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Abstract. We discuss a solution algorithm for quasi-static elastoplastic problems with hard-
ening. Such problems can be described by a time dependent variational inequality, where the dis-
placement and the plastic strain fields serve as primal variables. After discretization in time, one
variational inequality of the second kind is obtained per time step and can be reformulated as each
one minimization problem with a convex energy functional which depends smoothly on the displace-
ment and non-smoothly on the plastic strain. There exists an explicit formula how to minimize the
energy functional with respect to the plastic strain for a given displacement. By substitution, the
energy functional can be written as a functional depending only on the displacement. The theorem
of Moreau from convex analysis states that the energy functional is differentiable with an explicitly
computable first derivative. The second derivative of the energy functional does not exist, hence
the plastic strain minimizer is not differentiable on the elastoplastic interface, which separates the
continuum in elastically and plastically deformed parts. A Newton-like method exploiting slanting
functions of the energy functional’s first derivative instead of the nonexistent second derivative is
applied. Such method is called a slant Newton method for short. The local super-linear convergence
of the slant Newton method in the discrete case is shown and sufficient regularity assumptions are
formulated, which would guarantee the local super-linear convergence also in the continuous case.
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1. Introduction. We consider a quasi-static initial-boundary value problem for
small strain elastoplasticity with hardening. Throughout the paper, only the linear
isotropic hardening law is considered, however an extension to other kinds of linear
hardening is straightforward. Several interesting computation techniques for solving
the elastoplastic problem with various kinds of hardening can be found in [24, 4, 6,
27, 2, 23, 22]. For the efficient solution of problems without hardening we refer to
[31, 32]. By adding the equilibrium of forces and the plastic flow law and subsequent
integration over the body domain, we obtain a time dependent variational inequality.
Existence and uniqueness results concerning the solution of such inequality have been
proved with respect to different models of hardening in [19, 18, 20, 21, 5, 15, 16].
Therefore, results concerning general variation inequalities [8] have been used.

The traditional numerical methods for solving the time dependent variational in-
equality are based on the explicit Euler time-discretization with respect to the loading
history. In this case the idea of implicit return mapping discretization [27] turned out
fruitful for calculations. By an implicit Euler time-discretization, on the other hand,
the time dependent inequality is approximated by a sequence of time independent
variational inequalities of the second kind for the unknown displacement u and plas-
tic strain p. Each of these inequalities is equivalent [11] to a minimization problem
with a convex but non-smooth energy functional, J̄(u, p) → min. It has been already
shown in [6] that a method of alternating minimization convergences globally and lin-
early. The minimization with respect to the plastic strain can be calculated locally by
using an explicitly known dependence [2] of the plastic strain on the total strain, i.e.,
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p = p̃(ε(u)). Thus, the equivalent energy minimization problem for the displacement
u only,

J(u) := J̄(u, p̃(ε(u)) → min ,

can be defined. Since the dependencies of the energy functional on the second argu-
ment, and of the minimizer p̃ on the total strain ε(u) are not smooth, the Fréchet
derivative D J(u) seems not to exist. However, a multiplicative additive Schwarz
method [6] and a (damped) quasi Newton scheme [2] are shown to converge globally
and linearly. The super-linear convergence is discussed but not proved in the latter
article.

The main theoretical contribution of this paper is the extension of the analysis
done in [6, 2]. We show that the structure of the energy functional J(u) satisfies
the assumptions of Moreau’s theorem from convex analysis and therefore, the energy
functional J(u) is Fréchet differentiable (Corollary 3.6 on page 6) with the explicitly
computable Fréchet derivative D J(u). However, the second derivative of the energy
functional, D 2J(u), does not exist because of the non-differentiability of the plas-
tic strain minimizer p̃ on the elastoplastic interface, which separates the deformed
continuum in elastically and plastically deformed parts.

By the concept of slant differentiability, introduced by X. Chen, Z. Nashed and
L. Qi in [7], we define a Newton-like method using slanting functions instead of the
usual derivative. We call such method a slant Newton method for short. One of
the main results in [7] is, that a slant Newton method converges locally super-linear
under the same assumptions as the classical Newton method. The main task is to
find slanting functions for the mapping max{0, ·}, which occurs within the formula of
the plastic minimizer p̃ and causes its non-differentiability. Such slanting functions
are easy to find in the spacial discrete case, e. g. after the FEM discretization. The-
orem 4.14 on page 16 provides an explanation to an open question formulated in [2,
Remark 7.5] concerning the super-linear convergence.

The spatially continuous case is more complicated and requires some extra regu-
larity assumptions for the trial stress in each slant Newton step. To the best knowledge
of the authors, there are no theoretical results yet known, which would guarantee the
required regularity properties. Already existing regularity results, e. g. such as in
[10, 3], concern the regularity of the stress and displacement fields which solve the
elastoplastic one-time-step problem, but not of the trial stresses during a slant New-
ton iteration. Let us mention that iteration techniques were successfully used to prove
regularity results for some smoothed initial boundary value problems of the plastic
flow theory in [25] (see also [24]). Thus, our work may serve as a starting point for
more regularity analysis concerning elastoplastic problems.

A numerical experiment concludes the paper. For the space-discretization, the
finite element method of the lowest order with piece-wise linear nodal basis-functions
for the FE-solution uh are used. This experiment, as well as all of the others done by
the authors, e. g. in [14], provide the following conclusions:

(i) The slant Newton method converges super-linearly at all levels of refinement.
(ii) The number of iteration steps does hardly depend on the level of refinement.

2. Mathematical Modeling. Let Θ := [0, T ] be a time interval, and let Ω be
a bounded domain in the space R3 with a Lipschitz continuous boundary Γ := ∂Ω.
The equilibrium of forces in the quasi-static case reads

−div (σ(x, t)) = f(x, t) ∀ (x, t) ∈ Ω × Θ ,(2.1)
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where σ(x, t) ∈ R3×3 is called Cauchy’s stress tensor and f(x, t) ∈ R3 represents the
volume force acting at the material point x ∈ Ω at the time t ∈ Θ. Let u(x, t) ∈ R3

denote the displacement of the body, and let

ε(u) :=
1

2

(
∇u+ (∇u)T

)
(2.2)

be the linearized Green-St. Venant strain tensor. In elastoplasticity, the total strain
ε is split additively into an elastic part e and a plastic part p, that is,

ε = e+ p .(2.3)

We assume a linear dependence of the stress on the elastic part of the strain, which
is defined by Hooke’s law

σ = C e,(2.4)

where the single components of the elastic stiffness tensor C ∈ R3×3×3×3 are defined
Cijkl := λδijδkl+µ(δikδjl+δilδjk). Here, λ > 0 and µ > 0 denote the Lamé constants,
and δij the Kronecker-symbol. Instead of Lamé constants, one sometimes prescribes
Young’s modulus E = µ (3λ+ 2µ) / (λ+ µ) and Poisson’s ratio ν = λ/ (2λ+ 2µ).

Let the boundary Γ be split into a Dirichlet part ΓD and a Neumann part ΓN ,
which satisfy Γ = ΓD ∪ ΓN . We assume the boundary conditions

u = uD on ΓD and σ n = g on ΓN ,(2.5)

where n(x, t) denotes the exterior unit normal, uD(x, t) ∈ R3 denotes a prescribed
displacement and g(x, t) ∈ R3 denotes a prescribed traction force. If p = 0 in (2.3),
the system (2.1) – (2.5) describes the elastic behavior of the continuum Ω.

Two more properties, incorporating the admissibility of the stress σ with respect
to a certain hardening law and the time evolution of the plastic strain p, are required.
Therefore, we introduce the hardening parameter α and define the generalized stress
(σ, α), which we call admissible if for a given convex yield functional φ there holds

φ(σ, α) ≤ 0 .(2.6)

The explicit form of φ depends on the choice of a certain hardening law (see Re-
mark 2.2). The second, specifically elastoplastic, property addresses the time de-
velopment of the generalized plastic strain (p,−α). There must hold the normality
condition

〈(ṗ,−α̇) , (τ, β) − (σ, α)〉F ≤ 0 ∀ (τ, β) which satisfy φ(τ, β) ≤ 0 ,(2.7)

where ṗ and α̇ denote the first time derivatives of p and α. Therefore, we need initial
conditions, which read

p(x, 0) = p0(x) and α(x, 0) = α0(x) ∀x ∈ Ω ,(2.8)

with given initial values p0 : Ω → R
3×3
sym and α0 : Ω → [0,∞[.

Problem 2.1 (classical formulation). Find (u, p, α), which satisfies (2.1) – (2.8).
Remark 2.2. In this paper we concentrate on the isotropic hardening law, where

the hardening parameter α is a scalar function α : Ω → R and the yield functional φ
is defined by

φ(σ, α) :=

{
‖devσ‖F − σy(1 +Hα) if α ≥ 0,
+∞ if α < 0.

(2.9)
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Here, the Frobenius norm ‖A‖F := 〈A , A〉
1/2

F is defined by the matrix scalar product
〈A , B〉F :=

∑

ij aijbij for A = (aij) ∈ R3×3 and B = (bij) ∈ R3×3. The deviator is

defined for square matrices by devA = A− tr A
tr I I, where the trace of a matrix is defined

by trA = 〈A , I〉F and I denotes the identity matrix. The real material constants
σy > 0 and H > 0 are called yield stress and modulus of hardening, respectively.

We turn to the specification of proper function spaces. For a fixed time t ∈ Θ, let

u ∈ V :=
[
H1(Ω)

]3
, p ∈ Q := [L2(Ω)]3×3

sym , α ∈ L2(Ω) .

We define the hyper plains VD := {v ∈ V | v|ΓD
= uD} and V0 := {v ∈ V | v|ΓD

= 0},
and the associated scalar products and norms

〈u , v〉V :=

∫

Ω

(
uT v + 〈∇u , ∇v〉F

)
dx , ‖v‖V := 〈v , v〉

1/2

V ,

〈p , q〉Q :=

∫

Ω

〈p , q〉F dx , ‖q‖Q := 〈q , q〉
1/2

Q .

Starting from Problem 2.1, one can derive a uniquely solvable time dependent
variational inequality for unknown displacement u ∈ H1(Θ;VD) and plastic strain
p ∈ H1(Θ;Q) (see [16, Theorem 7.3] for details). However, the numerical treatment
requires a time discretization of this variational inequality. Therefore, we pick a fixed
number of time tics 0 = t0 < t1 < . . . < tNΘ

= T out of Θ. We introduce the notation

uk := u(tk) , pk := p(tk) , αk := α(tk) , fk := f(tk) , gk := g(tk) , . . . ,

and approximate time derivatives by the backward difference quotients

ṗk ≈ (pk − pk−1) / (tk − tk−1) and α̇k ≈ (αk − αk−1) / (tk − tk−1) .

Consequently, the time dependent problem is approximated by a sequence of
time independent variational inequalities of the second kind. Each of these varia-
tional inequalities can be equivalently expressed by a minimization problem, which
by definition of the set of extended real numbers, R := R ∪ {±∞}, reads in the case
of isotropic hardening [6, Example 4.5]:

Problem 2.3 (One-time-step problem). Let k ∈ {1, . . . , NΘ} denote a given
time step, let pk−1 ∈ Q and αk−1 ∈ L2(Ω) be fixed arbitrarily such, that αk−1(x) ≥ 0
holds almost everywhere. Define J̄k : V ×Q→ R by J̄k(v, q) := +∞ if tr q 6= tr pk−1,
else

J̄k(v, q) :=
1

2

∫

Ω

〈C(ε(v) − q) , ε(v) − q〉F + (αk−1 + σyH‖q − pk−1‖F )2 dx(2.10)

+

∫

Ω

σy‖q − pk−1‖F dx−

∫

Ω

fT
k v dx−

∫

ΓN

gT
k v ds .

Find (uk, pk) ∈ VD ×Q such, that J̄k(uk, pk) ≤ J̄k(v, q) holds for all (v, q) ∈ VD ×Q.
The convex functional J̄k expresses the mechanical energy of the deformed system

at the kth time step. Notice, that J̄k is smooth with respect to the test displacements
v, but not with respect to the test plastic strains q. Problem 2.3 has a unique solution
(see, e. g., [9, Proposition 1.2 in Chapter II]).

The hardening parameter αk ∈ L2(Ω) does not appear in Problem 2.3 directly,
but can be calculated analytically in dependence on the plastic strain by αk = α̃k(pk),
where α̃k : Q→ L2(Ω) reads [6, Example 4.5]

α̃k(q) = αk−1 + σyH‖q − pk−1‖F ,(2.11)

in the case of isotropic hardening.
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3. Derivation of a Smooth Minimization Problem in the Displacement.

Various strategies have been introduced to solve the minimization in Problem 2.3.
C. Carstensen [6] proved the global linear convergence of one solution algorithm for
Problem 2.3 in the spatially discrete case. A separated minimization in v and q is
presented, where q is minimized by an explicit formula [2] (cf. Theorem 3.8 on page 7)
and a domain decomposition method [6] or a quasi Newton method [2] are applied to
solution in v.

Similar to [2, § 7], we study a minimization problem with respect to v only, which
one derives from Problem 2.3 by the substitution of the known minimizer for q in the
energy functional. An important observation will be, that the resulting functional is
smooth and its derivative is explicitly computable. To discuss this issue, we introduce
a more abstract formulation of (2.10). Therefore, we define the C-scalar-product, the
C-norm, a convex functional ψk and a linear functional lk by

〈q1 , q2〉C :=

∫

Ω

〈C q1(x) , q2(x)〉F dx , ‖q‖C := 〈q , q〉
1/2

C
,(3.1)

ψk(q) :=

{ ∫

Ω

(
1
2 α̃k(q)2 + σy‖q − pk−1‖F

)
dx if tr q = tr pk−1 ,

+∞ else ,
(3.2)

lk(v) :=

∫

Ω

fT
k v dx+

∫

ΓN

gT
k v ds ,(3.3)

where α̃k(q) is defined in (2.11). Then the functional J̄k(v, q) in (2.10) rewrites:

J̄k(v, q) =
1

2
‖ε(v) − q‖2

C + ψk(q) − lk(v) .(3.4)

The following results are formulated for functions mapping from a Hilbert space
H into the set of extended real numbers R = R∪{±∞}. The Hilbert space H provides

a scalar product 〈◦ , ⋄〉H and the norm ‖·‖H := 〈· , ·〉
1/2

H . The topological dual space of
H is denoted by H∗. Further, if a function F is Fréchet differentiable, we will denote
its derivative in a point x by D F (x) and its Gâteaux differential in the direction y
by D F (x ; y). A couple of definitions are required to formulate the next results.

Definition 3.1. A mapping F : H → R is said to be convex if, for every x and
y in H, we have

F (tx+ (1 − t)y) ≤ tF (x) + (1 − t)F (y) ∀ t ∈ [0, 1] ,(3.5)

whenever the right hand side is defined.
Definition 3.2. A mapping F : H → R is said to be strictly convex if it is

convex and the strict inequality holds in (3.5) for all x, y ∈ H with x 6= y and for all
t ∈ ]0, 1[.

Definition 3.3. A mapping F : H → R is said to be proper, if
(i) there exists x ∈ H such, that F (x) < +∞ ,
(ii) for all x ∈ H there holds F (x) > −∞ .

Definition 3.4. A mapping F : H → R is said to be lower semi continuous at
x ∈ H if

lim
y→x

F (y) ≥ F (x) .

F is said to be lower semi continuous in H if F is lower semi continuous at all x ∈ H.
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Theorem 3.5 (Moreau). Let the function f : H×H → R be defined

f(x, y) =
1

2
‖x− y‖2

H + ψ(x)(3.6)

where ψ is a convex, proper and lower semi continuous mapping of H into R.
Then F (y) := infx∈H f(x, y) is well defined as a functional from H into R and

there exists a unique mapping x̃ : H → H such, that F (y) = f(x̃(y), y) holds for all
y ∈ H. Moreover, F is strictly convex and Fréchet differentiable with the derivative

D F (y) = 〈y − x̃(y) , ·〉H ∈ H∗ ∀ y ∈ H .(3.7)

Proof. [26, Proposition 3.a, Proposition 7.d]
The result, regarding the smoothness of F , is surprising, particularly since both

mappings ψ and x̃ are in general not smooth. We apply Theorem 3.5 to the elasto-
plastic energy functional J̄k in (3.4).

Corollary 3.6. Let k ∈ {1, . . . , NΘ} denote the time step, and let J̄k be defined
as in (3.1) – (3.4). Then there exists a unique mapping p̃k : Q→ Q satisfying

J̄k (v, p̃k (ε (v))) = inf
q∈Q

J̄k (v, q) ∀ v ∈ VD .

Let Jk be a mapping of VD into R defined as

Jk(v) := J̄k(v, p̃k(ε(v))) ∀ v ∈ VD .(3.8)

Then, Jk is strictly convex and Fréchet differentiable. The associated Gâteaux differ-
ential D Jk : (VD, V0) → R at v ∈ VD into the direction w ∈ V0 reads

D Jk(v ; w) = 〈ε(v) − p̃k(ε(v)) , ε(w)〉C − lk(w)(3.9)

with the scalar product 〈◦ , ⋄〉C defined in (3.1) and lk defined in (3.3).
Proof. Using (3.1) – (3.4), we may rewrite functional J̄k : V ×Q→ R by

J̄k(v, q) = fk(ε(v), q) − lk(v) ,

where fk : Q×Q→ R is defined

fk(ε, q) :=
1

2
‖ε− q‖2

C + ψk(q) .

Theorem 3.5 states an existence of a unique minimizer p̃k : Q→ Q which satisfies

fk(ε(v), p̃k(ε(v))) = inf
q∈Q

fk(ε(v), q) .

Moreover, it states that the functional Fk(ε(v)) := fk(ε(v), p̃k(ε(v))) is strictly convex
and differentiable with respect to ε(v) ∈ Q. Since ε(·) is a linear and injective mapping
of VD into Q, the compound functional Fk(ε(v)) is Fréchet differentiable and strictly
convex with respect to v ∈ VD. Considering the linearity of lk, we conclude the strict
convexity and Fréchet differentiability of Jk defined in (3.8). The explicit formula
of the Gâteaux differential D Jk(v ; w) in (3.9) results from the linearity of the two
mappings lk and ε, and the Fréchet derivative D Fk(ε(v) ; ·) = 〈ε(v) − p̃k(ε(v)) , ·〉C
as in (3.7).
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Corollary 3.6 already assures the unique existence of a plastic strain minimizer p̃k.
We now turn to the calculation of its explicit form, and define p̂k(·) := p̃k(·)−pk−1. For
arbitrarily chosen v ∈ VD, it is equivalent to find the minimizer p̃k(ε(v)) of functional
J̄k(v, q) in (2.10) with respect to q, or to find the minimizer p̂k(ε(v)) of the functional

1

2

(
2µ+ σ2

yH
2
)
‖q‖2

Q−〈C (ε(v) − pk−1) , q〉Q+〈σy (1 + αk−1H) , ‖q‖F 〉L2(Ω)(3.10)

amongst trace-free elements q ∈ Q. The explicit form of p̂k : Q → Q is presented
in the next theorem, which is almost identical to [2, Proposition 7.1], with the only
difference, that here we investigate the plastic strain minimizer as a mapping from Q
into Q instead of the pointwise version P̂k : R3×3

sym → R3×3
sym . But first of all, another

definition is required.
Definition 3.7. Let F be a mapping of H into R. F is said to be subdifferentiable

at x ∈ H if there exists x∗ ∈ H∗ such that there holds

F (x+ y) ≥ F (x) + 〈x∗ , y〉H ∀ y ∈ H .

We call x∗ a subgradient, and the set of all subgradients in x is said to be the subdif-
ferential of F in x, denoted by ∂F (x).

For shorter writing, we skip the comment ’almost everywhere’ in the following
theorem, whenever mappings defined on Lebesgue spaces are evaluated pointwise.

Theorem 3.8. Let A ∈ Q, b ∈ L2(Ω) with b(x) > 0 in Ω, and ξ ∈ R with ξ > 0.
Then there exists exactly one p̂ ∈ Q with ‖tr p̂‖L2(Ω) = 0, which satisfies

〈A− ξ p̂ , q − p̂〉Q ≤ 〈b , ‖q‖F − ‖p̂‖F 〉L2(Ω)(3.11)

for all q ∈ Q with ‖tr q‖L2(Ω) = 0. This p̂ is characterized as the minimizer of

ξ

2
‖q‖2

Q − 〈A , q〉Q + 〈b , ‖q‖F 〉L2(Ω)(3.12)

amongst trace-free elements q ∈ Q, and reads

p̂ =
1

ξ
max{0, ‖devA‖F − b}

devA

‖devA‖F
.(3.13)

The minimal value of (3.12), attained for p̂ as in (3.13), is

−
1

2 ξ
‖max{0, ‖devA‖F − b}‖2

L2(Ω) .(3.14)

Proof. According to Definition 3.7, expression (3.11) states that

(A− ξ p̂) ∈ b ∂‖ · ‖F (p̂)(3.15)

with ∂‖ · ‖F denoting the subgradient of the Frobenius norm, where only trace-free
arguments are under consideration. The Frobenius norm ‖ · ‖F : Q → R is a convex
functional and so is (3.12). Identity (3.15) is equivalent to 0 belonging to the subgra-
dient of (3.12), which characterizes the minimizers of (3.12). Moreover, there holds
〈A , q〉Q = 〈devA , q〉Q for all trace-free elements q ∈ Q, whence the matrix A can be
replaced by the matrix devA in (3.11) and (3.12).
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Let the domain Ω be separated into the three disjoint subsets

Ωe := {x ∈ Ω | ∃ open ω ⊂ Ω : x ∈ ω ∧ ‖devA‖F − b ≤ 0 in ω} ,

Ωp := Ω \ Ωe , and Γep := Ω \ (Ωe ∪ Ωp) .

Note that Ωe and Ωp are open, that Γep has measure zero, and that there holds
‖devA‖F −b ≤ 0 on Ωe and ‖devA‖F −b > 0 on Ωp. Consequently, the minimization
of (3.12) results in finding p̂ ∈ Q with ‖tr p‖L2(Ω) = 0, such that the functionals

Ji(p̂) :=
ξ

2

∫

Ωi

‖p̂‖2
F dx−

∫

Ωi

〈devA , p̂〉F dx+

∫

Ωi

b ‖p̂‖F dx i ∈ {e, p}(3.16)

are minimized, or equivalently the inequalities
∫

Ωi

〈devA− ξp̂ , q − p̂〉F dx ≤

∫

Ωi

b (‖q‖F − ‖p̂‖F ) dx i ∈ {e, p}(3.17)

are satisfied for all q ∈ Q with ‖tr q‖L2(Ω) = 0.
We show identity (3.13). An application of the pointwise Cauchy-Schwarz in-

equality 〈devA , p̂〉F ≤ ‖devA‖F ‖p̂‖F yields

Je(p̂) ≥
ξ

2

∫

Ωe

‖p̂‖2
F dx+

∫

Ωe

(b− ‖devA‖F )
︸ ︷︷ ︸

≥0

‖p̂‖F dx ≥ 0.

By choosing p̂ = 0 on Ωe we obtain Je(p̂) = 0. Therefore,

p̂ = 0 on Ωe(3.18)

minimizes Je in (3.16). Moreover, there holds p̂(x) 6= 0 on Ωp which we show now by
contradiction. Choose Ω′ ⊂ Ωp arbitrary and fix. Assuming, that p̂ = 0 on Ω′ and
plugging it into (3.17) for i = p would yield

∫

Ω′

〈devA , q〉F dx ≤

∫

Ω′

b‖q‖F dx

for all trace-free elements q ∈ Q, which satisfy q = p̂ on Ωp \ Ω′. By the choice
q = devA on Ω′, we obtain

∫

Ω′
‖devA‖F − b dx ≤ 0, violating the definition of Ωp.

Thus there holds p̂(x) 6= 0, and consequently ∂‖ · ‖F (p̂) = {p̂/‖p̂‖F }, on Ωp. Hence,
(3.15) reads

devA− ξ p̂ = b
p̂

‖p̂‖F
on Ωp ,(3.19)

whence we conclude

‖p̂‖F =
1

ξ
(‖devA‖F − b) .(3.20)

Plugging (3.20) into (3.19) yields

p̂ =
1

ξ
(‖devA‖F − b)

devA

‖devA‖F
on Ωp.(3.21)

Combining the formulas (3.18) and (3.21) we obtain (3.13). Finally, plugging (3.13)
into (3.12) yields (3.14).
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Ω

Ωe
k : φk−1(σ̃k) ≤ 0

Ωp
k : φk−1(σ̃k) > 0

Γep
k

Fig. 3.1. The trial stress σ̃k(ε(v))(x) rules the domain splitting of Ω at the kth time step via
the yield functional φk−1, cf. (3.22).

We define the trial stress σ̃k : Q→ Q at the kth time step and the yield function
φk−1 : Q→ R (cf. (2.9)) at the k − 1st time step by

σ̃k(q) := C(q − pk−1) and φk−1(σ) := ‖dev σ‖F − σy(1 +H αk−1) .(3.22)

After using the substitution ∆p̃k(ε(v)) = p̃k(ε(v))− pk−1, Theorem 3.8 says, that for
a fixed displacement v ∈ VD the plastic strain minimizer p̃k(ε(v)) of (3.4) reads

p̃k(ε(v)) =
1

2µ+ σ2
yH

2
max{0, φk−1(σ̃k(ε(v)))}

dev σ̃k(ε(v))

‖dev σ̃k(ε(v))‖F
+ pk−1 .(3.23)

Therefore, if the minimizer uk ∈ VD of the functional Jk(·) = J̄k(·, p̃k(ε(·)))
in (3.8) is known, then the plastic strain pk at the time step k is provided by the
formula (3.23) as pk = p̃k(ε(uk)). Notice that the formula (3.23) also satisfies the
necessary condition tr pk = tr pk−1 to guarantee the minimization property Jk(uk) =
J̄k(uk, pk) < +∞ (cf. (3.4) and (3.2)).

At each time step k the domain Ω can be decomposed into three disjoint parts (see
Figure 3.1), analogously to the decomposition we used in the proof to Theorem 3.8:

(i) Ωe
k(v) := {x ∈ Ω | ∃ open ω ⊂ Ω : x ∈ ω ∧ φk−1(σ̃k(ε(v))) ≤ 0 a. e. in ω},

(ii) the set of plastic increment points Ωp
k(v) := Ω \ Ωe

k(v),
(iii) and the set of elastoplastic interface points Γep

k (v) := Ω \ (Ωp
k(v) ∪ Ωe

k(v)).
Obviously, both sets Ωe

k(v) and Ωp
k(v) are open, Γep

k (v) has zero measure, and that

φk−1(σ̃k(ε(v))) ≤ 0 a. e. in Ωe
k(v),

φk−1(σ̃k(ε(v))) > 0 a. e. in Ωp
k(v).(3.24)

For a one-time-step problem, the sets Ωe(v) := Ωe
1(v) and Ωp(v) := Ωp

1(v) specify
elastically and plastically deformed parts of the continuum, respectively.

We obtain a smooth problem with respect to the displacement field uk only:
Problem 3.9. Let k ∈ {1, . . . , NΘ} denote the time step. Let pk−1 ∈ Q and

αk−1 ∈ L2(Ω) be given such, that αk−1 ≥ 0 holds almost everywhere. Find uk ∈ VD

such, that for all v ∈ VD there holds Jk(uk) ≤ Jk(v) with the strictly convex and
Fréchet differentiable functional Jk defined in (3.8) using p̃k as in (3.23). The Gâteaux
differential of Jk is presented in (3.9).

Remark 3.10. There exists a unique solution uk to Problem 3.9, since there
exists a unique solution (uk, pk) to Problem 2.3, and since

Jk(uk) = J̄k(uk, p̃k(ε(uk))) = J̄k(uk, pk) ≤ J̄k(v, p̃k(ε(v))) = Jk(v) ∀ v ∈ VD .
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4. Computing the Solution of the Smooth Problem. The minimizer p̃k in
(3.23) is a continuous mapping of Q into Q. Thus, D Jk(v ;w) in (3.9) is continuous
with respect to v as well, and a gradient method could be used for a numerical solution.
Instead, we investigate the existence of the second derivative of Jk(v) having in mind
to use Newton’s method.

4.1. An Attempt to Calculate the Second Derivative of Jk. The Gâteaux
differential of D Jk defined in (3.9) reads

D 2Jk(v ; w1, w2) = 〈ε(w1) − D p̃k(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1, w2 ∈ V0

provided that the Gâteaux differential D p̃k(ε(v) ; ε(w1)) ∈ Q of the plastic strain
minimizer p̃k(ε(v)) defined in (3.23) exists in the whole domain Ω.

In the set Ωe
k(v), where φk−1(σ̃k(ε(v))) ≤ 0 (cf. (3.22)), there obviously holds

D p̃k(ε(v) ; q) = 0(4.1)

for all q ∈ Q, and therefore we obtain the formula known from theory of elasticity

D 2Jk(v ; w1, w2) = 〈ε(w1) , ε(w2)〉C ∀w1, w2 ∈ V0.

In the set of plastic increment points Ωp
k(v), where φk−1(σ̃k(ε(v))) > 0 holds a. e., the

plastic strain reads

p̃k(ε) = (2µ+ σ2
yH

2)−1φk−1(σ̃k(ε))
dev σ̃k(ε)

‖dev σ̃k(ε)‖F
.

For the moment, we omit the dependency of ε on v in our notation, and calculate
the Gâteaux differential of p̃k with respect to ε. By using the product and the chain
rules, we obtain

D p̃k(ε ; q) = (2µ+ σ2
yH

2)−1

(

D φk−1(σ̃k(ε) ; D σ̃k(ε ; q))
dev σ̃k(ε)

‖dev σ̃k(ε)‖F

+ φk−1(σ̃k(ε))D
(·)

‖ · ‖F
(dev σ̃k(ε) ; D dev σ̃k(ε ; q))

)

.

Using the derivatives rules (cf. (3.22))

D σ̃k(ε ; q) = D σ̃k( q) = C q, D dev σ̃k(ε ; q) = D dev σ̃k( q) = 2µdev q

and

D φk−1(σ ; τ) =
〈dev σ , D dev (σ ; τ)〉F

‖σ‖F
, D

(·)

‖ · ‖F
(σ ; τ) =

τ

‖σ‖F
−
σ〈σ , τ〉F
‖σ‖3

F

,

we end up with the formula

D p̃k(ε ; q) =
2µ

2µ+ σ2
yH

2

(
φk−1(ε)

‖dev σ̃k(ε)‖F
dev q(4.2)

+

(

1 −
φk−1(ε)

‖dev σ̃k(ε)‖F

)
〈dev σ̃k(ε) , dev q〉F

‖dev σ̃k(ε)‖2
F

dev σ̃k(ε)

)

.

Unfortunately, p̃k in (3.23) is not differentiable on the set of elastoplastic inter-
face points, Γep

k (v), due to the term max{0, φk−1}. To summarize it, the derivative
D p̃k exists everywhere in the sets of elastic and plastic increment points, but is not
computable on the elastoplastic interface (see Figure 3.1). Thus, D 2Jk(v) does not
exist. No matter that the elastoplastic interface is a set of measure zero, a classical
Newton method is not applicable to Problem 3.9.
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4.2. Concept of Slant Differentiability. Our goal is to solve Problem 3.9
by means of a Newton-like method which replaces the requirement of the second
derivative D 2Jk(v) in a way that the super-linear convergence rate still can be shown.

The main tool here to overcome the non-differentiability of D Jk due to the
mapping max{0, ·} is the concept of slant differentiability, which was introduced by
X. Chen, Z. Nashed and L. Qi in [7]. Other concepts of semismoothness, e. g. [29, 30],
or the smoothing (regularization) of non-differentiable terms, e. g. [22], are not out-
lined in this work, but might be considered as an alternative. The most important
relations between smoothing and semismooth methods are discussed in [7, § 3].

Henceforth, let X , Y , and Z be Banach spaces, and L(◦, ⋄) denote the set of all
linear mappings of the set ◦ into the set ⋄.

Definition 4.1. Let U ⊆ X be an open subset. A function F : U → Y is said
to be slantly differentiable at x ∈ U if there exist

1. mappings F o : U → L(X,Y ) and r : X → Y with limh→0
‖r(h)‖
‖h‖ = 0 which

satisfy

F (x+ h) = F (x) + F o(x+ h)h+ r(h)

for all h ∈ X , for which (x + h) ∈ U , and
2. constants δ > 0 and C > 0 such, that for all h ∈ X with ‖h‖ < δ there holds

‖F o(x+ h)‖L(X,Y ) := sup
y∈X\{0}

‖F o(x+ h) y‖

‖y‖
≤ C .

We say, that F o(x) is a slanting function for F at x.
Definition 4.2. Let U ⊆ X be an open subset. A function F : U → Y is said

to be slantly differentiable in U if there exists F o : U → L(X,Y ) such that F o is a
slanting function for F at every point x ∈ U . F o is said to be a slanting function for
F in U .

Remark 4.3. Similar to the relation between Gâteaux differential and Gâteaux
derivative, we define the slanting differential for F o at x along the direction h by
F̃ o : U×X → Y with F̃ o(x ; h) := F o(x)h. Since the mappings F o and F̃ o are taking
a different number of arguments, it suffices to denote both by the same symbol F o, i. e.
F o(·) for a slanting function and F o(◦ ; ⋄) for the appropriate slanting differential.

Remark 4.4. Both, the chain rule and the product rule hold for slanting func-
tions in the same way as we know for classical derivatives.

Theorem 4.5. Let U ⊆ X be an open subset, F : U → Y be a slantly differen-
tiable function, and F o : U → L(X,Y ) be a slanting function for F in U . Let x∗ ∈ U
be a solution to the nonlinear problem F (x) = 0. If F o(x) is bijective in L(X,Y ) for
all x ∈ U , and if {‖F o(x)−1‖ : x ∈ U} is bounded, then the Newton-like iteration

xj+1 = xj − F o(xj)−1F (xj) , j ∈ {0, 1, 2, . . .}(4.3)

converges super-linearly to x∗, provided that ‖x0 − x∗‖ is sufficiently small.
Proof. See [7, Theorem 3.4].
We call a Newton-like method described by (4.3) a slant Newton method. The

goal is to solve Problem 3.9 by finding uk ∈ VD such, that D Jk(uk;w) = 0 for all
w ∈ V0 with D Jk as in (3.9). Therefore, we use the slant Newton method and choose

X = V , Y = V0
∗ , U = VD , F = D Jk , xj = vj , and x∗ = uk .

For each iteration step j we then have to solve:

find vj+1 in VD : (D Jk)o (vj ; vj+1 − vj , w) = −D Jk(vj ; w) ∀w ∈ V0 .(4.4)
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4.3. Slanting Functions for p̃k and D Jk. Henceforth we will use the following
property, which is easy to verify: A Fréchet differentiable function is slantly differ-
entiable, with the Fréchet derivative serving as a slanting function, and the Gâteaux
differential serving as a slanting differential. Due to the chain rule we obtain

(D Jk)
o
(v ; w1, w2) = 〈ε(w1) − p̃k

o(ε(v) ; ε(w1)) , ε(w2)〉C ∀w1, w2 ∈ V0 .(4.5)

It remains to calculate the slanting function p̃k
o. Taking to account, that a Fréchet

derivative serves as a slanting function, we obtain from (4.1) and (4.2), that

p̃k
o(ε(v) ; q) =

{
0 in Ωe

k(v) ,

ξ
(

βk dev q + (1 − βk) 〈dev σ̃k , dev q〉F

‖dev σ̃k‖2

F

dev σ̃k

)

in Ωp
k(v) ,

where the abbreviations

ξ :=
2µ

2µ+ σ2
yH

2
, βk :=

φk−1(σ̃k)

‖dev σ̃k‖F
, σ̃k := σ̃k(ε(v))(4.6)

with the mappings φk−1 and σ̃k defined in (3.22) are used. Notice, hence the modulus
of hardening H , the yield stress σy, and the Lamé parameter µ are positive and due
to (2.11), (3.22) and (3.24), we always have

ξ ∈ ]0, 1[ and βk : Ωp
k(v) → ]0, 1[ .(4.7)

The minimizer p̃k is not differentiable on Γep
k (v) due to the term max{0, φk} in (3.23).

M. Hintermüller, K. Ito and K. Kunisch discuss the slant differentiability of the
mapping max{0, y} for certain Banach spaces, that is, for the finite dimensional case
y ∈ Rn in [17, Lemma 3.1], and the infinite dimensional case y ∈ Lq(Ω) in [17,
Proposition 4.1]. Let us summarize their results in the following two theorems.

Theorem 4.6 (The finite dimensional case). Let n ∈ N be arbitrary, and F be
a mapping of Rn into Rn defined as F (y) := max{0, y}. Then, F is slantly differen-
tiable, and for γ ∈ Rn fixed arbitrarily, the matrix valued function

F o(y) := diag (fi(yi))
n
i=1 with fi(z) =







0 if z < 0 ,
1 if z > 0 ,
γi if z = 0

(4.8)

serves as a slanting function.
The next theorem addresses the slant differentiability of the mapping max{0, y}

in the infinite dimensional case y ∈ Lq(Ω). Therefore, we define a decomposition of
the domain Ω into subdomains Ω = Ω≤∪Γ|∪Ω> such, that analogously to Figure 3.1
the interface Γ| separates Ω> (y > 0 a. e.) from Ω≤ (y ≤ 0 a. e.).

Theorem 4.7 (The infinite dimensional case). Let p and q in R be fixed arbi-
trarily such that 1 ≤ p ≤ q ≤ +∞ is satisfied, and let F be a mapping of Lq(Ω) into
Lp(Ω) defined as F (y) := max{0, y}. Then, for γ fixed arbitrarily in R, the function

F o(y)(x) :=







0 on Ω≤ ,
1 on Ω> ,
γ on Γ|

(4.9)

serves as a slanting function for F if p < q, but F o does in general not serve as a
slanting function for F if p = q.
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We apply the last two theorems to find a slanting function for the minimizer p̃k(ε)
defined in (3.23), each in the spatially continuous and discrete case. The task turns
out to be trivial in the latter case (see § 4.5), but some further regularity assumptions
are required in the spatially continuous case due to the following considerations:

The minimizer p̃k works as a mapping from Q into Q to keep the energy functional
Jk in (3.8) well-defined. The explicit formula (3.23) says, that p̃k maps into Q only if

max{0, φk−1(σ̃k(ε(v)))}

maps into L2(Ω), where φk−1 and σ̃k are defined in (3.22). By the application of
Theorem 4.7 to the slant differentiation of the max-term measured in the L2(Ω)-norm
we have to guarantee, that its argument

φk−1(σ̃k(ε(v)))

is bounded in the L2+ǫ(Ω)-norm for some ǫ > 0 and for all v ∈ VD, or at least for
those v ∈ VD which are run through by the slant Newton method (4.4). This issue is
not further discussed in this work, but left as an open question for more theoretical
analysis on regularity results in elastoplastic problems.

Under the assumption

φk−1(σ̃k(ε(v))) ∈ L2+ǫ(Ω) ,

we can formulate an immediate result from the combination of the product rule, chain
rule, Theorem 4.7 (where we choose γ = 0), and the results from § 4.1.

Corollary 4.8. Let k ∈ {1, . . . , NΘ} and v ∈ VD be arbitrarily fixed. If there
exists ǫ > 0 such that φk−1(σ̃k(ε(v))), as defined in (3.22), is in L2+ǫ(Ω), then the
mapping p̃k : Q→ Q defined in (3.23) is slantly differentiable at ε(v). The mapping

p̃k
o(ε(v) ; q) =

{

ξ
(

βk dev q + (1 − βk) 〈dev σ̃k , dev q〉F

‖dev σ̃k‖2

F

dev σ̃k

)

in Ωp
k(v) ,

0 else ,
(4.10)

for all q ∈ Q serves as a slanting function for p̃k at ε(v), wherein the abbreviations
(4.6) together with the definitions (3.22) are used. Moreover, the functional D Jk(v)
is slantly differentiable with the slanting function (D Jk)

o
(v) as in (4.5).

Corollary 4.8 corresponds to Corollary 4.13 in § 4.5 on page 16, which states
the slant differentiability of the energy functional’s first derivative D Jk and the plas-
tic strain minimizer p̃k in finite dimensional FE-spaces. Unlike the infinite dimen-
sional case, no additional assumptions will be necessary in the finite dimensional case
(cf. Theorem 4.6 and Theorem 4.7).

4.4. Local Super-Linear Convergence in Infinite Dimensions. The appli-
cation of Theorem 4.5 requires the existence and uniform boundedness of the inverse

map [(D Jk)
o
]
−1

. These properties are shown in Proposition 4.11 on page 15 by using,
that the bilinear form (D Jk)

o
(v) := (D Jk)

o
(v ; ⋄, ◦) is bounded and elliptic, which

we show now in the following lemma.
Lemma 4.9. Let k ∈ {1, . . . , NΘ} and v ∈ VD be fixed arbitrarily. Let the mapping

(D Jk)
o

: VD → L(V0, V0
∗) be defined (D Jk)

o
(v) := (D Jk)

o
(v ; ⋄, ◦) as in (4.5) with

p̃k
o as in (4.10). Then there exist positive constants κ1 and κ2 which satisfy

(D Jk)o (v ; w,w) ≥ κ1‖w‖
2
V ∀w ∈ V0 (ellipticity) ,(4.11)

(D Jk)
o
(v ; w,w) ≤ κ2‖w‖V ‖w‖V ∀w,w ∈ V0 (boundedness) .(4.12)
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Proof. We show the ellipticity (4.11). By the definition of (D Jk)
o

in (4.5), there
holds

(D Jk)
o
(v ; w,w) = 〈ε(w) − p̃k

o(ε(v) ; ε(w)) , ε(w)〉C .(4.13)

First, we prove the contractivity of the operator pk
o(ε(v), ·) defined in (4.10) with

respect to its second argument:

‖p̃k
o(ε(v) ; q)‖2

C =

∫

Ω

〈Cpk
o(ε(v) ; q) , pk

o(ε(v) ; q)〉F dx = 2µ

∫

Ω

‖pk
o(ε(v) ; q)‖2

F dx

= ξ2 2µ

∫

Ωp

k
(v)

‖βkdev q + (1 − βk)
〈dev σ̃k , dev q〉F

‖dev σ̃k‖2
F

dev σ̃k‖
2
F dx

≤ ξ2 2µ

∫

Ω

‖dev q‖2
F = ξ2

∫

Ω

〈Cdev q , dev q〉F dx

≤ ξ2
∫

Ω

〈Cq , q〉F dx = ξ2‖q‖2
C ∀ q ∈ Q.

Then the substitution of this estimate to (4.13) yields

(D Jk)
o
(v ; w,w) ≥ (1 − ξ)‖ε(w)‖2

C ,

which together with Korn’s inequality from the theory of linear elasticity (there exists
a constant κe

1 > 0 such, that ‖ε(w1)‖2
C
≥ κe

1‖w1‖2
V holds for all w1 in V0) already

provides the ellipticity with the constant κ1 := (1 − ξ)κe
1.

We show the boundedness (4.12). The Cauchy-Schwarz inequality yields

(D Jk)
o
(v ; w,w) ≤ ‖ε(w) − p̃k

o(ε(v) ; ε(w))‖C‖ε(w)‖C ∀w,w ∈ V0 .(4.14)

Let w,w ∈ V0 be fixed arbitrarily. Since ‖p̃k
o(ε(v) ; ε(w))‖F = 0 a. e. in Ωe

k(v), and

‖p̃k
o(ε(v) ; ε(w))‖2

F = ξ2
(

β2
k‖dev ε(w)‖2

F + (1 + βk)(1 − βk)
〈dev σ̃k , dev ε(w)〉2F

‖dev σ̃k‖2
F

)

≤ ξ

(

βk‖dev ε(w)‖2
F + 2(1 − βk)

〈dev σ̃k , dev ε(w)〉2F
‖dev σ̃k‖2

F

)

≤ 2ξ

(

βk‖dev ε(w)‖2
F + (1 − βk)

〈dev σ̃k , dev ε(w)〉2F
‖dev σ̃k‖2

F

)

= 2〈dev ε(w) , p̃k
o(ε(v) ; ε(w))〉F

a. e. in Ωp
k(v), there holds ‖p̃k

o(ε(v) ; ε(w))‖2
Q ≤ 2〈dev ε(w) , p̃k

o(ε(v) ; ε(w))〉Q , from
which we obtain by elementary calculation

‖p̃k
o(ε(v) ; ε(w))‖2

C ≤ 2〈ε(w) , p̃k
o(ε(v) ; ε(w))〉C .(4.15)

Due to (4.15), there holds ‖ε(w) − p̃k
o(ε(v) ; ε(w))‖2

C
≤ ‖ε(w)‖2

C
, which applied to

the inequality (4.14) yields (D Jk)
o
(v ; w,w) ≤ ‖ε(w)‖C‖ε(w)‖C. Again, from the

theory of elasticity it is well known, that there exists a constant κe
2 > 0 such, that

〈ε(w1) , ε(w2)〉C ≤ κe
2 ‖w1‖V ‖w2‖V holds for all w1 and w2 in V0. Thus, the bound-

edness (4.12) holds with κ2 := κe
2. Notice, that κ1 and κ2 are independent from the

certain choice of v ∈ VD.
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Remark 4.10. The ellipticity constant reads κ1 = (1 − ξ)κe
1, where ξ is defined

in (4.6) as ξ = 2µ/
(
2µ+ σ2

yH
2
)

and κe
1 is the ellipticity constant of the linear elastic

bilinear form 〈ε(◦) , ε(⋄)〉C. Therefore, the ellipticity property of (D Jk)o (v ; ◦, ⋄) gets
lost if ξ goes to 1, which is the case if the yield stress σy or the modulus of hardening
H approach zero. Hence the ellipticity property is essential for what comes next, this
work may not be extended to the perfect plastic case H = 0 straightforward.

Theorem 4.11. Let k ∈ {1, . . . , NΘ} be fixed and the assumptions of Corol-
lary 4.8 be fulfilled. Let the mapping D Jk : VD → V0

∗ be defined D Jk(v) :=
D Jk(v ; ◦) as in (3.9), and (D Jk)

o
: VD → L(V0, V0

∗) be defined (D Jk)
o
(v) :=

(D Jk)
o
(v ; ⋄, ◦) as in (4.5). Then, the sequence of the slant Newton iterates

vj+1 = vj −
[
(D Jk)

o
(vj)

]−1
D Jk(vj)

converges super-linearly to the solution uk of Problem 3.9, provided that ‖v0 − uk‖V

is sufficiently small.
Proof. We check the assumptions of Theorem 4.5 for the choice F = D Jk. Let

v ∈ VD be arbitrarily fixed. The mapping (D Jk)o (v) : V0 → V0
∗ serves as a slanting

function for D Jk at v. Moreover, (D Jk)
o
(v) : V0 → V0

∗ is bijective if and only if
there exists a unique element w in V0 such, that for arbitrary but fixed f ∈ V0

∗ there
holds

(D Jk)
o
(v ; w,w) = f(w) ∀w ∈ V0 .(4.16)

Since the bilinear form (D Jk)
o
(v) is elliptic and bounded (Lemma 4.9), we apply the

Lax-Milgram Theorem to ensure the existence of a unique solution to (4.16). Finally,

the uniform boundedness of [(D Jk)o (·)]
−1

follows from the estimate

‖ [(D Jk)
o
(v)]

−1
‖ = sup

w∗∈V0
∗

‖ [(D Jk)
o
(v)]

−1
w∗‖V

‖w∗‖V0
∗

= sup
w∈V0

‖w‖V

‖ (D Jk)
o
(v ; w, ·)‖V0

∗

= sup
w∈V0

inf
w∈V0

‖w‖V ‖w‖V

| (D Jk)
o
(v ; w,w)|

≤ sup
w∈V0

‖w‖2
V

| (D Jk)
o
(v ; w,w)|

≤
1

κ1
,

with κ1 denoting the v-independent ellipticity constant of Lemma 4.9.

4.5. Local Super-Linear Convergence in Finite Dimensions. Let T be a
shape regular triangulation of Ω. We approximate the infinite dimensional spaces V ,
Q and L2(Ω) by finite dimensional subspaces Vh ⊂ V , Qh ⊂ Q and Lh ⊂ L2(Ω) such,
that ε(vh) ∈ Qh and ‖qh‖F ∈ Lh holds true for all vh ∈ Vh and qh ∈ Qh in the weak
sense, and vh ∈ C1(T ) for all T ∈ T . We further define the finite dimensional hyper
plains VhD := Vh ∩ VD and Vh0 := Vh ∩ V0. Then, the finite dimensional problem
corresponding to Problem 3.9 reads:

Problem 4.12. Let k ∈ {1, . . . , NΘ} denote the time step. Let ph,k−1 ∈ Qh and
αh,k−1 ∈ Lh2(Ω) be given such, that αh,k−1 ≥ 0 holds true almost everywhere in Ω.
Find uh,k ∈ VhD which satisfies

D Jk(uh,k) = 0 .

Here, D Jk : VhD → Vh0
∗ is defined by D Jk(vh) := D Jk(vh ; ◦) as in (3.9) with

the mapping p̃k : Qh → Qh defined as in (3.23). Analogous results to Corollary 4.8
and Theorem 4.11 can be shown for the finite dimensional subspace Vh without any
additional assumptions:
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Corollary 4.13. Let k ∈ {1, . . . , NΘ} and vh ∈ VhD be arbitrarily fixed. Let
D Jk : (VhD, V

∗
h0) → R and p̃k : Qh → Qh be defined as in (3.9) and (3.23). Then,

DJk is slantly differentiable at vh and p̃k is slantly differentiable at ε(vh) with the
slanting functions

(D Jk)
o
(vh ; wh, wh) =

∑

T∈T

∫

T

C (ε(wh) − p̃k
o(ε(vh) ; ε(wh))) : ε(wh) dx ,(4.17)

p̃k
o(ε(vh) ; q) =

{

ξ
(

βk dev q + (1 − βk) 〈dev σ̃k , dev q〉F

‖dev σ̃k‖2

F

dev σ̃k

)

in Ωp
k(vh) ,

0 else ,

for all wh, wh ∈ Vh0. Herein the abbreviations q = ε(wh) and (4.6) together with the
definitions (3.22) are used.

Proof. The result follows due to the piecewise continuously differentiability of
vh, which implies that dev σ̃k(ε(vh)) and φk−1(dev σ̃k(ε(vh))) in (3.22) are piecewise
continuous mappings into R, and thus Theorem 4.6, with γ = 0, is applicable.

Theorem 4.14. Let k ∈ {1, . . . , NΘ} denote a fixed time step. Let the mapping
D Jk : VhD → Vh0

∗ be defined by D Jk(vh) := D Jk(vh ; ◦) as in (3.9), and let (D Jk)
o

:
VhD → L(Vh0, Vh0

∗) be defined by (D Jk)o (vh) := (D Jk)o (vh ; ⋄, ◦) as in (4.17).
Then, the sequence of the slant Newton iterates

vj+1
h = vj

h −
[

(D Jk)o (vj
h)

]−1

D Jk(vj
h)

converges super-linearly to the solution uhk of Problem 4.12, provided that ‖v0
h−uhk‖V

is sufficiently small.
Proof. Due to the subspace property Vh ⊂ V , this proof can be done analogously

to the one for Theorem 4.11.

5. Numerical Solution. This section is based on [1], where we consider the 2D
case only. The major parts of an implementation in Matlab are outlined in [13].

We approximate the possibly non-polygonal 2D domain Ω by a polygonal 2D do-
main Ω′ with the boundary Γ′ := ∂Ω′, which is split into the approximated Dirichlet
and Neumann part Γ′

D and Γ′
N . Let T = {T open ⊂ Ω′} be a shape-regular triangu-

lation of Ω′, where all T are triangles, E = {E} be a set of edges and EN = E ∩ Γ′
N

be its intersection with the approximated Neumann boundary Γ′
N . The vertices of

all triangles are collected in the set N = {x ∈ R2 | ∃T ∈ T : x is vertex of T }. Let

Vh := {vh ∈ V | vh ∈
[
P1(T )

]3
∀T ∈ T }, Qh := {qh ∈ Q | qh ∈

[
P0(T )

]3×3
∀T ∈ T }

and Lh2(Ω) := {βh ∈ L2(Ω) | βh ∈ P0(T ) ∀T ∈ T }, where Pn(X) denotes the set
of all polynomials of order n defined on the set X . As a basis of Vh we choose piece-
wise linear nodal ansatz functions Φ(x) = (φi,j(x))i∈{1,...,N},j∈{1,2}. To each element

vh ∈ Vh, a vector v := (vh,j(xi))i∈{1,...,|N |},j∈{1,2} can be associated using the identity

vh(x) = Φ(x)T v .

We consider the plain strain model, where εi3 = ε3i = 0 for all i ∈ {1, 2, 3}.
The chosen structure of ε in the plain strain case implies a certain structure of the
plastic strain p, caused by the minimizer formula (3.23), and of the stress σ, caused
by Hooke’s Law (2.4):

ε =





ε11 ε12 0
ε12 ε22 0
0 0 0



 , p =





p11 p12 0
p12 p22 0
0 0 p33



 , σ =





σ11 σ12 0
σ12 σ22 0
0 0 σ33



 .
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Common (Tensor) Representation Vector Representation

ε :=

2

4

ε11 ε12 0
ε12 ε22 0
0 0 0

3

5 ε :=

2

4

ε11

ε22

2 ε12

3

5

σε := C ε =

2

4

σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33

3

5 σε :=

2

4

σε,11

σε,22

σε,12

3

5 =

2

4

λ + 2 µ λ 0
λ λ + 2 µ 0
0 0 µ

3

5

| {z }

=:C

ε ,

with C ε = 2µ ε + λ tr ε I σε,33 =
λ

2 (λ + µ)
| {z }

=ν

ˆ
1 1 0

˜
σε, trσε = ν+1

ν
σε,33

dev σε = σε −
tr σε

tr I
I dev σε :=

2

4

(dev σε)11
(dev σε)22
(dev σε)12

3

5 = σε −
tr σε

tr I

2

4

1
1
0

3

5 ,

thus, dev σε =

0

@I −
ν + 1

dim(σε)

2

4

1 1 0
1 1 0
0 0 0

3

5

1

A

| {z }

=:K

σε

p =

2

4

p11 p12 0
p12 p22 0
0 0 − (p11 + p22)

3

5 p :=

2

4

p11

p22

p12

3

5 , ‖p‖2
N := pT

2

4

2 1 0
1 2 0
0 0 2

3

5

| {z }

=:N

p ,

then: ‖p‖N = ‖p‖F

σp := C p =

2

4

σε,11 σε,12 0
σε,12 σε,22 0

0 0 σε,33

3

5 σp :=

2

4

σp,11

σp,22

σp,12

3

5 = 2 µ p

with C p = 2 µ p + λ tr p
|{z}

=0

I = 2 µ p and σp,33 = −
ˆ
1 1 0

˜
σp

σ = C (ε − p) = σε − σp σ = σε − σp and σ33 = σε,33 − σp,33

dev σ = dev σε − dev σp
| {z }

=σp

, dev σ = dev σε − σp , ‖dev σ‖F = ‖dev σ‖N ,

‖dev σ‖2
F =

P

i,j
(dev σ)2

ij
(dev σ)

33
= −

ˆ
1 1 0

˜
dev σ

Table 5.1
Table of Vector Representation regarding the Plain Strain Model.

The information regarding ε, p and σ can be equivalently stored in the vectors

ε :=
[
ε11 ε22 2 ε12

]T
, p :=

[
p11 p22 p12

]T
, σ :=

[
σ11 σ22 σ12

]T
.

Corresponding operations in tensor and vector representation, such as norms, traces
and deviators, are summarized in Table 5.1. Besides the results in Table 5.1, there
holds 〈σε , ε〉F = σT

ε ε and 〈σp , ε〉F = σT
p ε.
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Let RT and RE be restriction operators for the vector u to a local element T , i. e.

uT = RTu , uE = REu .(5.1)

Let the fixed triangle T ∈ T have the vertices
(
xα, xβ, xγ

)
with the coordinates

((xα,1, xα,2) , (xβ,1, xβ,2) , (xγ,1, xγ,2)) .

Then ε(uh) can be calculated on T by

ε(uh)(x)|T =





∂1ϕα 0 ∂1ϕβ 0 ∂1ϕγ 0
0 ∂2ϕα 0 ∂2ϕβ 0 ∂2ϕγ

∂2ϕα ∂1ϕα ∂2ϕβ ∂1ϕβ ∂2ϕγ ∂1ϕγ















uα,1

uα,2

uβ,1

uβ,2

uγ,1

uγ,2











,

or in a more compact way,

ε(uh)(x)|T = B uT ,(5.2)

where the partial derivatives of ϕα, ϕβ , and ϕγ can be obtained by

∇





ϕα

ϕβ

ϕγ



 =





1 1 1
xα,1 xβ,1 xγ,1

xα,2 xβ,2 xγ,2





−1 



0 0
1 0
0 1



 .

Integration over body and surface forces may be realized by the midpoint rule. We
approximate fk and gk by fT := fk(xT ) and gE := gk(xE), where xT and xE denote
the center of mass of the element T , and the edge E, respectively. Defining

f
T

:=
|T |

3
RT

T fT , and g
E

:=
|E|

2
RT

E gE ,

on each T ∈ T and on each E ∈ EN there hold
∫

T

fTvh dx ≈ fT

T
v , and

∫

E

gT vh ds ≈ gT
E
v .(5.3)

5.1. Derivatives and Slanting Functions in Vector Representation. The
whole integral over Ω can be split into a sum of integrals on single elements T ∈
T . Therefore, by combining (5.1), (5.2) and (5.3) we obtain from (3.9) the discrete
formulation of the energy functional’s Gâteaux-differential

D Jk(u ; v) :=
∑

T∈T

(

|T |
(

C B uT − 2µ p̃
k
(B uT )

)T

BRT − fT

T

)

v −
∑

E∈EN

gT
E
v

with

p̃
k
(B uT ) :=

max{0, φk−1(dev σ̃k(B uT ))}

2µ+ σ2
yH

2

dev σ̃k(B uT )

‖dev σ̃k(B uT )‖N
+ p

k−1
,(5.4)

where

dev σ̃k(B uT ) := KCB uT − 2µ p
k−1

,(5.5)

φk−1(dev σ̃k(B uT )) := ‖dev σ̃k(B uT )‖N − σy(1 +Hαk−1) .(5.6)
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Since D Jk(u ; v) is linear in v, there exists the Fréchet-derivative

D Jk(u) =
∑

T∈T

(

|T |
(

CB uT − 2µ p̃
k
(B uT )

)T

BRT − f
T

)

−
∑

E∈EN

g
E
.(5.7)

Due to Corollary 4.13, the mapping D Jk is slantly differentiable with

(D Jk)
o
(u) =

∑

T∈T

|T |RT
T B

T
(

C − 2µ p̃o
k
(B uT )

)T

BRT ,

where

p̃o
k
(B uT ) =

{

ξ
(

(1 − βk)
dev σ̃kdev σ̃T

k N

‖dev σ̃k‖
2

N

+ βkI
)

KC if φk(σ̃k) > 0 ,

0 else .
(5.8)

serves as a slanting function for p̃
k

defined in (5.4). Here, we use ξ :=
(
2µ+ σ2

yH
2
)−1

,
βk := φk−1(dev σ̃k)/‖dev σ̃k‖N , and the short form dev σ̃k for dev σ̃k(B uT ) as in
(5.5).

5.2. The Slant Newton Method in Vector Representation. The slant
Newton method is applied to calculate u ∈ R2|N | such, that DJk(u) = 0 and u
satisfies the Dirichlet boundary condition. The iterates read

uj = uj−1 + ∆uj ∀ j ∈ N,(5.9)

where ∆uj solves

(D Jk)
o
(uj−1) ∆uj = −D Jk(uj−1) .

Note, that uj must satisfy (generally inhomogeneous) Dirichlet boundary conditions
for all j ∈ N. Therefore, it is sufficient for the initial approximation u0 to satisfy the
inhomogeneous Dirichlet conditions, and for ∆uj to solve the homogeneous Dirichlet
conditions. For the termination of the slant Newton method we check, if

|uh,j − uh,j−1|ε
|uh,j|ε + |uh,j−1|ε

(5.10)

with | · |ε := (
∫

Ω ‖ε(·)‖2
F dx)1/2 is smaller than a given prescribed bound ǫ > 0. In

the following section, this termination bound is set ǫ = 10−12.

6. Numerical Example. The following test example was calculated on a com-
puter with 1.33 GHz CPU, 1024 KB cache size, 1 GB RAM using Matlab 7.0. It is
taken from [28] and serves as a benchmark problem in computational plasticity. The
example domain is a thin plate represented by the square (−10, 10)× (−10, 10) with a
circular hole of the radius r = 1 in the middle, as can be seen in Figure 6.1. A surface
load g is applied to the plate’s upper and lower edge into normal direction. Just a
single time step is considerd, thus the surface load with the intensity |g| = 450 is
acting at once. Due to the symmetry of the domain, the solution has to be calculated
on one quarter of the domain only. Therefore it is necessary to incorporate homoge-
neous Dirichlet boundary conditions in the normal direction (gliding conditions) to
both symmetry axes. The material parameters are set

E = 206900 , ν = 0.29 , σY = 450
√

2/3 , H = 0.5 .
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Fig. 6.1. Here, the geometry of the example domain is outlined. Due to reasons of symmetry,
the solution has to be calculated for one of the quarters only.

Fig. 6.2. The two plots show the elastoplastic zones (left), and the yield function φ as in (2.9)
(right) of the deformed domain. For better visibility, the displacement is magnified by a factor 100.

Differently to the original problem in [28], we choose the modulus of hardening H to
be nonzero, i. e. hardening effects are considered (cf. Remark 4.10). The numerical
results concerning the application of the slant Newton method to the the original
problem can be seen in [13, 12]. Figure 6.2 shows the yield function (right) and the
elastic-plastic zones (left), where purely elastic zones are colored light gray, and plastic
zones are colored dark gray. For better visibility, the displacement is multiplied by a
factor 100. Table 6.1 reports on the convergence of the slant Newton method.
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dof: 245 940 3680 14560 57920 231040

cri:

0-1 1.669e-02 3.757e-02 2.564e-02 1.536e-02 8.133e-03 4.124e-03

1-2 3.456e-03 4.981e-03 2.559e-03 9.493e-04 2.478e-04 9.472e-05

2-3 2.650e-04 1.646e-04 5.274e-05 3.859e-05 8.815e-06 2.776e-06

3-4 4.976e-08 4.850e-08 1.814e-08 1.250e-07 1.147e-09 1.357e-08

4-5 5.581e-15 1.160e-14 5.741e-15 1.337e-13 3.872e-15 1.388e-14

res:

0 1.637e+03 8.999e+02 7.471e+02 5.410e+02 3.423e+02 1.977e+02

1 4.182e+01 8.613e+01 2.619e+01 1.186e+01 3.144e+00 1.237e+00

2 3.463e+00 2.142e+00 5.991e-01 3.939e-01 1.207e-01 3.793e-02

3 6.948e-04 6.124e-04 2.209e-04 1.711e-03 1.234e-05 1.862e-04

4 6.878e-11 1.467e-10 7.575e-11 1.756e-09 1.687e-10 3.653e-10

5 1.290e-11 2.081e-11 4.131e-11 8.289e-11 1.698e-10 3.437e-10

sec: 2.85249 5.31937 14.6505 53.5494 226.626 1080.64

Table 6.1
This table outlines the convergence behavior of the slant Newton method. In horizontal di-

rection, the refinement of the starting mesh takes place, where the degrees of freedom (dof) are
approximately growing by a factor 4. In the last line (sec) the computational time is displayed in
seconds. Between the first and the last line, two blocks report on the quality of the slant Newton
method. The first block (cri) shows the values (5.10), corresponding to two subsequent Newton it-
eration steps j − 1 and j. The second block (res) displays the norm of the residual, i. e. ‖D J(uj)‖,
in the jth Newton step. Both blocks show roughly super-linear convergence. Notice, that no more
improvement of the residual takes place in the last iteration step. This is due to the fact, that the
machine’s accuracy has been reached. In this table, the slant Newton method takes its initial values
from the interpolation of the solution on the previous level of refinement. This so called nested
iteration strategy keeps the iteration steps constant during the different levels of refinement. Let be
mentioned, that the number of iteration steps keeps roughly constant also if the initial values are
chosen to be zero at all levels of refinement. The interested reader is referred to [13, 12, 14] for
more convergence tables and numerical examples.
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