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Abstract— A recently developed robust Algebraic Multi-
grid (AMG) method for the efficient solution of 3D nonlin-
ear electrostatic and magnetostatic field problems will be
presented. The method is directed to large matrix equa-
tions which arise from finite element (FE) discretization
where AMG is used as a preconditioner in the Precondi-
tioned Conjugate Gradient (PCG) method. Numerical re-
sults will demonstrate the applicability of the developed
AMG method.

Index Terms— Multigrid, finite element methods, electro-
statics, magnetostatics.

I. Introduction

Often the FE-formulation of electrostatic and magneto-
static field problems results in a large system of equations.
Therefore, the solution process is time consuming, espe-
cially for nonlinear or optimization problems, and there is
a need for fast solvers.
In contrast to geometric multigrid AMG needs no FE-
discretization with hierarchical grids. Still it preserves the
most advantages of geometric multigrid, i.e., AMG is an
iterative solver with optimal time and memory complex-
ity which is especially suited for sparse linear systems with
large condition number.

II. Physical Equations

The governing equation for the electrostatic field is given
by

−∇ · ε(E)∇φ = q . (1)

In (1) φ denotes the scalar electric potential, E the absolute
value of the electric field, q the volume charge and ε the
permittivity of the material.
The total magnetic field strength ~H can be defined by

~H = ~Hs + ~Hm , (2)

where ~Hs describes the magnetic field due to current
sources (calculated according to Biot-Savarts law) and ~Hm

the induced magnetism in ferromagnetic materials. Since
∇× ~Hm = 0 holds, (2) changes to

~H = ~Hs −∇ψ (3)
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by introducing the reduced scalar magnetic potential ψ.
Using Maxwell’s equations for the magnetostatic field re-
sults in [2]

∇ · µ(H)∇ψ = ∇ · µ ~Hs (4)

with µ(H) being the permeability of the material.

III. FE-Formulation

Applying the FE-formulation to (1) leads to the following
matrix equation

Kφ
hφh = Qh (5)

for the nodal vector φh of the scalar electric potential. The
terms of the electric stiffness matrix Kφ

h are computed by

Kφ
h =

∫
ΩV

BT εB dΩ ; B =
[
∂N

∂x

∂N

∂y

∂N

∂z

]T
(6)

and the entries of the nodal source vector Qh by

Qh =
∫

ΩV

NqdΩ (7)

with N being the interpolation function.
The FE-formulation of the magnetostatic field problem
yields the following matrix equation

Kψ
hψh = Rh (8)

with the magnetic stiffness matrix Kψ
h

Kψ
h =

∫
Ωφ

BTµB dΩ (9)

and the nodal source vector Rh

Rh = −
∫

Ωφ

N
(
∇ · (µ ~Hs)

)
dΩ +

∫
Γφ

N
(
~n · µ ~Hs

)
dΓ . (10)

IV. Algebraic Multigrid Method (AMG)

In order to outline the principles of solving a (sparse)
linear system

Khuh = fh (11)

with Kh = {kij}i,j=1,...,n ∈ Rn×n being symmetric positive
definite (SPD), uh ∈ Rn the solution vector and fh ∈ Rn
the right hand side, with the multigrid method we explain
this by means of a two grid method. Therefore h and H



describe the fine and coarse grids of a FE-discretization,
respectively. The linear mappings (with n > m)

IHh : Rn → R
m and IhH : Rm → R

n (12)

are called restriction and interpolation operators. There-
with, the two grid algorithm is performed as follows:

1. Relax ν1 times on the fine grid Khuh = fh
(e.g. Gauß-Seidel forward)
2. Calculate the defect dh = fh −Khuh
3. Project the defect dh onto the coarse grid, i.e.

dH = IHh dh

4. Solve the coarse grid problem

KHvH = dH

5. Project the coarse grid correction vH onto the fine grid,
i.e.

vh = IhHvH

6. Update uh by vh, i.e. uh = uh + vh
7. Relax ν2 times on the fine grid Khuh = fh
(e.g. Gauß-Seidel backward)

Replacing the exact solution of the coarse grid problem
in point 4 itself by a two grid approximation, we arrive at
the recursive definition of a multigrid cycle. It is important
to use Gauß-Seidel forward in the pre-smoothing step and
Gauß-Seidel backward in the post-smoothing step to obtain
a symmetric preconditioner, which can be used in the PCG-
method ([3]).
In the case of AMG, the coarse grid matrix KH has to be
set up by the only knowledge of the fine grid matrix Kh.
Therefore, we have to introduce ‘grids’ as sets of unknowns,
which are assumed to be nested, i.e.

ωh ⊃ ωH (13)

where ωh and ωH is the ‘grid’ on the fine and coarse level,
respectively; actually ωh = {1, . . . , n} and |ωh| = n, |ωH | =
m. In terms of two consecutive levels h, H we assume that
each coarse level variable uHk , k ∈ ωH is used to directly
correct a uniquely defined fine grid variable uhi(k), i(k) ∈ ωh.
Thus ωh can be split into two disjoint subsets: the first
contains the variables also presented on the coarser level
(C-variables) and the second is the complementary subset
(F-variables), i.e. ωh = C ∪ F , C ∩ F = ∅ and ωH = C.
In order to define such a splitting the following definition
is helpful

Definition 1: An error e ∈ Rn that is not rapidly re-
duced by relaxation is called algebraic smooth and is char-
acterized by

〈Khe, e〉 � 〈e, e〉 , (14)

that is, the residual of the error is small compared to the
error itself.
The essence of Definition 1 is that in general a smooth error
component varies generally slowly in the direction of strong
coupling. This result motivates the following definition:

Definition 2: The neighborhood of a point i and the
local sets of coarse and fine nodes are defined by

N i = {j | kij 6= 0, i 6= j} , (15)
Ci = {j |N i ∩ C} , (16)
F i = {j |N i ∩ F} . (17)

The distance between a fictitious point i and a set of ficti-
tious points I is defined as

d(i, I) :=

∑
j∈I
|kij |

maxl 6=i|kil|
(18)

The set of strongly coupled neighbours to i is defined as

Si := {j ∈ Ni : d(i, {j} ≥ α} , (19)

where in practice α takes the value of 0.25.
The set of points to which the point i has a strong coupling
is defined as

Si,T := {j ∈ Ni : i ∈ Sj} . (20)

By help of this definition, we can set up the following coars-
ening algorithm [1]:
Phase I: Split N into C and F
1. C = ∅, F = ∅
2. While C ∪ F 6= N do

pick i ∈ N\{C ∪ F} with
max. |Si,T |+ |Si,T ∩ F |

if |Si,T |+ |Si,T ∩ F | = 0 then
F := V \C

else
C := C ∪ {i}, F := F ∪ {Si,T \C}

endif
end
Phase II: Check for each F-variable that it has a strong

coupling with a C-variable or at least with a F-variable
which itself has a strong coupling to a C-variable.

According to (14) we obtain for a smooth error e ∈ Rn
the relation

kiiei +
∑
j∈Ni

kijej = 0 ∀i ∈ ωh . (21)

By using (21) we come up to the following interpolation
weights αij [1]

αij =


1 i = j ∈ C
−kij+cijkii+cii

i ∈ F, j ∈ C
0 else

(22)

and
cij =

∑
p∈F i

kipkpj∑
l∈Ci kpl + kpi

. (23)

Therewith, if eH ∈ Rm represents a coarse grid correction,
then the fine grid correction eh ∈ Rn is computed via the
interpolation operator by

(eh)i = (IhHeH)i =
∑
j∈C

αijej ∀i ∈ ωh . (24)



The restriction operator IHh is defined by

IHh = (IhH)T (25)

and the coarse grid operator KH ∈ Rm×m is calculated by
the Galerkin-transformation

KH = IHh KhI
h
H . (26)

By using an appropriate smoother (e.g. Gauß -Seidel) a
multigrid cycle can be set up.
Before we describe the solution strategy we give a definition
on spectrally equivalent matrices.

Definition 3: Two positive semidefinite matrices
A,B ∈ Rn×n are called spectrally equivalent if there exist
constants c1 > 0 and c2 > 0, c1 ≤ c2 such that

c1 · 〈Bu, u〉 ≤ 〈Au, u〉 ≤ c2 · 〈Bu, u〉 ∀u ∈ Rn . (27)

This is abbreviated by A ∼ B. Especially it follows that the
nullspace of A and B are equal.

For SPD M-matrices Kh (small positive off diagonal en-
tries are admissible), the above AMG technique is known as
a robust solver. But it inherently needs the M-matrix prop-
erty. Unfortunately the M-matrix property is frequently
lost by the FE-discretization (e.g. for long thin rectangles,
flat hexahedra, quadratic FE-functions, etc.). To overcome
this problem AMG is exclusively used as a preconditioner
for the PCG method. Therefore, a spectrally equivalent
M-matrix Bh to Kh is constructed and AMG applied to
Bh yields a good preconditioner to the original matrix Kh

for the PCG method ([4]). The basic idea of constructing
such an M-matrix is given in the following corollary ([4]).

Corollary 1: Let

Kh =
∑
r∈Rh

CTr K
(r)Cr ∈ Rn×n (28)

be SPD with Cr connectivity matrices, Rh the set of ele-
ments and K(r) the element matrix for element r ∈ Rh. If
additionally B(r) ∼ K(r) for all r ∈ Rh and B(r) has the
right sign condition then

Bh ∼ Kh (29)

with Bh =
∑
r∈Rh C

T
r B

(r)Cr M-matrix.
Thus the construction of a spectrally equivalent M-

matrix Bh with respect to the original matrix Kh can be
done on element basis. Therewith, the following PCG al-
gorithm is performed:
1. Set:

g0 = Khu
0
h − fh (30)

Bhd
0 = −g0 (one AMG cycle) (31)

h0 = −d0 (32)

2. Calculate for k ≥ 0

uk+1
h = ukh + αkdk (33)

αk =
(gk)Thk

(dk)TKhdk
(34)

gk+1 = gk + αkKhd
k (35)

Bhh
k+1 = gk+1 (one AMG cycle) (36)

βk =
(gk+1)Thk+1

(gk)Thk
(37)

dk+1 = −hk+1 + βkdk (38)

In the case of nonlinear problems a series of linearized prob-
lems

Kh(uh,i)uh,i+1 = fh (39)

has to be solved; it can be expected that for the considered
problems all Kh(uh,i) are spectrally equivalent with con-
stants close to one. That means, the setup of AMG has to
be done only once (e.g. for Bh which is spectrally equiv-
alent to Kh(uh,1)). The resulting preconditioner is then
applied in the PCG method for all nonlinear steps. Addi-
tionally we use in the ith nonlinear iteration u0

h,i = uh,i−1

as an initial guess for the PCG method.

V. Numerical Results

A. Electrostatic

To study the computational complexity of the developed
AMG solver, the numerical calculation of the electric field
of a parallel plate capacitor filled with an ferroelectric ma-
terial (PZT 5A) in the linear and nonlinear case is studied.
The electrodes of the capacitor with a radius of 20 mm have
a distance of 1 mm. The FE-discretization has been per-
formed by brick elements (Fig. 1). Table I presents the

Fig. 1. FE-discretization of the capacitor

TABLE I

Elapsed time of AMG solver for setup and solution phase

number of setup phase solution phase
unknowns (seconds) (seconds)

1765 2.8 0.3
6728 13.5 1.2

23535 98.6 5.8
70700 380.4 35.5

elapsed time of the AMG solver split into setup phase and
solution phase as a function of unknowns, whereas Table



II shows the comparison of the total solution time of the
AMG solver and a direct solver using a banded LU factor-
ization. The extremely long simulation time for the direct
solver in the case of 70700 unknowns is due to the large
bandwidth of the system matrix which can be reduced just
by a small amount by the profile optimization algorithm. In

TABLE II

Elapsed time of AMG solver compared to a direct solver in

the linear case

number of AMG solver direct solver
unknowns (seconds) (seconds)

1765 3.1 2.7
6728 14.8 63.2

23535 104.4 736.2
70700 415.9 22410.0

the nonlinear case a standard fixed point iteration scheme
has been used, which took a total number of 12 nonlinear
iterations. As described in the previous section, in the case
of the AMG solver, the setup phase has been performed
just once and the obtained preconditioner has been kept
constant throughout all of the 12 iterations (Table III).

TABLE III

Elapsed time of AMG solver compared to a direct solver in

the nonlinear case

number of AMG solver direct solver
unknowns (seconds) (seconds)

1765 9.7 27.4
6728 40.3 692.0

23535 224.4 10613.0

B. Magnetostatic

In the magnetostatic case a magnetic circuit with an air-
gap, driven by a permanent magnet, has been considered
(Fig. 2). The performance of the AMG solver is shown

Fig. 2. FE-discretization of the magnetic circuit

in Table IV (solution time split into setup and solution
phase).

TABLE IV
Elapsed time of AMG solver for setup and solution phase

number of setup phase solution phase
unknowns (seconds) (seconds)

2646 1.35 0.36
9216 7.5 2.7

18942 19.3 7.8
68544 100.2 40.5

The comparison of the total elapsed CPU-time between
the AMG solver and a direct solver with banded LU fac-
torization is given in Table V.

TABLE V
Elapsed time of AMG solver compared to a direct solver in the linear case

number of AMG solver direct solver
unknowns (seconds) (seconds)

2646 2.1 1.1
9216 10.2 7.6

18942 27.1 33.5
68544 140.7 2224.4

In the nonlinear case the fixed point iteration scheme took
a total number of 19 iterations. In Table VI the comparison
of AMG solver and a direct solver in the nonlinear case is
given.

TABLE VI
Elapsed time of AMG solver compared to a direct solver in the nonlinear case

number of AMG solver direct solver
unknowns (seconds) (seconds)

2646 12.2 26.7
9216 52.5 181.4

18942 245.9 863.6

VI. Conclusion

In this paper we have introduced a robust AMG method
which is used as a preconditioner in the PCG method for
the efficient solution of 3D nonlinear electrostatic and mag-
netostatic field problems. Especially in the nonlinear case,
where the preconditioner is set up just in the first fixed
point iteration and then held constant, the CPU time can
be reduced tremendously compared to conventional direct
solvers.
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