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M. Schinnerl, J. Schöberl, and M. Kaltenbacher

Abstract— This paper deals with the numerical solution
of static as well as transient 3D magnetic field problems.
Thereby, a finite element method (FEM) with the magnetic
vector potential as field variable and a discretisation with
edge elements is used. For the efficient solution of the obtai-
ned matrix equation system a nested geometrical multigrid
solver (MG) is presented, which reduces the solution time
considerably. Numerical simulations demonstrate the supe-
riority of the proposed method versus conventional solving
strategies.

Index Terms— Multigrid, finite element methods, edge
elements, magnetostatics.

I. Introduction

In the last years edge elements have been widely used for
solving 3D magnetostatic as well as eddy current problems
[1], [2]. The main severity to simulate 3D magnetic fields
with edge elements is the large computational effort for the
arising matrix equation system especially in the transient
and nonlinear case. It is state of the art to use iterative me-
thods like the conjugate gradient method with incomplete
Cholesky factorization as preconditioner (ICCG). However,
the number of necessary iterations strongly grows with the
number of unknowns [3].
In this paper a nested multigrid solver is presented which
is considerably faster than the conventional solution stra-
tegies. This is attained by constructing a hierarchy of fini-
te edge-element spaces and by choosing appropriate smoo-
thing procedures for each of these spaces.

II. 3D Finite Element Analysis with Edge

Elements

Introducing the magnetic vector potential ~A by

~B = ∇× ~A, (1)

the Maxwell equations in the static case can be formulated
as

∇× (
1
µ
∇× ~A) = ~J0 in Ω (2)

with boundary conditions

(ν∇× ~A)× ~n = 0 on ΓH (3)

~n× ~A = ~0 on ΓB , (4)
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where µ denotes the permeability, ~J0 the current density,
Ω the domain, ΓH the boundary where ~H × ~n is specified
and ΓB the boundary where ~B · ~n is specified.
By using edge elements for the interpolation of the vector
potential, it is approximated as

~A ≈
Ne∑
k=1

ak ~Nk , (5)

where Ne is the number of edges in the finite element mesh,
~Nk the edge shape function associated with the k-th edge,
and ak the corresponding degree of freedom, namely the
line integral of the magnetic vector potential along the k-
th edge. The application of Galerkin techniques to (2) - (4)
results in the following system of algebraic equations

ak

∫
Ω

(
1
µ
∇× ~Nk) · (∇× ~Ni)dΩ

=
∫

Ω

~J0 · ~NidΩ +
∫

Γh

~K · ~NidΓ (6)

i = 1, 2, ..., Ne.

In matrix form (7) can be rewritten as

P{a} = {F}, (7)

where P denotes the permeability matrix, {F} the right
hand side and {a} the vector of the unknowns at the edges.
The matrix P is only positive semi-definite and the zero
eigenvalues correspond to the curl free gradient functions
spanned by the edge shape functions [4].

III. Multigrid Solution Scheme

In contrast to standard FE techniques the multigrid me-
thod is not based on a fixed FE mesh, which describes the
unknown field variable accurate enough. By using multi-
grid techniques, first a very coarse discretisation T1 of the
field problem is chosen. Then the elements of T1 are dissec-
ted and thereby a finer discretisation T2 is generated. The
dissection of one tetrahedron element of T1 into 8 tetra-
hedron elements of T2 is shown in Fig. 1. This refinement

Fig. 1. Refinement of a tetrahedron element

process can include either all elements (uniform refinement)



or only a part of the elements (adaptive refinement). The
dissection of the mesh is repeated, until a discretisation Tl
is obtained, which is able to describe the magnetic field
accurate enough. By repeating the refinement, a hierarchy
of FE discretisations T1, ..., Tl is generated, and for each of
the FE meshes Tq, q = 1, 2, ..., l the equation system (7),
which is abbreviated as

Pqaq = fq (8)

can be assembled. The aim of the multigrid technique is the
solution of (8) at the finest level l in a very fast way. Ad-
ditionally, an interpolation operator Iq+1

q is defined, which
transfers an arbitrary FE edge function ξq at level q in-
to an equivalent edge function ξq+1 at level q + 1, i.e. the
condition

ξq+1 = Iq+1
q ξq (9)

holds. Vice versa the restriction of the edge function ξq+1

to the coarser grid q is given by

ξq = Iqq+1ξq+1, (10)

whereby Iqq+1 denotes the restriction operator. At each le-
vel q smoothing operators Gq are defined, which must be
adapted to the magnetic problem. Using the components
Iq+1
q , Iqq+1 and Gq the classical two-grid algorithm, as the

simplest exponent of the multigrid methods, can be defined.

A. Classical two-grid algorithm

aq,j,s denotes the approximation of the solution a at the
level q, the current multigrid iteration j and the status of
the current iteration s. In the two-grid method the multi-
grid hierarchy only consists of one coarse grid q − 1 and
one finer grid q. The aim of this method is the solution of
(8) at level q.

Given: Approximation aq,j after j two-grid iterations
1. ν1 smoothing operations at the finest level q

aq,j,1 = (Gq)ν1aq,j (11)

2. Calculation of the defect

dq = fq −Pqxq,j,1 (12)

and restriction of the defect to the coarse grid

dq−1 = Iq−1
q dq. (13)

3. Solution of the coarse grid system

Pq−1wq−1 = dq−1. (14)

4. Prolongation of wq−1 to the finer grid

wq = Iqq−1wq−1 (15)

and correction of the smoothed approximation aq,j,1

aq,j,2 = aq,j,1 + wq. (16)

5. ν2 smoothing operations at the level q

aq,j,3 = (Gq)ν2aq,j,2 (17)

MG iteration stop: aq,j+1 = aq,j,3

The presented two-grid algorithm leads to very good ap-
proximations of a after a small number of iterations. The-
reby, at each two-grid iteration only ν1 + ν2 smoothing
operations and a direct solution at the level q − 1 must be
performed. Nevertheless, in many cases the solution pro-
cess of (14) at the coarser grid q − 1 consumes too much
time and memory. In order to avoid this difficulty the two-
grid algorithm is recursively restarted for (14). Repeating
this process for all available grids a MG V-cycle is gene-
rated which is displayed in Fig. 2. Thereby, at each le-

Fig. 2. MG solution algorithm (V-Cycle)

vel only smoothing operations are necessary, and at the
coarsest grid q = 1 a linear equation system of the form
P1w1 = d1 must be solved with a conventional direct or
iterative solver. Since at this grid the number of unknowns
is generally low, this solution process is not very time and
memory consuming. Additionally, it can be shown, that
MG methods have “optimal complexity”, that means, that
the number of necessary calculation operations and the me-
mory consumption increase only linear with the number of
unknowns at the finest level l [5]. Thereby, the performance
of the MG algorithm depends on the appropriate choice of
the grid transfer operators and the smoothing techniques,
which must be adapted to the FE discretisation with edge
tetrahedron elements [4].

B. Choosing the grid transfer operators

Fig. 3. Prolongation of the edge degrees of freedom from level q − 1
to level q

In order to determine the grid transfer operators between
the levels q − 1 and q, the refinement of a face F q−1 of an



edge tetrahedron element on the level q−1 is analyzed. By
dissecting the tetrahedron at the level q − 1 into 8 tetra-
hedrons at the level q, the area of F q−1 is replaced by 4
new faces F q1 , .., F

q
4 (Fig. 3). A suitable prolongation Iqq−1

must guarantee that the magnetic flux Φ across F q−1 and
F q1 + ..+ F q4 must be equal, i.e. the condition∫

F q−1

(∇× ~A) · d~F =
4∑
k=1

∫
F q
k

(∇× ~A) · d~F (18)

must hold. Using Stoke’s law, (18) can be rewritten as the
integral over the edges∮

∂F q−1

~A · d~s =
4∑
k=1

∮
∂F q

k

~A · d~s, (19)

or, by exploiting the degrees of freedom of the FE formu-
lation (Fig. 3), as

aq−1,1 + aq−1,2 + aq−1,3 = aq,1 − aq,7 + aq,6 + aq,2

+aq,3 − aq,8 + aq,4 + aq,5 − aq,9 + aq,7 + aq,8 + aq,9. (20)

The transfer operator

Iqq−1 =

 .5 .5 0 0 0 0 −.25 −.25 .25
0 0 .5 .5 0 0 .25 −.25 −.25
0 0 0 0 .5 .5 −.25 .25 −.25

T

fulfills the requirements of the flux conservation, which can
be proofed by inserting Iqq−1 into (20). The restriction ope-
rator Iqq+1 is chosen to be the transposed to Iq+1

q , i.e.

Iqq+1 = (Iq+1
q )T . (21)

C. Smoothing operators

The permeability matrix P is only positive semi-definite
and therefore, a positive definite matrix M is added in
order to achieve regularity of the resulting matrix

P̃ = P + εM. (22)

Thereby, ε must be chosen very small to prevent calculation
errors. This small ε deteriorates the convergence behavior
of standard Gauss-Seidel smoothers [6]. In order to achieve
an improved smoother, which is independent from the size
of ε, the mathematical properties of the edge element dis-
cretization must be analyzed in more detail. It is possible
to split the edge element space Vedge into two parts, i.e.

Vedge = Vedge,0 + Vedge,1. (23)

Vedge,0 denotes the space of the gradients of the nodal shape
functions spanned in the same mesh as the edge elements,
and Vedge,1 the orthogonal complement to Vedge,0 [4]. By
considering all edges which share a common node, an over-
lapping block Gauss-Seidel smoother can be constructed,
which is able to damp out errors also in the space Vedge,0

[7]. To specify the method we define for each of the NV
vertices Vk the connectivity matrix

Rk =

 1 . . . 0 0 0 . . .
0 . . . 0 1 0 . . .
. . . . . .

 .

It has number of edges on vertex Vk rows and Ne columns.
Using this matrix, we can pick out the quadratic sub-blocks
Pk of the matrix P by

Pk = RT
k P̃Rk. (24)

Each of these small matrices have to be inverted in the
preparation phase of the multigrid method. One step of
the block Gauss-Seidel iteration with initial approximation
a1 = a is defined as

ak+1 = ak + RT
kP−1

k Rk(f − P̃ak), k = 1, . . . Vk. (25)

We mention, that not the whole residual f − P̃ak has to be
computed at each step, but only the few components picked
out by Rk. Therefore, one block Gauss-Seidel step is not
much more expensive then a simple Gauss-Seidel step.

D. Nested Multigrid

Using MG techniques the domain is discretised with a
number of FE meshes T1, ..., Tl. Since the number of un-
knowns at the coarsest level T1 is generally small, a soluti-
on of (8) requires less numerical effort. The solution a1 at
this coarse level can now be prolongated by

aapp2 = I2
1a1 (26)

to the next finer grid, where aapp2 is used as start appro-
ximation for the solution at T2, and therefore the number
of necessary MG iterations at this level is decreased. By
repeating this process for all meshes T1, ..., Tl the number
of necessary iterations at the finest grid can be reduced
considerably.

IV. Numerical Results

To show the applicability of the proposed scheme the
TEAM problem #20 was computed [8]. In Fig. 4 a coar-
se grid mesh of this 3D, nonlinear and static problem is
shown. In order to show the advantages of the MG techni-
que to large scaled problems, a uniform refinement of the
coarse grids is chosen, i.e. each edge tetrahedron-element
on a level q − 1 is divided into 8 elements on the level
q. Thereby, 4 hierarchical meshes are generated, where the
coarsest one has 2190 unknowns and the finest one 1070000
unknowns. The problem was solved with the presented ne-
sted MG technique, whereby, in a first step, a constant rela-
tive permeability µr of the iron parts was chosen. In order
to show the robustness of the proposed method to para-
meter jumps, the computation was repeated for different
values of µr. Table I compares the number of iterations for
the different meshes and permeabilities of the iron parts.
As it was to be expected, the used nested multigrid algo-



Fig. 4. Coarse FE discretisation of TEAM problem #20

TABLE I

Necessary MG iterations (V(1,1) cycle) to reach a residuum

of 10−6

Number iterations (nested)
of edges µ = 1 µ = 103 µ = 104

30500 9 10 10
236000 10 11 10

1900000 10 11 11

rithm is robust against parameter variations. Furthermore
the number of necessary multigrid iterations only slightly
increases with the number of unknowns.
To show the advantages of the proposed method, the
magnetic field, using the same discretisations, has be-
en computed applying a CG solver with adapted block-
preconditioning but without MG strategies (PCCG). The
normalized residual versus the number of iterations for the
PCCG method and for the nested MG method on the fi-
nest mesh is shown in Fig. 5. For MG a very good conver-

Fig. 5. Number of iterations versus normalized residual (1900000
dofs)

gence for the whole considered residual domain is received,
whereas the PCCG method shows a much slower and not
monoton reduction of the residuum. Table II compares the

solution times for solving the matrix equation system using
nested MG and PCCG on a SGI Origin 300 MHz. As ex-
pected nested MG is especially for large scaled problems
considerably faster than conventional approaches.
In order to verify the calculation scheme, the TEAM pro-

TABLE II

Comparison of solution times

number of nested MG precond. CG
edges (seconds) (seconds)
30500 7 19

236000 95 362
1900000 870 9860

blem #20 was calculated with the nonlinear permeablity
given in [8]. In Table III the computed magnetic force fmag
to the pole was compared to measurement. Thereby, for all

TABLE III

Magnetic force fz acting at the center pole

Θ(A) Fz (N)
simulation measurement [8]

1000 7.83 8.1
3000 53.7 54.4
4500 73.2 75.0
5000 77.5 80.1

excitations Θ of the coil, a good agreement between mea-
surement and simulation is achieved.

V. Conclusion

In this paper we have presented a technique for the cal-
culation of 3D magnetic field problems, based on a hier-
archy of FE discretisations. Thereby, the different com-
ponents, like smoothing operations, prolongations and ne-
sted techniques, are explained and analyzed. By computing
the TEAM problem #20, the advantages of the presented
scheme are demonstrated.
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