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Motivation

Computing solutions numerically avoids e.g. expensive crash tests:
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Motivation

Computing solutions numerically avoids e.g. expensive crash tests:

Literature:

e Plasticity: Carstensen, Han/Reddy
e Variational inequalities: Ekeland/Teman, Glowinski et al.

e FEM and multigrid: Braess, Bramble, Brenner/Scott, Hackbusch
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Modeling

Find u € WY2(0,T; HL(Q)™), p € WH2(0,T; LA(Q, R ™)),
o€ WH2(0,T; L3(Q,R™")), a € WH2(0,T; L*(2,R™)) such that

—dive = b
T
e(u) = §(Vu—|—(Vu)T)
e(u) = Clo+p
oo, a) < o
p:(r—0)—a:(B—-a) <o f)—p(0a)

are satisfied in the variational sense with (u,p, o, «a)(0) = 0 for all (7, 3).
b and C~! are given, b(0) = 0.
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Formulas without « (perfect plasticity)

Normality law
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Numeric-analytic steps

e Time discretization: t1 = tg + At

e Reformalution of the problem using functional-analytic arguments
(switching arguments in variational inequalities using a dual functional)

e Equivalent minimization problem
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&

Single yield

Hysteresis curves

Multi yield

Reality
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Minimization problem for isotropic hardening

The minimization problem is

flu,p) := %/Q(C[s(u) —p|: (e(u) — p)dx + %/Q(ozo + o, H|p — pol)*dx +/

oy,lp — poldx — / b(t) u dx
Q Q

under the constraint tr(p — pg) =0
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Minimization problem for isotropic hardening

The minimization problem is

flu,p) := %/Q(C[s(u) —p|: (e(u) — p)dx + %/Q(ozo + o, H|p — pol)*dx +/
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Q Q
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New variable: p = p — pg
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Minimization problem for isotropic hardening

The minimization problem is

)= [ Cletw) =3l (tw) = P+ 5 [ (@0 + oy Hlp ol o+ [

oy,lp — poldx — / b(t) u dx
Q

under the constraint tr(p — pg) = 0.

New variable: p = p — pg

A differentiable approximation of [p|:

|p’ ::{ ‘]10| , !f |p’ > €
‘ sclpl” +5 if p] <e
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Minimization problem for isotropic hardening

The minimization problem is

1 1
flu,p) := —/ Cle(u) —p] : (e(u) — p)dx + —/(ozo + o, H|p — pol)*dx +/
2 Ja 2 Ja Q
under the constraint tr(p — pg) = 0.
New variable: p = p — pg

A differentiable approximation of [p|:

|p’ ::{ ‘]10| , !f |p’ > €
‘ sclpl” +5 if p] <e

Minimization strategy in each time step:

u* ! = argmin, min f(v, ¢) = argmin, f(v, gept(v))
q

Then p=pg+p

oy,lp — poldx — / b(t) u dx
Q
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Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

1 N 1 N :
i(Bu —p)'C(Bu - p) + §pT]H[(]p\€)p — bu — min!

Matrix notation:

1/ u "¢ BTCB —-BTC U)o —b— BTCpy Sy . inl
2 ]5 —CB C+H ﬁ Cp() ]5 .
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Minimization in u

FEM-Discretization of the unconstrained objective is equivalent to

1 ) N .
5(Bu = p) C(Bu = p) + op" H(|ple)p — bu — min!

Matrix notation:
T T T T T
1/ u B*CB —-B*C U)o —b — B* Cpq u il
2 ]5 —CB (C —|— H ﬁ (Cp() ]5 .

Necessary condition:
BTCB —-B'C U\ —b— B'Cpy \ 0
—CB C+H ]5 Cpo B

The Schur-Complement system in u with the matrix
S=B'(C-C(C+H)'C)B

is solved by multigrid preconditioned conjugate gradient method.
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Minimization in p
The objective in each integration point writes as

N | L 1 N N
F(p) = TCp + piCp — pTCe(u) + §0§H2\pl2 + oy(1+ o H) |

p is determined by a modified Newton Algorithm in each integration point.
Are there symbolic methods (as in the unregularized case)?

What about the constraint?
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Constraint trp =0

in 2D: pao = —p11, in 3D: p33 = —p11 — pao.

Projection matrix P: p = Pp

(1 0O 0 O 0\

- O 1 0 0 0

~1 -1 0 0 0

2D.P_<—01 (1)> 3D:P=| ] o
O 0 0 1 0

\0 0 0 0 1)

Modified Newton system:
PYF"(p)Pp = P'F'(p)
Modified Schur-Complement Matrix:

S =B (C-CPP'(C+H)P)'P'C)B
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Numerical results - Quarter of a ring

FEM shape functions: u piecewise quadratic, p piecewise constant

Symmetric problem:

| F

JF .fll /

Constants:
E=1,v=02, H=0010,=1 F=0.25

Number of time steps: 10
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-7 .69042198 -5, 73256816 -3,77471433 -1,81686051 0,140399331

Ex Hetgen 4,2

Displacement in x-direction
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-0,61347045 -0,13562290 0, 24222466 0,67007222 1,09791977

%fl_x Hetgen 4,2

Figure 1: Stress in x-direction: o011
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-1,23438283 -0, 85692876 -0,47947469 -0, 10202063 0,27543344

%fl_x Hetgen 4,2

Figure 2: Plastic part of the strain in x-direction: pq;
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0, 00000000 0, 25000000 0, 50000000 0, 7R000000 1, 00000000

%fl_x Hetgen 4,2

Figure 3: Plasticity domain
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Multigrid Preconditioned Solvers for Some Elastoplastic Problems Johanna Kienesberger Page 16



Conclusions and outlook

We have considered:

e Problem formulation and discretization
e Regularized minimization problem of isotropic hardening

e Minimization: 3D time-dependent algorithm
Future Work:

e Convergence proof
e Other hardening laws (multi-yield plasticity)
e Direct solver needed in inverse problems of plasticity

e Minimize p using symbolic methods?
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Why Multi-yield (Two-yield) model?

More realistic hysteresis stress-strain relation in materials!
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Two-yield hardening model.

Kinematic hardening model.

Jan Valdman
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Direct minimization problem

Kinematic hardening model:

£(Q) = %(CHHI)Q O—0Q: A+ 0[O — min
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Direct minimization problem

Kinematic hardening model:

£(Q) = %(CHHI)Q O—0Q: A+ 0[O — min

Two-yield hardening model:

Q\_1(C+H; C Q1. (@ Q1. (A1 y y :
(8)-4(C 2 ) BN (@)oo oo
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Direct minimization problem

Kinematic hardening model:
1 .
f(Q) :§<C‘|‘H)Q :Q—Q: A+ dY||Q]] — min

(||dev A|l| —a¥)L dev A
21+ h | dev Al

minimizer P =

Two-yield hardening model:

Q\_1(C+H; C Q1. (@ Q1. (A1 y y :
(8)-4(C 2 ) BN (@)oo oo
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Direct minimization problem

Kinematic hardening model:
1 .
f(Q) :§<C‘|‘H)Q :Q—Q: A+ dY||Q]] — min

(||dev A|l| —a¥)L dev A
21+ h | dev Al

minimizer P =
Two-yield hardening model:

Q\_1(C+H; C Q1. (@ Q1. (A1 y y :
(8)-4(C 2 ) BN (@)oo oo

minimizer (P, Py) =7
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Direct minimization problem: Two-yield model - analytical approach

Lemma: Let f(P) = rrgnf(Q),P = (P1,P), If PL#0,P, #0 = || P2

is a root of a 8-th degree polynomial.
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Direct minimization problem: Two-yield model - analytical approach

Lemma: Let f(P) = mcgnf(Q),P = (P, P), If P, #0,P; # 0= || P
is a root of a 8-th degree polynomial.

Proof: f has a subdifferential, i.e., f(P) = (C+H)P — A + 8|| - ||,v(P)
Mininum condition on P: 0 € 8f(P) < A — (C+H)P € || - ||,v(P)

Incase P, # 0, P, #0is 0|| - ||,v(P) = {J%llPill’agHPgll}
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Direct minimization problem: Two-yield model - analytical approach

Lemma: Let f(P) = mcgnf(Q),P = (P, P), If P, #0,P; # 0= || P
is a root of a 8-th degree polynomial.

Proof: f has a subdifferential, i.e., f(P) = (C+H)P — A + 8|| - ||,v(P)

Mininum condition on P: 0 € 8f(P) < A — (C+H)P € || - ||,v(P)

In case Py # 0, Py # 01s 9|| - |[ou(P) = {0} 15, 0¥}

Nonlinear system in P;, P, € dev IR?*% with p, hy, hy, 0¥, 0¥ > 0,dev Ay, dev Ay € dev IR*¢

sym sym

P
dev A1\ [ (2p+ hy)l 2l P\ a?flll%ll
dev As 2l (2u+h)l) \P2) — \ o Py
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Direct minimization problem: Two-yield model - analytical approach

Lemma: Let f(P) = mcgnf(Q),P = (P, P), If P, #0,P; # 0= || P
is a root of a 8-th degree polynomial.

Proof: f has a subdifferential, i.e., f(P) = (C+H)P — A + 8|| - ||,v(P)

Mininum condition on P: 0 € 8f(P) < A — (C+H)P € || - ||,v(P)

In case Py # 0, Py # 01s 9|| - |[ou(P) = {0} 15, 0¥}

Nonlinear system in P;, P, € dev IR?*% with p, hy, hy, 0¥, 0¥ > 0,dev Ay, dev Ay € dev IR*¢

sym sym

P
dev A1\ [ (2p+ hy)l 2l P\ OJ{HP}H
dev As 2l (2u+h)l) \P2) — \ o Py

Subst. &1 = || P1||, & = || P2|| with A, B,C,D,E, F,G,H,I,J € IR

A+ B& +CE — (G + HE 4 I&+ J61£)° =0
D+ E&+ F& — (G+ H& + 1€ + J616)? =0

MAPLE = 8-th degree polynomial in &5 = no analytical formula!
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Direct minimization problem: Two-yield model - analytical approach

Lemma: Let f(P) = mcgnf(Q),P = (P, P), If P, #0,P; # 0= || P
is a root of a 8-th degree polynomial.

Proof: f has a subdifferential, i.e., f(P) = (C+H)P — A + 8|| - ||,v(P)

Mininum condition on P: 0 € 8f(P) < A — (C+H)P € || - ||,v(P)

In case Py # 0, Py # 01s 9|| - |[ou(P) = {0} 15, 0¥}

Nonlinear system in P;, P, € dev IR?*% with p, hy, hy, 0¥, 0¥ > 0,dev Ay, dev Ay € dev IR*¢

sym sym

P
dev A1\ [ (2p+ hy)l 2l P\ OJ{HP}H
dev As 2l (2u+h)l) \P2) — \ o Py

Grobner basis?
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Direct minimization problem: Two-yield model - iterative approach

Algorithm (*): Given tolerance > 0.

(a) Choose (P, Py) € dev IR‘;;T‘;ZL x dev Rg;n‘ﬁ, set ¢ := 0. il
(b) Find P;™' € devIRY % s. t.
f(PLP) = min f(P,Q2). |
Qo€ dev IRS;m =22|
(c) Find P/™' € dev IR?;”% s. t. B
F(PT Py = min (@, P, L
Q1€ dev]:R,S;m y . . Hﬁ

X

+1_ i i+l i L : : : :
1Py =PIy Pl i — (£%.0:0, —z'), P! =
1 1 2 2 S tolerance set The approximations P; = (z*,0;0, —z'), P,

141 7 1+1 7 ; ; . .
1P+ Py 1+ P (y',0:0, —y®),i = 0,1, ... of Algorithm (*) in

(d) If

i := i + 1 and goto (b), otherwise output (P{*', Pyt1).

the x — y coordinate system.

e global convergence with the rate 1/2:

[Pl = Pi|[ +[|P — Po||* < Co - ¢’
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NGSOLVE calculations

Elastoplastic domains (blue -elastic, green - first plastic, red - second plastic)

I I -
0, 00000000 0, 50000000 1.,00000000 1,50000000 2,00 0. 00000000 0. 50000000 1.00000000 1.50000000 2

ix Hetzen 4.2 w Hetgen 4.2

Kinematic hardening model. Two-yield hardening model.
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Future work

e Completion of NGSOLVE Two-yield plasticity package. (with F1301)
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e Completion of NGSOLVE Two-yield plasticity package. (with F1301)

e Generalization to isotropic hardening or combined kinematic-isotropic hardening.

A Symbolic Calculation Problem occuring in Elastoplasticity Jan Valdman Page 23



Future work

e Completion of NGSOLVE Two-yield plasticity package. (with F1301)
e Generalization to isotropic hardening or combined kinematic-isotropic hardening.

e Exact analytical formulas. (with F1302/F1303/F1304/F1305)
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Future work

e Completion of NGSOLVE Two-yield plasticity package. (with F1301)

e Generalization to isotropic hardening or combined kinematic-isotropic hardening.

e Exact analytical formulas. (with F1302/F1303/F1304/F1305)

e Nonlinear hardening models, big deformations. (with F1308)
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