})B$$

is solved by multigrid preconditioned conjugate gradient method.

## Minimization in $\tilde{p}$

The objective in each integration point writes as

$$F(\tilde{p}) = \frac{1}{2} \tilde{p}^T \mathbb{C} \tilde{p} + p_0^T \mathbb{C} \tilde{p} - \tilde{p}^T \mathbb{C} \varepsilon(u) + \frac{1}{2} \sigma_y^2 H^2 |\tilde{p}|^2 + \sigma_y (1 + \alpha_0 H) |\tilde{p}|_{\epsilon}$$

 $\tilde{p}$  is determined by a modified Newton Algorithm in each integration point.

Are there symbolic methods (as in the unregularized case)?

What about the constraint?

## Constraint $\operatorname{tr} \tilde{p} = 0$

in 2D:  $\tilde{p}_{22} = -\tilde{p}_{11}$ , in 3D:  $\tilde{p}_{33} = -\tilde{p}_{11} - \tilde{p}_{22}$ .

Projection matrix P:  $\tilde{p} = P\bar{p}$ 

$$2D: P = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad 3D: P = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Modified Newton system:

$$P^T F''(\tilde{p}) P \bar{p} = P^T F'(\tilde{p})$$

Modified Schur-Complement Matrix:

$$S = B^{T}(\mathbb{C} - \mathbb{C}P(P^{T}(\mathbb{C} + \mathbb{H})P)^{-1}P^{T}\mathbb{C})B$$

## Numerical results - Quarter of a ring

FEM shape functions: u piecewise quadratic, p piecewise constant

Symmetric problem:



#### Constants:

E=1, 
$$\nu$$
 = 0.2, H = 0.01,  $\sigma_y$  = 1, F = 0.25

Number of time steps: 10



Displacement in x-direction



Figure 1: Stress in x-direction:  $\sigma_{11}$ 



Figure 2: Plastic part of the strain in x-direction:  $p_{11}$ 



Figure 3: Plasticity domain



Figure 4: CPU-Time

### **Conclusions and outlook**

#### We have considered:

- Problem formulation and discretization
- Regularized minimization problem of isotropic hardening
- Minimization: 3D time-dependent algorithm

#### **Future Work:**

- Convergence proof
- Other hardening laws (multi-yield plasticity)
- Direct solver needed in inverse problems of plasticity
- Minimize *p* using symbolic methods?

## Why Multi-yield (Two-yield) model?

• More realistic hysteresis stress-strain relation in materials!



-15 └--0.08

Kinematic hardening model.

Two-yield hardening model.

-0.04

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

Kinematic hardening model:

$$f(Q) = \frac{1}{2}(\mathbb{C} + \mathbb{H})Q : Q - Q : A + \sigma^y ||Q|| \to \min$$

minimizer 
$$P = \frac{(||\operatorname{dev} A|| - \sigma^y)_+}{2\mu + h} \frac{\operatorname{dev} A}{||\operatorname{dev} A||}$$

Two-yield hardening model:

$$f\binom{Q_1}{Q_2} = \frac{1}{2} \begin{pmatrix} \mathbb{C} + \mathbb{H}_1 & \mathbb{C} \\ \mathbb{C} & \mathbb{C} + \mathbb{H}_2 \end{pmatrix} \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} : \begin{pmatrix} A_1 \\ A_2 \end{pmatrix} + \sigma_1^y ||Q_1|| + \sigma_2^y ||Q_2|| \rightarrow \min$$

minimizer 
$$(P_1, P_2) = ?$$

**Lemma:** Let  $f(P) = \min_{Q} f(Q), P = (P_1, P_2), \text{ If } P_1 \neq 0, P_2 \neq 0 \Rightarrow ||P_2||$  is a root of a 8-th degree polynomial.

**Lemma:** Let  $f(P) = \min_{Q} f(Q), P = (P_1, P_2), \text{ If } P_1 \neq 0, P_2 \neq 0 \Rightarrow ||P_2||$ is a root of a 8-th degree polynomial.

**Proof:** f has a subdifferential, i.e.,  $\partial f(P) = (\hat{\mathbb{C}} + \hat{\mathbb{H}})P - A + \partial ||\cdot||_{\sigma^y}(P)$ 

Mininum condition on  $P: 0 \in \partial f(P) \Leftrightarrow A - (\hat{\mathbb{C}} + \hat{\mathbb{H}})P \in \partial ||\cdot||_{\sigma^y}(P)$ 

In case  $P_1 \neq 0, P_2 \neq 0$  is  $\partial ||\cdot||_{\sigma^y}(P) = \{\sigma_1^y \frac{P_1}{||P_1||}, \sigma_2^y \frac{P_2}{||P_2||}\}$ 

**Lemma:** Let  $f(P) = \min_{Q} f(Q), P = (P_1, P_2), \text{ If } P_1 \neq 0, P_2 \neq 0 \Rightarrow ||P_2||$ is a root of a 8-th degree polynomial.

**Proof:** f has a subdifferential, i.e.,  $\partial f(P) = (\hat{\mathbb{C}} + \hat{\mathbb{H}})P - A + \partial ||\cdot||_{\sigma^y}(P)$ 

Mininum condition on  $P: 0 \in \partial f(P) \Leftrightarrow A - (\hat{\mathbb{C}} + \hat{\mathbb{H}})P \in \partial ||\cdot||_{\sigma^y}(P)$ 

In case  $P_1 \neq 0, P_2 \neq 0$  is  $\partial ||\cdot||_{\sigma^y}(P) = \{\sigma_1^y \frac{P_1}{||P_1||}, \sigma_2^y \frac{P_2}{||P_2||}\}$ 

Nonlinear system in  $P_1, P_2 \in \text{dev } \mathbb{R}^{d \times d}_{sym}$  with  $\mu, h_1, h_2, \sigma^y_1, \sigma^y_2 > 0, \text{dev } A_1, \text{dev } A_2 \in \text{dev } \mathbb{R}^{d \times d}_{sum}$ 

$$\begin{pmatrix} \operatorname{dev} A_1 \\ \operatorname{dev} A_2 \end{pmatrix} - \begin{pmatrix} (2\mu + h_1)\mathbb{I} & 2\mu\mathbb{I} \\ 2\mu\mathbb{I} & (2\mu + h_2)\mathbb{I} \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} \sigma_1^y \frac{P_1}{||P_1||} \\ \sigma_2^y \frac{P_2}{||P_2||} \end{pmatrix}$$

**Lemma:** Let  $f(P) = \min_{Q} f(Q), P = (P_1, P_2), \text{ If } P_1 \neq 0, P_2 \neq 0 \Rightarrow ||P_2||$ is a root of a 8-th degree polynomial.

**Proof:** f has a subdifferential, i.e.,  $\partial f(P) = (\hat{\mathbb{C}} + \hat{\mathbb{H}})P - A + \partial ||\cdot||_{\sigma^y}(P)$ 

Mininum condition on  $P: 0 \in \partial f(P) \Leftrightarrow A - (\hat{\mathbb{C}} + \hat{\mathbb{H}})P \in \partial ||\cdot||_{\sigma^y}(P)$ 

In case  $P_1 \neq 0, P_2 \neq 0$  is  $\partial ||\cdot||_{\sigma^y}(P) = \{\sigma_1^y \frac{P_1}{||P_2||}, \sigma_2^y \frac{P_2}{||P_2||}\}$ 

Nonlinear system in  $P_1, P_2 \in \text{dev } \mathbb{R}^{d \times d}_{sym}$  with  $\mu, h_1, h_2, \sigma^y_1, \sigma^y_2 > 0, \text{dev } A_1, \text{dev } A_2 \in \text{dev } \mathbb{R}^{d \times d}_{sum}$ 

$$\begin{pmatrix} \operatorname{dev} A_1 \\ \operatorname{dev} A_2 \end{pmatrix} - \begin{pmatrix} (2\mu + h_1)\mathbb{I} & 2\mu\mathbb{I} \\ 2\mu\mathbb{I} & (2\mu + h_2)\mathbb{I} \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} \sigma_1^y \frac{P_1}{\|P_1\|} \\ \sigma_2^y \frac{P_2}{\|P_2\|} \end{pmatrix}$$

Subst.  $\xi_1 = ||P_1||, \xi_2 = ||P_2||$  with  $A, B, C, D, E, F, G, H, I, J \in {\rm I\!R}$ 

$$A + B\xi_1 + C\xi_1^2 - (G + H\xi_1 + I\xi_2 + J\xi_1\xi_2)^2 = 0$$

$$D + E\xi_2 + F\xi_2^2 - (G + H\xi_1 + I\xi_2 + J\xi_1\xi_2)^2 = 0$$

MAPLE  $\Rightarrow$  8-th degree polynomial in  $\xi_2 \Rightarrow$  no analytical formula!

**Lemma:** Let  $f(P) = \min_{Q} f(Q), P = (P_1, P_2), \text{ If } P_1 \neq 0, P_2 \neq 0 \Rightarrow ||P_2||$ is a root of a 8-th degree polynomial.

**Proof:** f has a subdifferential, i.e.,  $\partial f(P) = (\hat{\mathbb{C}} + \hat{\mathbb{H}})P - A + \partial ||\cdot||_{\sigma^y}(P)$ 

Mininum condition on  $P: 0 \in \partial f(P) \Leftrightarrow A - (\hat{\mathbb{C}} + \hat{\mathbb{H}})P \in \partial ||\cdot||_{\sigma^y}(P)$ 

In case  $P_1 \neq 0, P_2 \neq 0$  is  $\partial ||\cdot||_{\sigma^y}(P) = \{\sigma_1^y \frac{P_1}{||P_1||}, \sigma_2^y \frac{P_2}{||P_2||}\}$ 

Nonlinear system in  $P_1, P_2 \in \text{dev } \mathbb{R}^{d \times d}_{sym}$  with  $\mu, h_1, h_2, \sigma^y_1, \sigma^y_2 > 0, \text{dev } A_1, \text{dev } A_2 \in \text{dev } \mathbb{R}^{d \times d}_{sum}$ 

$$\begin{pmatrix} \operatorname{dev} A_1 \\ \operatorname{dev} A_2 \end{pmatrix} - \begin{pmatrix} (2\mu + h_1)\mathbb{I} & 2\mu\mathbb{I} \\ 2\mu\mathbb{I} & (2\mu + h_2)\mathbb{I} \end{pmatrix} \begin{pmatrix} P_1 \\ P_2 \end{pmatrix} = \begin{pmatrix} \sigma_1^y \frac{P_1}{\|P_1\|} \\ \sigma_2^y \frac{P_2}{\|P_2\|} \end{pmatrix}$$

Gröbner basis?

- **Algorithm (\*)**: Given  $tolerance \geq 0$ . (a) Choose  $(P_1^0, P_2^0) \in \text{dev } \mathbb{R}^{d \times d}_{sym} \times \text{dev } \mathbb{R}^{d \times d}_{sym}$ , set i := 0.
- (b) Find  $P_2^{i+1} \in \operatorname{dev} \mathbb{R}^{d \times d}_{sum}$  s. t.

$$f(P_1^i, P_2^{i+1}) = \min_{Q_2 \in \text{ dev } \mathrm{I\!R}_{sym}^{d \times d}} f(P_1^i, Q_2).$$

(c) Find  $P_1^{i+1} \in \operatorname{dev} \mathbb{R}^{d \times d}_{sym}$  s. t.

$$f(P_1^{i+1}, P_2^{i+1}) = \min_{Q_1 \in \text{ dev } {\rm I\!R}_{sym}^{d \times d}} f(Q_1, P_2^{i+1}).$$

$$\begin{array}{l} \text{(d) If } \frac{||P_1^{i+1}-P_1^i||+||P_2^{i+1}-P_2^i||}{||P_1^{i+1}||+||P_1^i||+||P_2^{i+1}||+||P_2^i||} > tolerance \ \text{set} \\ i:=i+1 \ \text{and goto (b), otherwise output } (P_1^{i+1},P_2^{i+1}). \end{array}$$



The approximations  $P_1^i=(x^i,0;0,-x^i), P_2^i=$  $(y^i, 0; 0, -y^i), i = 0, 1, \dots$  of Algorithm (\*) in the x-y coordinate system.

• global convergence with the rate 1/2:

$$||P_1^i - P_1||^2 + ||P_2^i - P_2||^2 \le C_0 \cdot q^i$$

## **NGSOLVE** calculations

Elastoplastic domains (blue -elastic, green - first plastic, red - second plastic)



Kinematic hardening model.

Two-yield hardening model.

• Completion of NGSOLVE Two-yield plasticity package. (with F1301)

- Completion of NGSOLVE Two-yield plasticity package. (with F1301)
- Generalization to isotropic hardening or combined kinematic-isotropic hardening.

- Completion of NGSOLVE Two-yield plasticity package. (with F1301)
- Generalization to isotropic hardening or combined kinematic-isotropic hardening.
- Exact analytical formulas. (with F1302/F1303/F1304/F1305)

- Completion of NGSOLVE Two-yield plasticity package. (with F1301)
- Generalization to isotropic hardening or combined kinematic-isotropic hardening.
- Exact analytical formulas. (with F1302/F1303/F1304/F1305)
- Nonlinear hardening models, big deformations. (with F1308)