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Abstract
The trend to weight-optimization of complex structures and machines leads to problems like resonance,
noise or damage which are not predictable by analyzing the behavior of the single bodies only. In the
present paper we combine existing techniques from multibody systems and from numerical analysis in
order to contribute to the field of 3D deformable multibody dynamics. Two different approaches are used.
The first method approximates the single bodies using a standard finite element modeling including only
small deformations. The deformation is split into a rigid (rotation) and a flexible part. Constraints are
introduced by integrals of the deformation of constrained surfaces. The resulting system of equations is
transformed such that only a small system of equations compared to the elastic degrees of freedom has
to be solved in every timestep. The formulation is capable to treat small nonlinear effects like geometric
stiffening by introducing additional rotational degrees of freedom for every single body. The second
method uses a Lagrangian description of the deformation including large deformation, displacements
and rotations. The motion of the single bodies is constrained by contact, using a soft-contact model. The
two methods are compared by means of a numerical simulation of a slider-crank mechanism. Numerical
results are discussed with respect to efficiency and accuracy.



J. Gerstmayr, J. Schöberl

1 Introduction

The increasing computational power of nowadays computer enables to model a multibody system as
3D deformable body using a standard finite element discretization. The simulation of motion for a rea-
sonable amount of simulated time can be performed within several hours of computational time. The
main advantage of the finite element modeling is the possibility for the inclusion of effects like contact,
geometric stiffening and nonlinear material behavior. However in practice, multibody systems are still
mostly computed using simplifications to 1D or 2D bodies. In commercial software, the single bodies
are either approximated as rigid bodies or with a few eigenmodes or elastic degrees of freedom.
For the appropriate modeling of 3D multibody system (MBS), some of the existing MBS-techniques are
regarded. The motion of rigid body and deformable MBSs can be computed efficiently by a set of mini-
mal coordinates, see e.g. Bremer and Pfeiffer [1]. Clearly, the deformation of the single bodies can not be
computed accurately by means of an uncoupled computation of the rigid body MBS and a deformation
analysis of the single bodies using the computed inertial forces of the MBS, see e.g. Gerstmayr [4]. For
the computation of more complex flexible multibody systems a formulation with constraint conditions
seems to be appropriate. The constraint formulation leads to simpler equations and is open to various
kinds of nonlinearities and inequalities, however, the resulting discretized system of equations forms a
set of differential algebraic equations (DAEs), see e.g. Eich-Soellner and Führer [2]. The application of
numerical time-integration schemes generally leads to a reduction of the order of convergence (compared
to ordinary differential equations) or even instability and therefore only special implicit Runge-Kutta or
BDF formulas amoung other integration schemes are appropriate. The heaviness of the algebraic con-
straint condition in DAEs is generally described by the index of the system. Stabilization techniques,
like the Gear-Gupta-Leimkuhler (GGL) stabilization method, reduce the index of the system, but lead to
additional difficulties, like numerical drift or additional computational effort, see e.g. Simeon [11].
For the modeling of the deformation of a multibody system, different approaches exist. The floating
frame of reference method uses a reference frame for the description of the deformation of the body
while inertial forces lead to the nonlinear coupling, for details see Shabana [10]. The finite segment
method splits the single bodies into small segments connected with springs and dampers. It therefore can
be interpreted as a nonlinear finite element formulation using piecewise constant shape functions. Simo
and Vu Quoc [12] introduced the large rotation vector formulation to efficiently describe the motion and
large deformation of beam, plate and shell structures. The absolute nodal formulation uses finite elements
and constraints without a reference frame. While it naturally leads to problems in the higher frequencies
and even to instabilities, see also Shabana [10], stabilization techniques exist which add an artificial nu-
merical damping, like the HHT method, see e.g. Hairer et al. [6, 7]. Alternatively, Gonzalez and Simo [5]
derived stable energy-momentum methods for Hamiltonian systems and it has been extended to contact
and impact problems by Demkowicz and Bajer [3].
The finite element method has been used for the modelling of multibody dynamics problems with con-
tact, see e.g. Orden and Goicolea [8] with a numerical example of an impact of a double pendulum or
see Simeon [11] for the numerical example of a two-dimensional slider-crank mechanism.
The possibility of constructing general geometries (e.g. a crankshaft) cheaply and in large numbers in-
creases the demand for 3D finite element multibody methods. Standard approaches for 3D multibody
systems which use the component mode synthesis in order to reduce the number of degrees of freedom
show a lack in the modelling of contact or material nonlinearities. In the present paper, we first use a
3D finite element approach, where we assume large displacements but small deformations of the single
bodies for simplicity and efficiency. The underlying rigid body motion is described by an overall dis-
placement and rotation vector which is calculated by the linear regression of the displacement of the

2



WCCM V, July 7–12, 2002, Vienna, Austria

single bodies. The formulation is a combination of the above mentioned floating frame of reference for-
mulation and the absolute nodal formulation. The subsequently defined rotation matrix is similar to a
constant approximation of the large rotation vector. A set of linear constraints is introduced for arbitrary
parts of the surfaces of the bodies. Constraints are described in integral terms, where the displacement
of one surface (for ground joints) or the distance of two surfaces (for body joints) is weighted and inte-
grated over the whole surfaces. Revolute, translational or sherical joints may be easily introduced in this
manner. At every stage of the time-integration method, the solution is projected into the constraint-space.
An efficient solution strategy is used which takes advantage of the small number of constraint equations
but large deformable degrees of freedom. At the current state, the formulation only regards small defor-
mations and linear material, however, it is open to nonlinear effects like stiffening effects of thin bodies
or nonlinear material effects in the range of small strains. The results of this method are compared to a
special implementation of the 3D finite element method including large deformations and a soft-contact
model. The material (Lagrangian) description method is used, for details see e.g. Zienkiewicz [14]. For
details on methods in contact problems see Wriggers [13]. The formulation of the penalty-like contact
model leads to a nonlinear system of equations in every timestep which is solved by the Newton method.
No additional loop is necessary in order to fulfill the contact conditions. An alternative, efficient contact
solver based on domain decomposition techniques was presented in Schöberl [9]. As a numerical exam-
ple, the motion of a 3 dimensional slider-crank mechanism is studied.
All computations have been implemented and tested within the 3D finite element package NGSolve,
the meshes have been generated by the mesh generator Netgen. This software is available for free for
non-commercial purposes, see the WWW-linkwww.sfb013.uni-linz.ac.at/∼joachim/netgen.

1.1 3D finite element constraint formulation

In this section, we describe a finite element formulation which incorporates large rotations, but only
small deformations. Its advantage is that the stiffness matrix is assembled once and for all. It requires
just one factorization during the initialization phase.

The equations of motion are derived from Hamilton’s principle, which states that the variation of the
LagrangianL = T − V vanishes, that isδ

∫ t2
t1 Ldt = 0. The kinetic energy is expressed byT =

1/2
∫

ρ|u̇|2 dx andV describes the potential energy of the mechanical system. Integration by parts in
time leads to the equation

ρü = −∇uV (u).

The derivative∇uV (u) is understood in week sense, which is defined as action on a test functionv,
namely〈∇uV (u), v〉 := limt→0[V (u + tv) − V (u)]. For hyperelastic materials, the potential energy is
given as

V (u) =
∫

Ω
W (C(u)) dx−

∫
Ω

f · u dx,

whereW (.) is the hyperelastic energy functional, andC(u) = (I + ∇u)T (I + ∇u) is the Cauchy
Green strain tensor. The body-forcef is defined over the reference domainΩ. For a linear material, the
hyperelastic energy functional is the quadratic formW (C) = µ |C − I|2 + λ/2 {trace(C − I)}2 with
the Laḿe coefficientsµ andλ.

A geometrically linear formulation neglects second order terms in∇u, i.e. C ≈ I + ∇u + (∇u)T .
This simplification cannot describe large rotations, sinceC̃ 6= I for rigid body displacementsu. We
decompose

u = u0 + ũ,
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whereu0 represents large rigid body displacements andũ is thesmalldeformation. We approximateC
by neglecting second order terms inũ:

C ≈ C̃ := (I +∇u0)T (I +∇u0) +∇uT
0 ∇ũ +∇ũT∇u0.

The decomposition ofu is a priori not unique. Even the number of unknowns for the large deformation
part can be modified. One possibility is to chooseu0 in a finite element space on a much coarser mesh. A
minimal requirement is that rigid body deformations go intou0. To define the method we have to come
up with an explicit mappingu → u0. We suggest the following procedure. First, compute theL2-best-
approximation ofu by an affine-linear function in each body. Then, fix three points to define a translation
ut and a rotation matrixR. The rigid body part isu0(x) = ut + Rx− x.

The kinematic constraints are introduced by Lagrange parameters. The set of constraints forms a small
number of equations which is independent of the underlying mesh. Possible constraints are prescribed
mean-values of the deformation on a part of the surface, mean-values of the rotation, and the coupling of
mean-values of two different bodies. Gerneralized, we take

B(u) = 0

to be a finite number of constraint conditions. First, we approximate the constraints by a penalty term
and define the new potential energy by

Vtotal(u) = V (u) + 1/(2ε)‖B(u)‖2.

It’s derivative is
∇uV (u) + 1/(ε)B(u)T∇uB(u),

and the equations of motion for the multi-body system follow to

ρü +∇uV (u) + 1/εB(u)T∇uB(u) = 0.

Introducing the new variableλ := 1/εB(u) leads to the mixed system

ρü +∇uV (u) + B′(u)T λ = 0,

B(u) − ελ = 0.

Now, we can pass to the limitε = 0. Finally, we recover the variableλ as constraint force.

The finite element discretization leads to ordinary differential equations. Explorating the special structure
of the energyV (u) results in

Mü + R(u)T AR(u)u + B′(u)T λ = f

B(u) = 0.

Due to the small number of constraints, the functionB(u) is rewritten asB(u) = B1(B2u), whereB2

is a block-diagonal matrix with respect tox, y, andz components. Thus,B2 commutes with the rotation
matrix R. The mass matrix commutes withR as well. Standard time-stepping methods lead to linear
equations of the form

(M + τ2A)Ra + BT
2 RB′

1(u)T λ = Rf + d,

B′
1R

T B2Ra = e,

4



WCCM V, July 7–12, 2002, Vienna, Austria

wherea is the acceleration andd ande are terms which only depend on known quantities of the last
time-step and are given by the specific time-stepping method.

These systems can be solved efficiently: EliminatingRa from the first line leads to the Schur-complement
equation

B′
1R

T B2(M + τ2A)−1BT
2 RB′T

1 λ = B′
1R

T B2(M + τ2A)−1(Rf + d)− c.

For a finite number of different time stepsτ , the matricesB2(M + τ2A)−1BT
2 can be computed in

advance. Thus, the most expensive part of the computation is moved out of the time integration loop. It
remains to multiply twice with the matrix(M + τ2A)−1, which is also factorized in advance.

1.2 3D finite element contact formulation

An alternative approach to multibody systems is based on the fully nonlinear strain tensor and body-
body contact conditions. The contact is described by a penalty formulation. The termVc measuring
the penetration is added to the potential energyV (u). In the initial step one computes the function
d : Ω → R+ on each body, which is an approximative measure of the distance to the boundary. Outside
we setd = 0. Then, the penalty term is defined as

Vc(u) :=
∫

∂Ω
γd̂(x + u(x))2 ds,

whereγ is a proper penalty parameter, which is chosen proportional to stiffness divided by mesh-size.
The integral is taken over the reference domain, whiled̂(.) must be evaluated on the deformed domain
and is defined as

d̂(x̂) := max{d(x) : x + u(x) = x̂}.

Here, geometric search trees must be used to keep the computational complexity inside a reasonable
range.

1.3 Numerical example: 3D slider-crank mechanism

The aim of the numerical example is to experience the differences of the two methods. As a numerical
example, a 3D slider-crank mechanism is treated, for a sketch of the geometry, see Fig. 1. Only to have
an idea of the dimensions of the mechanism we specify the displacement of the slider which is in a range
of 40mm. The driving element is accelerated for the first 0.1 seconds, one cycle of the mechanism lasts
about 0.8 seconds. While the radius of the shaft is 5mm, we introduce a quite large bearing clearance
of 0.1mm in the contact model, only to point up the differences of the two models. While the overall
behavior measured by the large displacements of the bodies or the cycle time of the system are almost
the same for both models, the deformation shows larger differences. As an example, we compare the
deflection of the crankshaft defined by the distance of the midpoints of the two outmost cylinders to
the midpoint of the eccentric shaft for both methods. In the case of the proposed constraint formulation
(subsequently called method 1), we take the 2-stage RadauIIA method which is stable and accurate also
for larger timesteps (≈0.05 seconds). Fig. 2 depicts the deflection of the crankshaft using method 1. The
deflection mainly results due to inertial forces forces of the slider and the connecting rod. The harmonic
oscillations reflect the idealized modelling due to constraints, the peaks at 0.1 seconds results due to the
abrupt turn-off of the load. In case of the contact formulation (subsequently called method 2) we apply
the Newmark-scheme, which leads to small timestep-sizes (10−4 - 10−3) but smaller computational
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Figure 1: Geometry of the slider-crank mechanism.
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Figure 2: Deformation of the crankshaft with constraint formulation.
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Figure 3: Deformation of the crankshaft with contact formulation.
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Figure 4: 3D view of the mechanism, contour-plot of stress componentσzz.

Figure 5: 3D view of the mechanism, contour-plot of stress componentσzz.

effort in the single timesteps which have to be kept small anyway in order to resolve the impacts of
the contacts. Fig. 3 shows the output for the deflection of the crankshaft using method 2. Compared
to Fig. 2, a larger deflection results due to impacts in the bearings. The study of the reduction of the
bearing clearance and a convergence to the constraint formulation is currently under investigation. Fig. 4
and Fig. 5 show detailed plots of the Cauchy stress componentsσzz at two different instances in time
for method 1 using second order elements (#elements=3151, #nodes=6021). As expected, method 1 is
computationally more efficient because only a small system of equations is solved in every timestep,
while in method 2 the Newton method is applied for the whole system in every timestep. While method
1 needs several minutes for the computation of one rotation of the crankshaft, method 2 took about 10
hours on a SGI 500 MHz R14000 processor for a rather coarse approximation of the geometry.
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